JMS, Vol. 55, No. 6, 2019
GEOMECHANICS
STRUCTURE OF ELASTICITY TENSORS IN TRANSVERSELY ISOTROPIC MATERIAL WITH PARADOX BEHAVIOR UNDER HYDROSTATIC PRESSURE
B. D. Annin and N. I. Ostrosablin
Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630090 Russia
e-mail: annin@hydro.nsc.ru
Novosibirsk National Research State University,
Novosibirsk, 630090 Russia
The authors analyze the structure of the elasticity tensors and compliance coefficients in a special linearly elastic and transversely isotropic material with paradox behavior. The intrinsic moduli and states are found for the elasticity tensors if this material. The extreme values of Young’s modulus, shear modulus and Poisson’s ratio are determined. The characteristics of the nearest tensor of elasticity moduli are obtained.
Transversal isotropy, elasticity moduli, intrinsic moduli and states, extreme Young’s modulus, extreme shear modulus, extreme Poisson’s ratio, nearest tensors, stratified rocks
DOI: 10.1134/S1062739119066246
REFERENCES
1. Annin, B.D., Transversely Isotropic Elastic Model of Geomaterials, Sib. Zh. Industr. Matem., 2009, vol. 12, no. 3, pp. 5–14.
2. Annin, B.D. and Ostrosablin, N.I., Anisotropy of Elastic Properties of Materials, J. Appl. Math. Tech. Phys., 2008, vol. 49, no. 6, pp. 998–1014.
3. Revuzhenko, A.F., Chanyshev, A.I., and Shemyakin, E.I., Mathematical Models of Elastoplastic Bodies, Aktual’nye problemy vychislitel’noi matematiki i matematicheskoe modelirovanie (Current Problems of Computational Mathematics and the Mathematical Modeling), Novosibirsk: Nauka, 1985, pp. 108–119.
4. Ostrosablin, N.I., Symmetry Classes of the Anisotropy Tensors of Quasielastic Material and a Generalized Kelvin Approach, J. Appl. Math. Tech. Phys., 2017, vol. 58, no. 3, pp. 469–488.
5. Ostrosablin, N.I., Classification of Anisotropic Materials, Din. Splosh. Sredy, 1985, issue 71, pp. 82–96.
6. Ostrosablin, N.I., On the Structure of the Elastic Tensor and the Classification of Anisotropic Materials, J. Appl. Math. Tech. Phys., 1986, vol. 58, no. 4, pp. 600–607.
7. Gol’dshtein, R.V., Gorodtsov, V.A., and Lisovenko, D.S., Variability of Elastic Properties of Hexagonal Auxcetics, Dokl. Akad. Nauk, 2011, vol. 441, no. 4, pp. 468–471.
8. Annin, B.D., A Class of Constitutive Relations in the Linear Anisotropic Hereditary Theory of Elasticity, Hereditary Mechanics of Deformation and Faiure of Solids—Scientific Heritage of Yu.N. Rabotnov: Conference Proceedings, Moscow: IMASH RN, 2014, pp. 18–22.
9. Nečas J. and tipl M. A. Paradox in the Theory of Linear Elasticity, Applications of Mathematics, 1976, vol. 21, no. 6, pp. 431–433.
10. Ostrosablin, N.I., Diagonalization of a Three-Dimensional System of Equations in Terms of Displacements of the Linear Theory of Elasticity of Transversely Isotropic Media, J. Appl. Math. Tech. Phys., 2013, vol. 54, no. 6, pp. 971–988.
11. Ostrosablin, N.I., Transversely Isotropic Tensor Closest in Euclidean Norm to a Given Anisotropic Elastic Modulus Tensor, J. Appl. Math. Tech. Phys., 2019, vol. 60, no. 1, pp. 106–122.
12. Truesdell, C. (Ed.), Mechanics of Solids, Springer-Verlag, 1972.
13. Grigolyuk, E.K. and Korol’, E.Z., Some Inequalities of Poisson’s Ratios in Linear Thermoelasticity, Dokl. Akad. Nauk, 1996, vol. 346, no. 1, pp. 43–45.
14. Ostrosablin, N.I., Extreme Conditions of Elastic Constants and Principal Axes of Anisotropy, J. Appl. Math. Tech. Phys., 2016, vol. 57, no. 4, pp. 740–756.
15. Rabotnov, Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel (Elements of Hereditary Mechanics of Solids), Moscow: Nauka, 1971.
STRESS STATE OF CONICAL GRANULAR PILE
A. P. Bobryakov, S. V. Klishin, and A. F. Revuzhenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: bobriakov@ngs.ru
The authors analyze the effect revealed at the Institute of Mining, SB RAS in the 1970s. This effect consists in a noticeable off-center displacement of the maximum normal pressure on the bottom of a conical pile when heaped. The new experimental data are presented. The stress–stress analysis of the pile between two parallel smooth plates is solved using a 3D discrete element method. The calculations prove the indicated effect.
Granular material, conical pile, laboratory experiment, stress, sensor, numerical model, discrete element method
DOI: 10.1134/S1062739119066258
REFERENCES
1. Revuzhenko, A.F., Stazevsky, S.B., and Sjemyakin, E.I., New Methods of Calculating Load on Supports, J. Min. Sci., 1976, vol. 12, no. 3, pp. 249–265.
2. Revuzhenko, A.F., Stazevsky, S.B., and Sjemyakin, E.I., Nonsymmetry of Plastic Flow in Narrowing Axially Symmetrical Channels, DAN SSSR, 1979, vol. 246, no, 3, pp. 572–574.
3. Fedyanin, A.S., Stazhevsky, S.B., and Chinakal, O.N., Experimental Study of Influence Exerted by Methods and Conditions of Granular Pile Formation on the Pile Stress State, Mechanics of Granular Materials: The 3rd USSR Conference Proceedings, Odessa: OTIPP Lomonosova, 1975, pp. 137–138.
4. Nadai, A., Plasticity: A mechanic of the Plastic State of Matter (Engineering Societies Monograph), McGraw-Hill Book Co, 1931.
5. Smid, J. and Novosad J., Pressure Distribution under Heaped Bulk Solids, Industrial Chem. Eng. Symp., 1981.
6. Wittmer, J.P., Claudin, P., Cates, M.E., and Bouchaud, J.P., A New Approach to Stress Propagation in Sandpiles and Silos, Friction, Arching, Contact Dynamics, 1997, pp. 153–167.
7. Zuriguel, I., Mullin, T., and Rotter, J.M., Effect of Particle Shape on the Stress Dip under a Sandpile, Phys. Rev. Lett., 2007, vol. 98, issue 2, pp. 028001.
8. Dai, B.-B., Yang, J., Zhou, C.-Y., and Zhang, W., Effect of Particle Shape on the Formation of Sandpile, Proc. of the 7th Int. Conf. on Discrete Element Methods, 2017.
9. Liu, Y.-Y., Yeung, A.T., Zhang, D.-L., and Li, Y.-R., Experimental Study on the Effect of Particle Shape on Stress Dip in Granular Piles, Powder Technol., 2017, vol. 319, pp. 415–425.
10. Bobryakov, A.P., Revuzhenko, A.F., and Kosykh, V.P., Author’s certificate no. 1485046, Byull. Izobret., 1989, no. 21.
11. Bobryakov, A.P., Klishin, S.V., Kosykh, V.P., and Revuzhenko, A.F., Measurement and Calculation of Stresses in Granular Material Flow, J. Fundament. Appl. Min. Sci., 2017, vol. 4, no. 3, pp. 32–37.
12. Klishin, S.V., Lavrikov, S.V., Mikenina, O.A., and Revuzhenko, A.F., DEM Modification to Allow Transition to Linearly Elastic Body Model, Recent Problems of Applied Mathematics, Information Science and Mechanics: Int. Sci. Conf. Proc., Voronezh, 2017, pp. 1072–1078.
13. Stazhevsky, S.B. and Khan, G.N., Relation between High Tectonic Stresses and Endogenous Ring Structures, J. Min. Sci., 2017, vol. 53, no. 6, pp. 1016–1024.
14. Klishin, S.V., Klishin, V.I., and Opruk, G.Yu., Mathematical Modeling of Gravity Flow of Soft Rock Mass in Top Coal Cutting Technology, Naukoem. Tekhnol. Razrab. Isp.. Min. Resurs., 2018, no. 4, pp. 80–85.
DEVELOPING EMPIRICAL MODELS FOR UNIAXIAL COMPRESSIVE STRENGTH PREDICTION BY USING NON-DESTRUCTIVE TESTRESULTS
M. B. Hayat, A. Ur Rehman, D. Ali, A. Saleem, and N. Mustafa
Missouri University of Science & Technology, Rolla MO, 65401 USA
e-mail: mbhq57@mst.edu
University of Engineering & Technology, Lahore, 54890 Pakistan
General Department of Mines, Lahore, 54000 Pakistan
Dewan Cement Ltd, Karachi, 74200 Pakistan
In the current study, uniaxial compressive strength, Schmidt hammer and Sonic velocity tests are performed on NX size rock core samples from Sakesar and Namal formation limestone. Least square regression analysis is used to develop any possible correlations between the destructive and non-destructive test results. Empirical models, for predicting the uniaxial compressive strength of rocks by using the rebound number and P-wave/S-wave velocity, have been developed and evaluated. Analysis shows that the empirical model for predicting UCS with Schmidt hammer rebound number is more reliable over a wide range of strength values for both the formations. Whereas the model that uses P-wave/S-wave velocities is reliable particularly when the strength values are low to medium.
Limestone, uniaxial compressive strength, correlation, point load, Schmidt hammer, P-wave velocity, S-wave velocity
DOI: 10.1134/S106273911906626X
REFERENCES
1. Bieniawski, Z.T., Estimating the Strength of Rock Materials, J. S. Afr. Inst. Min. Metall., 1974, vol. 74, pp. 312–320.
2. Cargill, J. and Shakoor, A., Evaluation of Empirical Methods for Measuring the Uniaxial Compressive Strength, Int. J. Rock Mech. and Min. Sci., 1990, vol. 27, pp. 495–503.
3. Gokceoglu, C. and Zorlu, K., A Fuzzy Model to Predict the Uniaxial Compressive Strength and Modulus of Elasticity of a Problematic Rock, J. Eng. Appl. Artif. Intell., 2004, Vol. 71. — P. 61–72.
4. Ceryan, N., Okkan, U., and Kesimal, A., Application of Generalized Regression Neural Networks in Predicting the Unconfined Compressive Strength of Carbonate Rocks, J. Rock Mech. and Rock Eng., 2012, vol. 45, pp. 1055–1072.
5. Kahraman, S., Evaluation of Simple Methods for Assessing the Uniaxial Compressive Strength of Rock, Int. J. Rock Mech. and Min. Sci., 2001,vol. 38, pp. 981–994.
6. Chang, C., Zoback, M.D., and Khaksar, A., Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks, J. Petroleum Sci. and Eng., 2006,vol. 51, pp. 223–237.
7. Hucka, V. and Das, B., Brittleness Determination of Rocks by Different Methods, Int. J. Rock Mech. and Min. Sci., 1974, vol. 11, pp. 389–392.
8. Deere, D.U. and Miller, R.P.,Engineering Classification and Index Properties for Intact Rock, Air Force Weapons Laboratory, Kirtland Base, New Mexico, 1966.
9. Kidybinski, A., Rebound Number and the Quality of Mine Roof Strata, Int. J. Rock Mech. and Min. Sci., 1968, vol. 5, pp. 283–292.
10. Inoue, M. and Omi, M., Study on the Strength of Rocks by the Schmidt Hammer Test, Rock Mechanics in Japan, 1970, vol. 1, pp. 177–179.
11. Singh, R.N., Hassani, F.P., and Elkington, P.S., The Application of Strength and Deformation Index Testing to the Stability Assessment of Coal Measures Excavations, Proc. of the 24th US Symp. on Rock Mech., Texas A and M Univ. AEG, Balkema, Rotterdam, 1983.
12. Shorey, P.R., Barat, D., Das, M.N., Mukherjee, K.P., and Singh, B., Schmidt Hammer Rebound Data for Estimation of Large Scale In-Situ Coal Strength, Tech. Note Int. J. Rock Mech. and Min. Sci. Geomech., Abstract, 1984, vol. 21, pp. 39–42.
13. Haramy, K.Y. and DeMarco, M.J., Use of Schmidt Hammer for Rock and Coal Testing, Proc. of the26th US Symp. Rock Mech., Rapid City, 1985.
14. Ghose, A.K. and Chakraborti, S., Empirical Strength Indices of Indian Coals—AnInvestigation, Proc. of the 27th US Symp. on Rock Mech., Balkema, Rotherdam, 1986.
15. O’Rourke, J.E., Rock Index Properties for Geoengineering in Underground Development, J. Min. Eng., 1989, pp. 106–110.
16. Sachpazis, C.I., Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks, Bul. Int. Association Eng. Geol., 1990, vol. 42, pp. 75–83.
17. Aggistalis, G., Alivizatos, G.S., Stamoulis, D., and Stournaras, G., Correlating Uniaxial Compressive Strength with Schmidt Hardness, Point Load Index, Young’s Modulus, and Mineralogy of Gabbros and Basalts (Northern Greece), Bul. Int Association Eng. Geol., 1996, vol. 54, pp. 3–11.
18. Kahraman, S., Korkmazve, S., and Akcay, M., The Reliability of Using Schmidt Hammer and Point Load Strength Test in Assessing Uniaxial Compressive Strength, K. T. U., Department of Geological Eng. 30th Year Symp. Book, Trabzon, 1996.
19. Tugrul and Zarif, I.H., Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey, J. Eng. Geol., 1999, vol. 51, pp. 303–317.
20. Katz, O., Reches, Z., and Roegiers, J.C., Evaluation of Mechanical Rock Properties Using a Schmidt Hammer, Int. J. Rock Mech. and Min. Sci., 2000, vol. 37, pp. 723–728.
21. Horsrud, P., Estimating Mechanical Properties of Shale from Empirical Correlations, SPE Drill. Complet., 2001, vol. 16, pp. 68–73.
22. Dinçer, I., Acar, A., Cobangulu, I., and Uras, Y., Correlation between Schmidt Hardness, Uniaxial Compressivestrength and Young’s Modulus for Andesites, Basalts and Tuffs, Bul. Eng. Geol. and Environment, 2004, vol. 63, pp. 141–148.
23 Entwisle, D.C., Hobbs, P.N., Jones, L.D., Gunn, D., and Raines, M.G., The Relationship between Effective Porosity, Uniaxial Compressive Strength and Sonic Velocity of Intact Borrowdale Volcanic Group Core Samples from Sallafield, J. Geotech. and Geol. Eng., 2010, vol. 23, pp. 793–809.
24. Yasar, E. and Erdogan, Y., Correlating Sound Velocity with the Density, Compressive Strength and Young’s Modulus of Carbonate Rocks, Int. J. Rock Mech. and Min. Sci., 2004, pp. 871–875.
25. Chary, K.B., Sarma, L.P., Prasanna Lakshmi, K.J., Vijaya Kumar, N.A., Lakshmi, V.N., and Rao, M.M., Evaluation of Engineering Properties of Rock Using Ultrasonic Pulse Velocity and Uniaxial Compressive Strength, National Geophys. Res. I Proc. of National Seminar on Non-Destructive Evaluation, National Geophysical Research Institute, Hyderabad-500 007, 2006.
26. Sharma, P.K. and Singh, T.N., A Correlation between P-Wave Velocity, Impact Index, Slake Durability and Uniaxial Compressive Strength, Bul. of Eng. Geol. and Environment, 2007, vol. 67, pp. 17–22.
27. Vasconcelos, G., Lourenco, P.B., Alves, C.A., and Pamplona, J., Prediction of the Mechanical Properties of Granites by Ultrasonic Pulse Velocity and Schmidt Hammer Hardness, Proc. of the 10th North American Masonry Conf., St, Louis, Missouri, USA, 2007.
28. Kilic, A. and Teymen, A., Determination of Mechanical Properties of Rocks Using Simple Methods, Bul. Eng. Geol. and Environment, 2008, vol. 67, pp. 237–244.
29. Wannakao, L., Sriputorn, S., and Trirat, J., Correlations between Mechanical and Ultrasonic Wave Properties of Claystone from Mae Moh Coal Mine, Rock Mechanics, Fuenkajorn and Phien-wej (Eds.), 2009.
30. Yagiz, S. P-Wave Velocity Test for Assessment of Geotechnical Properties of Some Rock Materials, Indian Acad. Sci. and Bul. of Material Sci., 2011, vol. 34, no. 4, pp. 947–953.
31. A. C. 805–85. Test for Rebound Number of Hardened Concrete, ASTM, USA, 1993.
32. A. D-4543. Standard Practices for Preparing Rock Core as Cylindrical Tests Specimens and Verifying Conformance to Dimensional and Shape Tolerances, Am. Soc. for Testing Materials, 2008.
33. ISRM. Rock Characterization, Testing and Monitoring, ISRM Suggested Methods, E. T. Brown (Ed.), Pergamon, Oxford, 1981.
34. A. D-2845. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, Am. Soc. for Testing Materials, 1995.
35. A. D-7012. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, Am. Soc. for Testing Materials, 2010.
ROCK FAILURE
HILL SLOPE FALLS AND LONG-RUNOUT ROCKSLIDES UNDER LARGE-SCALE UNDERGROUND BLASTING
V. V. Adushkin
Institute of Geopshere Dynamics, Russian Academy of Sciences, Moscow, Russia
e-mail: adushkin@idg.chph.ras.ru
The collected data on long-runout rockslides induced be large-scale underground blasts are presented. The critical conditions of the rockslides are determined as a function of the dynamic impact, rockfall volume, as well as the slope height and gradient. It is shown that the main condition for the mobile rockslides is their volume exceeding 106–108 m3. A collateral effect for rockslides in case of smaller volume of 106–107 m3 is the presence of an acceleration phase at the slope toe and the absence of a counter slope. The relations of the avalanche front range, rockslide volume and fall height are given. It is mentioned that the avalanche range is associated with their composition, in particular, rock-and-ice or rock-and-snow avalanches feature increased mobility starting from their volumes of 105 m3. A brief review of theoretical and modeling studies intended to explain the reduced friction in large avalanches is provided.
Fall, landslide, hillside, rock avalanche, underground blast
DOI: 10.1134/S1062739119066271
REFERENCES
1. Shemyakin, E.I., Mobility of Large Landslides, Dokl. Akad. Nauk, 1993, vol. 331, no. 6, pp. 742–744.
2. Solonenko, V.P., Earthquakes and Relief, Geomorfologiya, 1973, no. 4, pp. 13–18.
3. Bolt, B.A., Horn, W.L., Macdonald, G.A., and Scott, R.F., Geological Hazards, Springer–Verlag Berlin Heidelberg, 1975.
4. Adushkin, V. V. Explosive Initiation of Creative Processes in Nature, Combustion, Explosion, and Shock Waves, 2000, vol. 36, no. 6, pp. 695–703.
5. Aprodov, V.A., Vulkany (Volcanoes), Moscow: Mysl, 1982.
6. Krasnosel’skii, E.B. and Kalabin, G.V., Otvaly na gornykh sklonakh (Dumping on Hill Slopes), Leningrad: Nauka, 1975.
7. Agakhanyants, O.E., Sarez: ozero na Pamirakh (Lake Sarez in the Pamir Mountains), Leningrad: Gidrometeoizdat, 1989.
8. Mülle, L., The Rock Slide in the Vajont Valley, Rock. Mech. Eng. Geol., 1964, vol. 2, pp. 148–2012.
9. Sadovsky, M.A. and Adushkin, V.V., Explosion-Created Dams, Priroda, 1985, no. 11, pp. 3–13.
10. Heim A., Bergsturz und Menschenleben, Fretz & Wasmuth, 1932.
11. Kent, P.E., The Transport Mechanism in Catastrophic Rock Fall, J. of Geol., 1966, vol. 74, pp. 79–83.
12. Krumdiech, A., On the Mechanism of Large Landslides, Proc. of the 4th Int. Symp. on Landslides, Toronto, 1984, vol. 1, pp. 539–544.
13. Pautre, A.F., L`effect d`echolle dans les acoulements de Falaise, Proc. of the 3rd Congr. of Int. Soc. for Rock Mech., 1974, vol. 28, pp. 859–864.
14. Habib, P., Production of Gaseous Pore Pressure during Rock Slides, Rock Mech., 1975, vol. 7, pp. 193–197.
15. Erismann, T.H., Mechanisms of Large Landslides, Rock Mech., 1979, vol. 12, pp. 15–46.
16. Howard, K.A., Avalanche Mode of Motion: Implication from Lunar Examples, Science, 1979, vol. 180, pp. 1052–1055.
17. Melosh, H.J., The Physics of Very Large Landslides, Acta Mech., 1986, vol. 64, pp. 89–99.
18. Sheidegger, A.E., On the Prediction of the Reach and Velocity of Catastrophic Landslides, Rock Mech., 1973, vol. 5, pp. 213–236.
19. Voight, B., Introduction to Rockslides and Avalanches, Elsevier Sci. Publ., 1978, vol. 1, no. 4, pp. 138–143.
20. Melosh, H.J., Giant Rock Avalanches, Nature, 1990, vol. 348, pp. 483–484.
21. Campbell C. S. Self-Lubrication for Long Runout Landslides, J. Geol., 1989, pp. 653–665.
22. Grigoryan, S.S., New Law of Friction and the Mechanism of Large Rock Falls and Slides, DAN SSSR, 1979, vol. 224, no. 4, pp. 846–849.
23. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no., 1, pp. 1–11.
24. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, J. Min. Sci., 1999, vol. 35, no. 3, pp. 216–230.
25. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part II, J. Min. Sci., 2000, vol. 36, no. 4, pp. 305–326.
26. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part IV, J. Min. Sci., 2016, vol. 52, no. 1, pp. 1–35.
IMPACT OF MASSIVE BLASTS ON STABILITY OF TECTONIC FAULTS
G. G. Kocharyan, V. I. Kulikov, and D. V. Pavlov
Institute of Geosphere Dynamics, Russian Academy of Sciences, Moscow, Russia
e-mail: gevorgkidg@mail.ru
The measurement data on seismic load parameters induced by massive blasting carried out in surface and underground mines are presented. The maximum amplitude of seismic vibrations at the probable depth of potential sources of high-magnitude stimulated–tectonic earthquakes is calculated. These estimates and their comparison with the precision deformography observations show that residual displacements along faults at seismic depths under the impact of massive blasts in surface mines are not more than dens–hundreds microns. The seismic data demonstrate insufficiency of these impacts for initiation of high-magnitude earthquakes.
Massive blasts, blast-induced seismic load, stimulated earthquakes, seismic and geodynamic safety of mining
DOI: 10.1134/S1062739119066283
REFERENCES
1. Shemyakin, E.I. and Fainshmidt, V.L., Propagation of Waves in Elastic Half-Space under the Action of Surface Tangential Force, Uchen. Zapis. LGU, 1954, Ser. Mat., no. 177, issue 28, pp. 148–179.
2. Markova, K.I. and Shemyakin, E.I., Propagation of Nonstationary Disturbances in Liquid Layer in Contact with Elastic Half-Space, Prikl. Matem. Mekh., 1957, vol. 21, issue 1, pp. 57–66.
3. Onis’ko, N.I. and Shemyakin, E.I., Movement of Free Surface of Uniform Ground under Underground Explosion, Prikl. Mekh. Tekh. Fiz., 1961, no. 4, pp. 82–93.
4. Shemyakin, E.I., Expansion of Gas Cavity in Incompressible Elastoplastic Medium (Studying Impact of Explosion on Ground), Prikl. Mekh. Tekh. Fiz., 1961, no. 5, pp. 91–99.
4. Medvedeva, N.S. and Shemyakin, E.I., Waves of Load of Underground Explosion on Rocks, Prikl. Mekh. Tekh. Fiz., 1961, no. 6, pp. 78–87.
5. Kuz’mina, N.V., Romashov, A.N., Rulev, B.G., Kharin, D.A., and Shemyakin, E.I., Seismic Effect of Blasts on Outburst in Weak Soil, Trudy IFZ AN SSSR, 1962, no. 6, pp. 3–72.
6. Shemyakin, E.I., Behavior of Rocks under Dynamic Loads, J. Min. Sci., 1966, vol. 2, no. 1, pp. 8–14.
7. Shemyakin, E.I., Dinamicheskie zadachi teorii uprugosti i plastichnosti: kurs lektsii (Dynamic Problems of Elasticity and Plasticity: Course of Lectures), Novosibirsk: NGU, 1968.
8. Shemyakin, E.N., Seismovzryvnye volny v protsessakh gornogo proizvodstva (Seismic–Explosion Waves in Mining Processes), Moscow: NNTS GP–IGD Skochinskogo, 2004.
9. Eremenko, A.A., Mashukov, I.V., and Eremenko, V.A., Geodynamic and Seismic Events under Rockburst-Hazardous Block Caving in Gornaya Shoria, J. Min. Sci., 2017, vol. 53, no. 1, pp. 65–70.
10. Kurlenya, M.V., Eremenko, A.A., and Bashkov, V.I., Effect of Blasting on Seismic Activity and Dynamic Events in Rockburst-Hazardous Underground Mines in Siberia, 2015, no. 8, pp. 69–71.
11. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanics Problems for Free-Flowing Media in Mining, J. Min. Sci., 1082, vol. 18, no. 3, pp. 188–194.
12. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Structural and Dilational Strength of Rocks, Dokl. AN SSSR, 1989, vol. 305, no. 3, pp. 1077–1080.
13. Sadovsky, M.A., Ocherki, vospominaniya, materialy (Essays, Memoirs, Materials), Moscow: Nauka, 2004.
14. Kosykh, V.P., Kosykh, P.V., and Revuzhenko, A.F., Test Bench to Study Complex Stress Evolution in Geomaterials under Weak Dynamic Loads, J. Min. Sci., 2017, vol. 53, no. 6, pp. 1147–1151.
15. Lavrikov, S.V. and Revuzhenko, A.F., Modeling Deformation Processes in Self-Stressed Rock Specimens, J. Min. Sci., 2017, vol. 53, no. 1, pp. 12–20.
16. Adushkin, V.V., Tectonic Earthquakes of Anthropogenic Nature, Fiz. Zemli, 2016, no. 2, pp. 22–44.
17. Eremenko, A.A., Filippov, V.N., Nikitenko. S.M., and Kristolyubov, E. A., Specific Features of Iron Ore Mining in Siberia, J. Min. Sci., 2017, vol. 53, no. 5, pp. 868–881.
18. Adushkin, V.V., Development of Induced–Tectonic Seismicity in Kuzbass, Geolog. Geofiz., 2018, vol. 59, no. 5, pp. 709–724.
19. Goncharov, A.I., Kulikov, V.I., Mineev, V.I., and Sedochenko, V.V., Seismic Effect of Massive Blasting in Underground and Surface Mining, Dynamic Processes in Interacting Geospheres: Transactions of the Institute of Geosphere Dynamics RAS, Moscow: GEOS, 2006, pp. 22–33.
20. Kocharayn, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.
21. Kocharyan, G.G., Kostyuchenko, V.N., and Pavlov, D.V., Initiation of Deformation Processes in the Crust under Weak Disturbances, Fiz. Mezomekh., 2004, vol. 7, no. 1, pp. 5–22.
22. Adushkin, V.V., Kocharyan, G.G., Pavlov, D.V., Vinogradov, E.A., Goncharov, A.I., Kulikov, V.I., and Kulyukin, A.A., Influence of Seismic Vibrations on Development of Tectonic Straina, Dokl. RAN, 2009, vol. 425, no. 1, pp. 98–100.
23. Adushkin, V.V., Kishkina, S.B., and Kocharyan, G.G., New Approach to Monitoring Induced Earthquakes, J. Min. Sci., 2017, vol. 53, no. 1, pp. 1–11.
24. Rymer, M.J., Boatwright, J., Seekins, L.C., Yule, J.D., and Liu, J., Triggered Surface Slips in the Salton Trough Associated with the 1999 Hector Mine, California Earthquake, Bul. Seismol. Soc. America, 2002, vol. 92, no. 4, pp. 1300–1317.
25. Ellsworth, W.L. and Beroza, G.C., Seismic Evidence for an Earthquake Nucleation Phase, Sci., 1995, vol. 268, pp. 851–855.
26. Kocharyan, G.G. and Kishkina, S.B., Initiation of Tectonic Earthquakes Caused by Surface Mining, J. Min. Sci., 2018, vol. 54, no. 1, pp. 744–750.
MODEL TESTS OF TRIGGER EFFECT ON ROCK FAULTS
A. P. Bobryakov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: bobriakov@ngs.ru
Three influences on physical modeling results of unstable dynamic displacements along fault edges under triggered relaxation are considered. The fault filler is assumed to be quartz sand placed in-between moving tiff and rough plates. This quartz sand interlayer is subject to variation in compaction, to relaxation from stresses and to a burst air flow across the interlayer to simulate gas rush in the fault. The relaxation periods in the compact sand packing under the influence of the gas flow are determined.
Shear, granular medium, trigger effect, soft loading, fault, sliding friction, gas flow
DOI: 10.1134/S1062739119066295
REFERENCES
1. Ivlev, D.D. and Morozov, N.F. (Eds.), Problemy mekhaniki deformiruemykh tverdykh tel i gornykh porod: sb. st. k 75-letiyu E. I. Shemyakina (Mechanics of Deformable Solids and Rocks: Collected Works in Honor of the 75th Anniversary of E. I. Shemyakin), Moscow: Fizmatlit, 2006.
2. Shemyakin. E.I., Seismovzryvnye volny v protsessakh gornogo proizvodstva (Seismic Blast-Like Waves in Mining), Moscow: NNTS GP–IGD Skochinskogo, 2004.
3. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.
4. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Possible Mechanism of Mass Transfer in the Earth, Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 5, pp. 1097–1099.
5. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Tidal Deformation of Planets: Practice of Experimental Modeling, Geotektonika. AN SSSR, 1991, no. 6, pp. 21–34.
6. Molchanov, A.E., Mechanics of Trigger Effect in Artificial Trigger-Off of Earthquakes, Trigger Effects in Geosystems: Russian Conference Proceedings, Moscow: GEOS, 2010, pp. 96–104.
7. Trofimov, V.A., Makeeva, T.G., and Filippov, Yu.A., Stability Assessment of Rock Mass, Trigger Effects Geosystems: Russian Conference Proceedings, Moscow: GEOS, 2017, pp. 340–350.
8. Kuvshinov, G.G., Flow of Granular Material from Hole in the Presence of Gas Counter Flow, Prikl. Mekh. Tekh. Fiz., 1995, vol. 36, no. 6, pp. 85–93.
9. Tsubanov, A.G., Zabrodskii, S.S., and Antonishin, N.V., Influence of Gas Flow on Out-Flow of Granular Material, Issledovanie protsessov v apparatakh s dispersnymi sistemami: sb. tr. (Processes in Machines with Dispersion Systems: Collected Papers), Minsk: Nauka Tekhnika, 1969, pp. 133–137.
10. Borisov, Yu.I. and Khodak, L.Z., Mechanism of Flow of Granular Bodies through Holes, Inzh.-Fiz. Zh., 1965, vol. 8, no. 6, pp. 712–719.
11. Tsubanov, A.G., Influence of Pressure Difference on Granular Material Flow I a Vertical Channel, Inzh.-Fiz. Zh., 1969, vol. 7, no. 2, pp. 254–260.
12. Kurlenya, M.V. and Seryukov, S.V., Methane Desorption and Migration in Thermodynamic Inequilibrium Coal Beds, J. Min. Sci., 2010, vol. 46, no. 1, pp. 50–56.
13. Gufel’d, I.L. and Novoselov, O.N., Seismicheskii protsess v zone subduktsii. Monitoring fonvogo rezhima (Seismic Process in Subduction Zone. Background Mode Monitoring), Moscow: VPO MGUO, 2014.
14. Dmitrievskii, A.N. and Valyaev, B.M., Degazatsiya Zemli: geotektonika, geodinamika, geoflyuidy, neft’ i gaz, uglevodorody i zhozn’ (Outgassing of the Earth: Geotectonics, Geodynamics, Geofluids, Oil and Gas, Hydrocarbons and Life), Moscow: GEOS, 2010.
15. Stazhevsky, S.B., Triggers and Mechanisms of Ocean Rift Genesis, Trigger Effects in Geosystems: Russian Conference Proceedings, Moscow: GEOS, 2017, pp. 95–96.
16. Bobryakov, A.P. and Revuzhenko, A.F., Laboratory-Scale Modeling of Trigger Effects due to Gas Filtration in Fault Zones in Rocks, J. Min. Sci., 2018, vol. 54, no. 5, pp. 716–720.
17. Larin, V.N., Gipoteza iznachal’no gibridnoi Zemli (Hypothesis of the Originally Hybrid Earth), Moscow: Nedra, 1980.
18. Larin, V.N., Nasha Zemlya: proiskhozhdenie, sostav, stroenie i razvitie iznachaln’no gidridnoi Zemli (Our Earth: Origin, Composition, Structure and Development of the Initially Hydride Earth), Moscow: Agar, 2005.
19. Lin’kov, A.M., Numerical Modeling of Seismic and Aseismatic Events in Geomechanics, J. Min. Sci., 2005, vol. 41, no. 1, pp. 14–26.
20. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Some Features of Near-Range Response of Rocks to Blasting, Dokl. Akad. Nauk SSSR, 1987, vol. 293, no. 3, pp. 67–70.
21. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no. 1, pp. 1–11.
22. Makarov, P.V. and Peryshkin, A.Yu., Numerical Studies into Generation and Travel of Slow Deformation Waves in Elastoplastic Media, Mechanics, Resource and Diagnostics of Materials and Structures: Proc. Of the 12th Int. Conf., Yekaterinburg: IMASH UrO RAN, 2018, p. 287.
23. Makarov, P.V. and Peryshkin, A.Yu., Slow Motions as Inelastic Strain Autowaves in Ductile and Brittle Media, Physical Mesomechanics, 2017, vol. 20, no. 2, pp. 209–221.
24. Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Fizika makrolokalizatsii plasticheskogo deformirovaniya (Physics of Macrolocalization of Plastic Deformation), Novosibirsk: Nauka, 2008.
AIR DECKS IN SURFACE BLASTING OPERATIONS
M. B. Hayat, L. Alagha, and D. Ali
Missouri University of Science & Technology, Rolla MO, 65401 USA
University of Engineering & Technology, Lahore, 54890 Pakistan
e-mail: alaghal@mst.edu
In this study, the best possible location for an air deck in an explosive column during a surface blasting operation for the most efficient rock fragmentation is described. Volumes of air decks are proposed for the optimization. This study aims at helping guide blasting engineers to easily apply an air deck in a surface blasting operation.
Air deck, surface blasting, explosive consumption, mining cost, site geology
DOI: 10.1134/S1062739119066307
REFERENCES
1. Sanchidrian, J.A., Segarra, P., and López, L.M., Energy Components in Rock Blasting, Int. J. Rock Mech. Min. Sci., 2007, vol. 44, no. 1, pp. 130–147.
2. Jhanwar, J., Jethwa, J., and Reddy, A., Influence of Air-Deck Blasting on Fragmentation in Jointed Rocks in an Open-Pit Manganese Mine, J. Eng. Geol., 2000, vol. 57, no. 1, pp. 13–29.
3. Ozer, U., Environmental Impacts of Ground Vibration Induced by Blasting at Different Rock Units on The Kadikoy-Kartal Metro Tunnel, J. Eng. Geol., 2008, vol. 100, no. 1, pp. 82–90.
4. Jhanwar, J. and Jethwa, J., The Use of Air Decks in Production Blasting in an Open Pit Coal Mine, J. Geotech. and Geol. Eng., 2000, vol. 18, no. 4, pp. 269–287.
5. Jhanwar, J., Theory and Practice of Air-Deck Blasting in Mines and Surface Excavations: A Review, J. Geotech. and Geol. Eng., 2011, vol. 29, no. 5, pp. 651–663.
6. Liu, L. and Katsabanis, P., Numerical Modelling of the Effects of Air Decking/Decoupling in Production and Controlled Blasting, Proc. of the 5th Int. Conf. on Rock Fragmentation by Blasting, AA Balkema, Rotterdam, 1996.
7. Melnikov, N. and Marchenko, L., Effective Methods of Application of Explosion Energy in Mining and Construction, Proc. of the 12th US Symp. on Rock Mech. (USRMS), American Rock Mech. Association, 1970.
8. Melnikov, N.V., Marchenko, L.N., Seinov, N.P., and Zharikov, I.F., A Method of Enhanced Rock Blasting by Blasting, J. Min. Sci., 1979, vol. 6, pp. 32–42.
9. Park, D. and Jeon, S., Reduction of Blast-Induced Vibration in the Direction of Tunneling Using An Air-Deck at the Bottom of a Blasthole, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, no. 5, pp. 752–761.
10. Chi, E.A., Liang, K.S., and Zhao, M.S., Experimental Study on Vibration Reduction of the Hole Bottom Air Space Charging, J. China Coal Soc., 2012, vol. 37, no. 6, pp. 944–950.
11. Abdalla, M., The Environmental Impacts of Air-Deck Blasting, University of New South Wales, 2014.
12. Chiappetta, F., New Blasting Technique to Eliminate Subgrade Drilling, Improve Fragmentation, Reduce Explosive Consumption and Lower Ground Vibrations, J. Explosives Eng., 2004, vol. 21, no. 1, pp. 10–12.
13. Roy, S. and Singh, R.S., Use of Spacer Aided Initiation Technique in Solid Blasting in Indian Underground Coal Mines, J. Min. Tech., 2011, vol. 120, no. 1, pp. 25–35.
14. Jhanwar, J., Cakraborty, A.K., Anireddy, H.R., and Jethwa, J., Application of Air Decks in Production Blasting to Improve Fragmentation and Economics of an Open Pit Mine, J. Geotech. and Geol. Eng., 1999, vol. 17, no. 1, pp. 37–57.
15. Saqib, S., Tariq, S., and Ali, Z., Improving Rock Fragmentation Using Airdeck Blasting Technique, Pak. J. Eng. and Appl. Sci., 2015, vol. 17, pp. 46–52.
16. Thote, N. and Singh, D., Effect of Air-Decking on Fragmentation: a Few Case Studies of Indian Mining, J. Explosive and Blasting Technique, Holmberg (Ed.), Balkema, 2000, pp. 257–265.
17. Jhanwar, J., Investigation into the Influence of Air-Decking on Blast Performance in Opencast Mines in India: a Study, Blasting In Mining-New Trends, 2012. doi: 10.1201/b13739–14.
18. Moxon, N., Mead, D., and Richardson, S., Air-Decked Blasting Techniques: Some Collaborative Experiments, Transactions of the Institution of Mining and Metallurgy, Section A, Min. Industry, 1993, vol. 102.
19. Rommayawes, S., Leelasukseree, C., and Jaroonpattanapong, P., Influence of Air-Deck Ength on Fragmentation in Quarry Blasting, European Scientific J., 2014, vol. 9, no. 10.
20. Leelasukseree, C. and Rommayawes, S., A Guideline of Empty Gap Length for Air Deck Blasting in Good Rockmass, Rock Mechechanics, Fuenkajorn & Phien-wej (Eds.), 2011, Vol. 7.
21. Hayat, M.B. and Tariq, S.M., Optimization of Bench Blasting Using Air Deck Blasting Technique, Min. Eng., University of Engineering and Technology Lahore, Pakistan, 2012.
22. Floyd, J.L., Power Deck Optimization, Blast Dynamics Inc., 2004.
23. Lu, W. and Hustrulid, W., A Further Study on the Mechanism of Airdecking, Fragblast, 2003, vol. 7, no. 4, pp. 231–255.
MINERAL MINING TECHNOLOGY
RESEARCH AND DEVELOPMENT OF BIO-DEGASIFICATION TECHNOLOGIES FOR COAL FIELDS
M. V. Kurlenya, E. K. Emel’yanova, I. S. Andreeva, and A. V. Savchenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: sav@emkl.ru
Novosibirsk State Medical University, Novosibirsk, 630091 Russia
State Research Center of Virology and Biotechnology VECTOR, Kol’tsovo, Novosibirsk, 630559 Russia
The current situation and development trends in the biological degasification of coal are reviewed. It is shown that methane desorption is a consequence of rock mass destruction by activity of microorganisms and releasing bacterial metabolites. The influence of microorganisms on coal as a function of a prevailing microbial community and its variety, access of oxygen and nutritious substrates is observed. Advancement of the biological method for coal field degasification based on the methanotrophy is discussed.
Methanotrophs, methane-oxidizing microorganisms, coal seam degasification, methane, roadways
DOI: 10.1134/S1062739119066319
REFERENCES
1. Khautiev, A.M., Justification and Development of Coal Seam Degasification Method Based on Cyclical Gas-Dynamic Impacts, Cand. Tech. Sci. Dissertation, Moscow, 2015.
2. Ivanov, M.V., Microbiological Method of Methane Control in Coal Mines, Yubileinyi sbornik k 70-letiyu Instituta mikrobiologii im. S. N. Vernadskogo (Festschrift towards the 70th Anniversary of the Vernadsky Institute of Microbiology), V. F. Gal’chenko (Ed.), Moscow: Nauka, 2004.
3. Breas, O., Guillou, C., Reniero, F., and Wada, E., The Global Methane Cycle: Isotopes and Mixing Ratios, Sources and Sinks, Isotopes Environ., Health Stud., 2001, vol. 37, pp. 257–379.
4. Zorin, A.N., Khalimendik Yu.M., and Kolesnikov, V.G., Mekhanika razrusheniya gornogo massiva i ispol’zovabnie ego energii pri dobyche poleznykh iskopaemykh (Fracture Mechanics of Rock Mass and Use of the Fracture Energy in Mineral Mining), Moscow: Nedra, 2001.
5. Artem’ev, V.B., Korshunov, G.I., Loginov, A.K., and Shik, V.M., Dinamicheskie formy proyavlenii gornogo davleniya (Dynamic Forms of Events of Rock Pressure), Saint-Petersburg: Nauka, 2009.
6. Kozlovskii, E.E. (Ed.), Gornaya entsiklopediya (Mining Encyclopedia), Vol. 3, Moscow: Sov. entsiklopediya, 1987, 425 p.
7. Kozlovskii, E.E. (Ed.), Gornaya entsiklopediya (Mining Encyclopedia), Vol. 5, Moscow: Sov. entsiklopediya, 1989, 171 p.
8. Kurlenya, M.V., Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., Stimulation of Underground Degassing in Coal Seams by Hydraulic Fracturing Method, J. Min. Sci., 2017, vol. 53, no. 6, pp. 975–980.
9. Serdyukov, S.V., Kurlenya, M.V., Rybalkin, L.A., and Shilova, T.V., Hydraulic Fracturing Effect on Filtration Resistance in Gas Drainage Hole Area in Coal, J. Min. Sci., 2019, vol. 55, no. 2, pp. 175–184.
10. Kurlenya, M.V., Tsupov, M.N., and Savchenko, A.V., Influence of Bachatsky Earthquake on Methane Emission in Roadways in Coal Mines, J. Min. Sci., 2019, vol. 55, no. 5, pp. 3–9.
11. Prospects of Gas Production from Coal in Russia. Gazprom. https://www.gazprom.ru/about/production/ extraction/metan/.
12. Yurovskii, A.Z., Kapilash, G.P., and Mangubi, B.V., Methane Control in Coal Mines By Means of Methane-Consuming Bacteria, Preliminary Report, Ugol’, 1939, no. 7.
13. Bulankinà, M.A., Lysak, L.V., and Zvyagintsev, D.G., Microorganisms in Lignite, Izv. RAN. Ser.: Biol., 2007, vol. 2, pp. 239–243.
14. Kovalenko, G.A., Selective Oxidation of Gaseous Hydrocarbons by Bacterial Cells, Uspekhi Khimii, 1996, vol. 65, no. 7, pp. 676–691.
15. Vick, S., Greenfield, P., Pinetown, K., Sherwood, N., Gong, S., Tetu, S., Midgley, D., and Paulsen, I., Succession Patterns and Physical Niche Partitioning in Microbial Communities from Subsurface Coal Seams, Science, 2019, vol. 12, pp. 152–167.
16. Wei, M., Yu, Z., and Zhang, H., Microbial Diversity and Abundance in a Representative Small-Production Coal Mine of Central China, Energy Fuels, 2013, vol. 27, pp. 3821–3829.
17. Malashenko, Yu.R., Sokolov, I.G., and Romanovskaya, V.A., Mikrobnyi metabolizm nerostovykh substratov (Microbial Metabolism of Non-Growth Substrates), Kiev: Naukova dumka, 1987.
18. Han, B., Chen, Y., Abell, G., Jiang, H., Bodrossy, L., Zhao, J., Murrell, J., and Xing, X-H., Diversity and Activity of Methanotrophs in Alkaline Soil from A Chinese Coal Mine, FEMS Microbiology Ecology, 2009, vol. 70, issue 2, pp. 196–207. DOI: org/10.1111/j.1574–6941.2009.00707.x.
19. Ivanov, M.V., Nesterov, A.I., Namsaraev, B.B., Gal’chenko, V.F., and Nazarenko, A.V., Propagation and Geochemical Activity of Methanotrophs in Coal Mine Water, Mikrobiologiya, 1978, vol. 47, pp. 489–494.
20. Sohngen, N. L. Uber Bakterien, Welche Methan ab Kohlenstoffnahrung und Energiequelle Gebrauchen, Parasitenkd. Infectionskr., 1906, vol. 15, pp. 513–517.
21. Dunfield, P. and Dedysh, S., Methylocella: A Gourmand among Methanotrophs, Trends Microbiol., 2014, vol. 22, pp. 368–369.
22. Myaken’kii, V.I. and Kurdish, I.K., Mikrobiologicheskoe okislenie metana ugol’nykh shakht (Microbiological Oxidation of Coal Mine Methane), Kiev: Naukova dumka, 1991.
23. Vasyuchkov, Yu.F., Technology of Methane Release Control in Coal Mines, Izv. TulGU. Nauki o Zemle, 2018, issue 4, pp. 168–179.
24. Vasyuchkov, Yu.F., Sovershenstvovanie upravleniya metanovydeleniem v ochistnykh zaboyakh mikrobiologichsekimi sposobami (Improvement of Methane Release Control in Longwall Face Areas by Microbiological Methods), Moscow: TSNEI-ugol’, 1989.
25. Ismailov, A.S., Razrabotka metodov bor’by s metanov v shakhtakh s ispol’zovaniem mikrobiologichskogo vozdeistviya na ugol’nye plasty cherez skvazhiny s poverkhnosti (Development of Methane Control in Mines Using Microbiological Treatment in Boreholes Drilled from Surface), Moscow: MGI, 1985.
26. Ivanov, M.I., Microbiological Methods of Methane Control in Coal Mines, Vestn. AN SSSR. Ser.: Biol., 1988, no. 3, pp. 16–26.
27. Myaken’kii, V.I., Justification of Microbiological Method for Methane Content Reduction in Goafs, Ugol’ Ukrainy, 1983, no. 12, pp. 32–33.
28. Rzhevsky, V.V., Bratchenko, B.F., Burchakov, A.S., and Nozhkin, N.V., Upravlenie svoistvami i sostoyaniem ugol’nykh plastov s tsel’yu bor’by s osnovnymi opasnostyami v shakhtakh (Controlling Properties and Behavior of Coal Seams to Prevent Major Hazards in Mines), Moscow: Nedra, 1984.
29. Xing, X., Jiang, H., Jiang, P.-X., Zhang, C., Chen, Y., and Murrell, J., Bioengineering of Methanotrophic Consortia for Reduction of Methane Emission in Coal Mines, J. Biotechnology, 2010, vol. 150, pp. S541–S542. DOI: 10.1016/j.jbiotec.2010.09.892.
30. Stępniewska, Z., Pytlak, A., and Kuźniar, A., Methanotrophic Activity in Carboniferous Coalbed Rocks, Int. J. Coal Geology, 2013, vol. 106, pp. 1–10.
31. Thielemann, T., Luåcke, A., Schleser, G., and Littke, R., Methane Exchange between Coal-Bearing Basins and the Atmosphere: the Ruhr Basin and the Lower Rhine Embayment, Germany, Organic Geochemistry, 2000, vol. 31, pp. 1387–1408.
32. Wei, M., Yu, Z., and Zhang, H., Molecular Characterization of Microbial Communities in Bioaerosols of a Coal Mine by 454 Pyrosequencing and Real-Time PCR, J. Environmental Sciences, 2015, vol. 30, pp. 241–251.
33. Karthikeyan, O., Chidambarampadmavathy, K., Nadarajan, S., Lee, P., and Heimann, K., Effect of CH4/O2 Ratio on Fatty Acid Profile and Polyhydroxybutyrate Content in a Heterotrophic–Methanotrophic Consortium, Chemosphere, 2015, vol. 141, pp. 235–242.
34. Cao, Q., Liu, X., Ran, Y., Li, Z., and Li, D., Methane Oxidation Coupled to Denitrification under Microaerobic and Hypoxic Conditions in Leach Bed Bioreactors, Science of the Total Environment, 2019, vol. 649, pp. 1–11.
35. Apel, W., Dugan, P., and Wiebe, M., Use of Methanotrophic Bacteria in Gas Phase Bioreactors to Abate Methane in Coal Mine Atmospheres, Fuel, 1991, vol. 70, pp. 1001–1003.
36. Sly, L., Bryant, L., Cox, J., and Anderson, J., Development of a Biofiter for the Removal of Methane from Coal Mine Ventilation Atmospheres, Appl. Microbiol. Biotechnol., 1993, vol. 39, pp. 400–404.
37. Kovalenko, G.A., Catalysis by Ferments and Non-Growing Bacterial Cells Immobilized on Inorganic Bearers, Doc. Chem. Sci. Dissertation Summary, Novosibirsk, 2006.
38. Bondar’, V.A., Vasyuchkov, Yu.F., Zakharchenko, V.N., Zyakun, A.M., Ismailov, A.S., Kachak, V.V., and Nesterov, A.I., Patent SU 1 475 249 A1, Byull. Izobret., 1999, no. 3.
39. Lalov, V.V., Nazarov, A.V., and Osokina, N.V., RF patent no. 2064016, Byull. Izobret., 1996, no. 4.
40. Gou, Z., Xing, X.-H., Luo, M., Jiang, H., Han, B., Wu, H., Wang, L., and Zhang, F., Functional Expression of the Particulate Methane Mono-Oxygenase Gene in Recombinant Rhodococcus erythropolis, FEMS Microbiology Letters, 2006, vol. 263, issue 2, pp. 136–141.
OPTIMIZING SHEARER WEB WIDTH IN UNDERGROUND MINING OF GENTLY DIPPING METHANE-BEARING COAL SEAMS
A. A. Ordin, A. M. Timoshenko, and D. V. Botvenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: sav@emkl.ru
Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
VostNII Research and Design Center, Kemerovo, 650002 Russia
VostNII Science Center, Kemerovo, 650002 Russia
Specifications of domestic and foreign shearers are given. The problem is formulated for optimizing web width of a shearer by the maximum capacity criterion with regard to geological and technology factors. The analytical solution is obtained for the problem using the approximating linear functions of the sloughing factor and the web width. The influences of the optimal web width of shearer are analyzed, and the related recommendations are made. The extremal curve of methane release from broken coal is shown, and the allowable capacity of face by the gas criterion is tested in longwall 5214–1 in the Yalevsky Mine of the Kuznetsk Coal Basin.
Mine, shearer, drum, web width, optimization, advance speed, rotation speed, tangential picks
DOI: 10.1134/S1062739119066320
REFERENCES
1. Demura, V.N., Artem’ev, V.V., Yasyuchenya, S.V. et al., Tekhnologicheskie skhemy podgotovki i otrabotki vyemochnykh uchastkov na shakhtakh OAO SUEK-Kuzbass (Flow Charts of Preparation and Extraction of Panels in Mines of SUEK-Kuzbass), vol. 3: Underground Mining, Moscow: Gornoe delo, 2014.
2. Ugol’naya promyshlennost’ Kuzbassa. Osnovnye pokazateli raboty (Coal Mining Industry in Kuzbass. Performance), Kemerovo: IVTS, 2018.
3. Solod, V.I., Getopanov, V.N., and Rachek, V.M., Proektirovanie i konstruirovanie gornykh mashin i kompleksov (Design and Engineering of Mining Machines and Systems), Moscow: Nedra, 1982.
4. Maleev, G.V., Gulyaev, V.G., Boiko, N.G. et al., Proektirovanie i konstruirovanie gornykh mashin i kompleksov (Design and Engineering of Mining Machines and Systems), Moscow: Nedra, 1988.
5. Plotnikov, V.P., Formula for capacity of shearers equipped with drums or cutter, Ugol’, 2009, no. 9, pp. 5–7.
6. Gabov, V.V., Nguen Khak Lin, Nguen Vang Suang, Le Tkhan Bin, and Zadkov, D.A., Justification of Geometry and Operation Modes for Shearer Drums to Ensure Efficient Coal Loading on Face Armored Conveyor, Ugol’, 2018, no. 2, pp. 32–35.
7. Verner, V.N., Analysis and Justification of Efficient Parameters for Drums, Loaders and Handlers of Mining Machines, Dr. Tech. Sci. Dissertation, Kemerovo: KuzGTU, 1999.
8. Wang, F., Tu, S., and Bai, Q., Practice and Prospects of Fully Mechanized Mining Technology for Thin Coal Seams in China, J. of the South African Institute of Min. and Metallurgy, 2012, vol. 112, no. 2, pp. 161–170.
9. Peng, S.S., Longwall Mining, U. S., 2006.
10. Ayhan, M. and Eyuboglu, E.M., Comparison of Globoid and Cylindrical Shearer Drums’ Loading Performance, J. of the South African Institute of Min. and Metallurgy, 2006, vol. 106, pp. 51–56.
11. Kuidong Gao, Changlong Du, Jianghui Dong, and Qingliang Zeng, Influence of the Drum Position Parameters and the Ranging Arm Thickness on the Coal Loading Performance, J. Minerals, 2015, vol. 5, pp. 723–736.
12. Skryabin, R.M. and Timofeev, N.G., Development of an Innovative Auger Heat-Sink Boring Shell for Drilling in the Conditions of a Cryolithosone, J. Eurasian Mining, 2016, no. 1, pp. 33–36.
13. Zvonarev, I.E. and Shishlyannikov, D I., Efficiency Improvement of Loading of Potassium Ore by Means of Ural-20R Heading-and-Winning Machine, IOP Conf. Series, Earth and Environmental Sci., 2017, vol. 87.
14. Morozov, V.I., Chudenkov, V.I., and Surina, N.V., Ochistnye kombainy (Shearer–Loaders), Moscow: MGU, 2006.
15. Ordin, A.A. and Nikol’sky, A.M., Optimizing Cutting Width and Capacity of Shearer Loaders in Longwall Mining of Gently Dipping Coal Seams, J. Min. Sci., 2018, vol. 54, no. 1, pp. 69–76.
16. Vremennye ukazaniya po upravleniyu gornym davleniem v ochistnykh zaboyakh na plastakh moshchnost’yu do 3.5 m i uglom padeniya do 35° (Temporal Guideline on Ground Control in Longwalls in Seams to 3.5 m Thick with Dip Angles to 35 deg), Leningrad, VNIMI, 1982.
17. Ordin, A.A. and Timoshenko, A.M., Nonlinear Relationships between Coalseam Methane Release, Natural Methane Content and Kinematic Parameters of Cutting Picks of Shearers, J. Min. Sci., 2017, vol. 53, no. 2, pp. 311–316.
18. Federal’nye normy i pravila v oblasti promyshlennoi bezopasnosti “Pravila bezopasnosti v ugol’nykh shakhtakh” (Federal Code of Industrial Safety: Safety Regulations for Coal Mines), Ser. 05, Moscow: NTSIPPB, 2017, Issue 40.
IMPROVING THE CONSTRUCTION OF MECHANIZED COMPLEXES FOR RELOADING POINTS WHILE DEVELOPING DEEP OPEN PITS
O. O. Shustov, J. S. Haddad, A. A. Adamchuk, V. O. Rastsvietaiev, and O. V. Cherniaiev
Dnipro University of Technology, Dnipro, Ukraine
Al-Balqa Applied University, Amman, Jordan
e-mail: drjamil@bau.edu.jo
Layouts of reloading points in the cyclical-and-continuous technology for deep-level surface mining are analyzed. The innovative structure of a reloading point involving dump trucks drivethrough passing has been proposed; the structure will make it possible to increase reloading point productivity, cut the costs for rock mass extraction, and reduce the time of motor transport maneuvering. Dependence of general funds saving for overburden rock extraction upon the open pit depth while constructing a reloading point with the drivethrough passing comparing to a dead-end unloading of various-capacity dump trucks has been determined.
Overburden rocks, reloading point, bunker, dump truck, belt conveyor, drivethrough passing, dead-end loading
DOI: 10.1134/S1062739119066332
REFERENCES
1. Dryzhenko, À.Yu., Open-Pit Mining: A Guide, Dnipropetrovsk: NMU, 2014.
2. Korolenko, Ì.Ê., Perehudov, V.V., Fedin, Ê.À., Romanenko, À.V., and Protasov, V.P., The Improvement of Shovel and Truck Methods for Rock Hoisting in the Context of Yuzhny GOK: Monograph, Kryvy Rih: Dionis, 2012.
3. Shustov, O. and Dryzhenko, A., Organization of dumping stations with combined transport types for iron-ore deposits, Mining of Mineral Deposits, 2016, vol. 10, no. 2, pp. 78–84. Available at: https://doi.org/ 10.15407/mining10.02.078.
4. Gruzdev, A.V., Osadchy, A., and Furin, V.O., Stationary and Transportable Crushing Handling Plants Manufactured by Uralmash, Mining Industry J., 2012, no. 4, p. 98.
5. Smirnov, V.P. and Lel, Yu.I., Theory of Open-Pit Heavy-Duty Vehicles, Yekaterinburg: UD RAS, 2002.
6. Pavlov, À.Yu., Rohach, Ì.S., Klubnichkin, Ye.Ê., Ivanova, Ye.Ye., and Propletin, À.P., USSR patent no. 880931, Newsletter, 1989, no. 42.
7. Markov, N.G., Smetanin, V.G., Istomin, L.V., and Dereshevaty, Î.Ye., USSR patent no. 713801, Newsletter, 1980, no. 5.
8. Paskhin, B.Ì. and Markozian, P.D., USSR patent no. 135021, Newsletter, 1961, no. 1.
9. Anikin, N.N., Kuprii, V.Ò., and Chaikovki, À.I., USSR patent no. 988726, Newsletter, 1983, no. 2.
10. Tartakovski, B.N., Krymski, V.I., Andriushchenko, À.V., Lashko, V.Ò., and Anikin, N.N., USSR patent no. 718346, Newsletter, 1980, no. 8.
11. Paskhin, B.Ì. and Popov, À.N., USSR patent no. 132123, Newsletter, 1960, no. 18.
12. Anikin, N.N., Chaikovki, À.I., and Parshkin, E.Ì., USSR patent no. 933589, Newsletter, 1982, no. 21.
13. Dryzhenko, À.Yu., Shmitko, À.I., Symonenko, V.I., Krytov, À.Å., and Byrin, I.S., USSR patent no. 1090649, Newsletter, 1984, no. 17.
14. Makashov, V.N., Kobrynski, G.Ì., Dryzhenko, À.Yu., and Greenberg, E.Ì., USSR patent no. 1057393, Newsletter, 1983, no. 44.
15. Menshikov, B.À. and Sisin, À.G., USSR patent no. 606796, Newsletter, 1978, no. 18.
16. Budanov, V.Ye., Koriakin, À.I., and Lokhanov, B.N., USSR patent no. 800077, Newsletter, 1979, no. 18.
17. Dryzhenko, À.Yu., Adamchuk, À.À., Shustov, Î.Î., Moldabaiev, S.Ê., and Nikiforova, N.À., Ukraine patent no. 123290, Newsletter, 2018, no. 4.
18. Adamchuk, À.À., Analyzing Parameters for Deep Open-Pit Overmining, Collection of Scientific Papers of the NMU, 2017, no. 50, pp. 10–17.
19. Babets, Ye.Ê., Melnikova, ².Ye., Hrebeniuk, S.Ya., and Lobov, S.P., Analyzing Technical-and-Economic Indices of Mining Enterprises of Ukraine and Their Efficiency in the Context of Varying Conjuncture of the World Iron-Ore Market: Monograph, Kryvy Rih: R. A. Kozlov, 2015.
20. Shapar, À.G., Lashko, V.Ò., Novozhylov, S.Ì., Kuchersky, N.I., Malygin, Î.N., Prokhorenko, G.À., Shemetov, P.À., Kolomnikov, S.S., and Davronbekov, U.Yu., Reloading Points under Motor-Conveyor Transport in Ore Open Pits: Monograph, Dnipropetrovsk: Poligrafist, 2001.
21. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., and Sarybayev, N., Open-Pit Mining Technology of Steeply Dipping Mineral Occurrences by Steeply Inclined Sublayers, Proc. of the 17th Int. Multidisciplinary Scientific GeoConference SGEM 2017, 2017, pp. 599–605.
22. Dryzhenko, A., Shustov, A., and Moldabayev, S., Justification of Parameters of Building Inclined Trenches Using Belt Conveyors, Proc. of the 17th Int. Multidisciplinary Scientific GeoConference SGEM, 2017, pp. 471–478.
23. Chernyaåv, O.V., Systematization of the Hard Rock Non-Metallic Mineral Deposits for Improvement of Their Mining Technologies, Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu, 2017, no. 5, pp. 11–17.
SCIENCE OF MINING MACHINES
AVAILABILITY ASSESSMENT OF MOUNTING GROUPS OF MINING MACHINES
B. L. Gerike, V. I. Klishin, and A. A. Mokrushev
Federal Research Center for Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, Kemerovo, 650056 Russia
e-mail: gbl_42@mail.ru
Gorbachev Kuzbass State Technical University, Kemerovo, 650099 Russia
e-mail: andy-mokrushev@yandex.ru
The classification of the methods available for diagnostic of mining machinery mounting groups with roller bearings is considered with indicated advantages and disadvantages. The model is constructed to describe formation of shock pulses in roller bearings when different defects are generated in them. This model is suitable for the availability monitoring of the machinery mounting groups. The applicability of wavelet transforms instead of the standard fast Fourier transform to random processes and vibro-acoustic signals is tested for the detection of defects in manufacture and operation of mining machines.
Mining machines, mounting groups, roller bearings, manufacturing and assembling defects, availability assessment, monitoring, vibration diagnostics
DOI: 10.1134/S1062739119066344
REFERENCES
1. Klyuev, V.V. (Ed.), Nerazrushayushchii kontrol’: spravochnik (Nondestructive Control: Handbook), Books 1 and 2, Moscow: Mashinostroenie, 2006.
2. Kukharenko B. G. Indirect Identification of Low-Pressure Compressor Blade Flutter with Oscillation Record Preprocessing in Use, Probl. Mashinost. Avtomatiz., 2008, no. 4, pp. 37–43.
3. Gerike, P.B. and Nesterova, O.A., Application of Nondestructive Tests Data to Creation of Identification Procedure for Technical State of Mining Equipment by Vibration Parameters, Vestn. KuzGTU, 2017, no. 6, pp. 161–169.
4. Gammershmidt, A.A., Coal Industry in Kuzbass: Current Conditions and Development Prospects, Ugol’, 2015, no. 5, pp. 14–15.
5. Galkin, V.I. and Sheshko, E.E., Transportnye mashiny (Transport Machines), Moscow: Gornaya kniga, 2010.
6. Gerike, B.L., Sushko, A.E., and Gerike, P.B., Introduction of Digital Technologies in the Field of Technical Diagnosis, Maintenance and Repair of Mining Machines and Equipment, Tekhnika Tekhnol. Gorn. Dela, 2018, no. 3, pp. 19–28.
7. Wu, J.D. and Liu, C.H., Investigation of Engine Fault Diagnosis Using Discrete Wavelet Transform and Neural Network, Expert Systems with Applications, 2008, vol. 35, pp. 1200–1213.
8. Bendjama, H., Bouhouche, S., Boucherit, M.S., and Mansour, M., Vibration Signal Analysis Using Wavelet-PCA-NN Technique for Fault Diagnosis in Rotating Machinery, The Mediterranean J. of Measurement and Control, 2010, vol. 6, no. 4, pp. 145–154.
9. Zakharov, A.Yu. and Shiryamov, D.B., Determination of Critical Rotational Resistance value of Conveyor Rollers, Gorn. Oborud. Elektrotekhn., 2016, no. 1, pp. 3–8.
10. Mamet’ev, L.E., Lyubimov, O.V., and Drozdenko, Yu.V., Justification of Technological Lifespan Parameters for Bearing Units of Augering Machines, Vestn. KuzGTU, 2013, no. 1 (95), pp. 16–18.
11. Krakovskii, Yu.M., Matematicheskie i programmnye sredstva otsenki tekhnicheskogo sostoyaniya oborudovaniya (Mathematical and Software Tools of Availability Evaluation of Equipment), Novosibirsk: Nauka, 2005.
12. Kelly S. Graham, Advanced Vibration Analysis, 2013.
13. Kapranov, B.I. and Korotkova, I.A., Spektral’nyi analiz v nerazrushayushchem kontrole (Spectral Analysis in Nondestructive Testing), Tomsk: TPU, 2010.
14. Klyuev, V.V. (Ed.), Nerazrushayushchii kontrol’: spravochnik (Nondestructive Control: Handbook), vol. 5, Moscow: Mashinostroenie, 2005.
15. PC-Based Predictive Maintenance Systems CSI, Knoxville, TN 37923, USA.
16. Shirman, A.R. and Solov’ev, A.B., Prakticheskaya vibrodiagnostika i monitoring sostoyaniya mekhanicheskogo oborudovaniya (Applied Vibration Diagnostics and Monitoring of Mechanical Equipment), Moscow, 1996.
17. Bearing Failure Diagnosis, NSK Motion & Control, 2009.
18. Bearing Damages and Their Causes, SKF AB, 2002.
19. Rudloff, L., Arghir, Ì., Bonneau, Î., Guingo, S., Chemla, G., and Renard, E., Experimental Analysis of the Dynamic Characteristics of a Hybrid Aerostatic Bearing, J. Eng. for Gas Turbines and Power, 2012, vol. 134, no. 18.
20. Sal’nikov, A.F., Vibroakusticheskaya diagnostika tekhnicheskikh ob’ektov (Vibro-Acoustic Diagnosis of Engineering Objects), Perm: PNIPU, 2011.
21. Astaf’eva, N.M., Wavelet Analysis: New Theories and Application Examples, Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1145–1170.
22. Vityazev, V.V., Veivlet-analiz vremennykh ryadov (Wavelet Analysis of Time Series), Saint-Petersburg: SPbGU, 2001.
23. D’yakonov, V.P., MATLAB: polnyi samouchitel’ (MATLAB: Complete Self-Teaching Textbook), Saint-Petersburg: DMK Press, 2012.
PERFORMANCE PREDICTION OF CIRCULAR DIAMOND SAWS BY ARTIFICIAL NEURAL NETWORKS AND REGRESSION METHOD BASED ON SURFACE HARDNESS VALUES OF MUGLA MARBLES, TURKEY
A. Guney
Mugla Sıtkı Kocman University, Department of Mining Engineering, Mugla, Turkey
e-mail: aguney@mu.edu.tr
Sawing of natural stones with diamond-impregnated circular saws is extensively implemented in stone processing plants in variety of applications that include sawing, cutting, splitting and trimming. Hence, the cost of diamond saws and energy have become important input in terms of estimating the hourly areal slab productions (HASPs) from the standpoint of effective cost analyses, feasible and sustainable designing of stone processing plants prior to reaching a decision for the investment. This study aimed at estimating the HASPs of the machines with circular diamond saws during the dimensioning of marble blocks quarried in Mugla (Turkey) Region. Thus, the models were generated to estimate the HASPs by artificial neural networks (ANN) and regression method (RM), based on Shore and Schmidt hardness values of rocks. Also, HASPs were acquired through in-plant measurements in order to justify the HASPs estimated by ANN and RM models. The analyses of the models generated using ANN proved to yield very strong consistencies with HASPs measured in the plants. Hence, the HASPs can be estimated reliably by the ANN models which also may be considered as a tool in designing of natural stone processing plants based on rock surface hardness.
Shore hardness (SH), Schmidt hardness (SCH), hourly areal slab productions (HASPs), artificial neural network (ANN), regression method (RM)
DOI: 10.1134/S1062739119066356
REFERENCES
1. Büyüksağış, İ.S., Sawability Analysis of Marbles in Circular Daimond Block Cutting Machines, Osmangazi University Graduate School, PhD Thesis, Turkey, 1998.
2. Kahraman, S., Altun, H., Tezekici, B.S., and Fener, M., Sawability Prediction of Carbonate Rocks From Strength Parameters Using Artifical Neural Networks, Int. J. Rock Mech. & Min. Sci., 2006, vol. 43, pp. 157–164.
3. Özçelik, Y., Ünver, B., and Bayram, F., Sawability Classification of Some Natural Stones with Circular Sawing and Numerical Modeling of Sawing Mechanism, TÜBİTAK, 2008.
4. Şengün, N., Influence of Fracture Toughness and Brittlenes on Cutting Efficiency of Circular Diamond Saws, Suleyman Demirel University, PhD Thesis, 2009, Isparta, Turkey.
5. Şengün, N., Altındağ, R., and Koçcaz, C.E., The Sawability Analysis of Some Magmatic Rocks Found in Isparta Region, J. Sci. and Eng. of Dokuz Eylul University, 2009, vol. 11, no. 31, pp. 22–31.
6. Caner, M. and Akarslan, E., Estimation of Specific Energy Factor in Marble Cutting Process Using ANFIS and ANN, J. Eng. Sci. of Pamukkale University, 2009, vol. 15, no. 2, pp. 233–239.
7. Bayram, A., Yaşıtlı, N.E., and Özçelik, Y., The Relations Between Noise Level and Cutting Parameters in Circular Diamond Sawing, The 22nd Int. Min. Congr. of Turkey Proc. Book, 2011, pp. 407–413.
8. Guney, A., Performance Prediction of Large-Diameter Circular Saws Based on Surface Hardness Tests for Mugla (Turkey) Marbles, J. Rock Mech. Rock Eng., 2011, vol. 44, pp. 357–366.
9. Güvenç, U., Dursun, M., and Çimen, H., Artificial Neural Network Based Modelling of Cutting Time in Marble Cutting Process, SDU Int. Tech. Sci., 2011, vol. 3, pp. 9–16.
10. Sengun, N. and Altindag, R., Prediction of Specific Energy of Carbonate Rock in Industrial Stones Cutting Process, Arab. J. Geosciences, 2013, vol. 6, no. 4, pp. 1183–1190.
11. Aydin, G., Karakurt, I., and Hamzacebi, C., Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis, Arab. J. Sci. and Eng., 2015.
12. İnan, A., Usage Areas of Artificial Neural Networks in Power Systems, J. Kaynak Electicial, 1999, vol. 119, pp. 104–114.
13. Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning Internal Representation by Error Propagation. in: Parallel and Distributed Processing: Explorations in the Microstructure of Cognition, Foundations, MIT Press: Cambridge, MA, 1986, Vol. 1.
14. Pontes, F.J., Ferreira, R.J., Silva, B.M., Paiva, P.A., and Balestrassi, P.P., Artificial Neural Networks for Machining Processes Surface Roughness Modeling, Int. J. Adv. Manuf. Tech., 2010, vol. 49, pp. 879–902.
15. Taşdemir, Ş., The Comparative Study to Determine Surface Roughness with Artificial Neural Network and Regression Model, J. Selçuk Teknik-Online, 2011, vol. 2, pp. 215–226.
MINERAL DRESSING
FLOTATION OF CALCIUM MINERALS WITH COMBINATION OF REAGENTS OF DIFFERENT MOLECULAR STRUCTURE
E. D. Shepeta, V. A. Ignatkina, S. A. Kondrat’ev, and L. A. Samatova
Institute of Mining, Far East Branch, Russian Academy of Sciences, Khabarovsk, 680000 Russia
e-mail: elenashepeta56@mail.ru
National University of Science and Technology–MISIS, Moscow, 119049 Russia
e-mail: woda@mail.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: kondr@misd.ru
The influence of non-ionic compounds in combination with sodium oleate on the contrast behavior of flotation response of calcium minerals is investigated theoretically and experimentally. The flotation and adsorption analyses are carried out with monomineral fractions of calcite and scheelite, while the flotation process analysis is conducted with an ore material screened into size grades of –44 and –15 μm. The process conditions of the highest difference in adsorption of oleate and contrast in extraction of scheelite and calcite are found. The conditions of the maximum depression of calcite in the rougher flotation circuit are determined.
Flotation, calcite, scheelite, scheelite–sulfide ore, contrast behavior of flotation, adsorption, combination, oleate, non-ionic compounds, neonol, exol-B, reagent regime, calcite depression, extraction
DOI: 10.1134/S1062739119066368
REFERENCES
1. Pol’kin, S.I., Obogashchenie rud i rossypei redkikh i blagorodnykh metallov (Processing of Ores and Placers of Rare and Noble Metals), Moscow: Nedra, 1987.
2. Kienko, L.A., Samatova, L.A., Voronova, O.V., and Plyusnina, L.N., Using the Mixtures of Collectros in Flotation of Finely Disseminated Carbonate–Fluorite Ore, Obog. Rud, 2009, no. 3, pp. 25–28.
3. Kupka, N. and Rudolph, M., Froth Flotation of Scheelite—A Review, Int. J. Min. Sci. and Tech., 2018, vol. 28, no. 3, pp. 373–384.
4. Liu, Ch., Feng, Q., Zhang, G., Chen, W., and Chen, Y., Effect of Depressants in the Selective Flotation of Scheelite and Calcite Using Oxidized Paraffin Soap as Collector, Int. J. Min. Proc., 2016, vol. 157, pp. 210–215.
5. Arsent’ev, V.A., Gorlovskii, S.I., and Ustonov, N.D., Kompleksnoe deistvie flotatsionnykh reagentov (Combined Effect of Flotation Reagents), Moscow: Nedra, 1992.
6. Yang, F., Sun, W., Hu, Y., and Long, S., Cationic Flotation of Scheelite from Calcite Using Quaternary Ammonium Salts as Collector: Adsorption Behavior and Mechanism, Int. J. Min. Eng., 2015, vol. 81, pp. 18–28.
7. Yuesheng Gao, Zhiyong Gao, Wei Sun, and Yuehua Hu, Selective Flotation of Scheelite from Calcite: A Novel Reagent Scheme, Int. J. Min. Proc., 2016, vol. 154, pp. 10–15.
8. Filippova, I.V., Filippov, L.O., Duverger, A., and Severov, V.V., Synergetic Effect of a Mixture of Anionic and Nonionic Reagents: Ca Mineral Contrast Separation by Flotation at Neutral pH, J. Min. Eng., 2014, vol. 66–68, pp. 135–144.
9. Filippov, L.O., Duverger, A., Filippova, I.V., Kasaini, H., and Thiry, J., Selective Flotation of Silicates and Ca-Bearing Minerals: The Role of Non-Ionic Reagent on Cationic Flotation, J. Min. Eng., 2012, vol. 36–38, pp. 314–323.
10. Filippov, L.O., Filippova, I.V., Lafhaj, Z., and Fornasiero, D., The Role of a Fatty Alcohol in Improving Calcium Minerals Flotation with Oleate, Colloid Surf., 2019, vol. 560, pp. 410–417.
11. Aleinikov, N.A., Flotation of Apatite with Synthetic Carboxylic Acids, Obog. Rud, 1962, no. 1, pp. 14–20.
12. Kondrat’ev, S.A. and Sem’yanova, D.V., Relation between Hydrocarbon Radical Structure and Collecting Ability of Flotation Agent, J. Min. Sci., 2018, vol. 54, no. 6, pp. 1024–1034.
13. Kondrat’ev, S.A., Effect of Hydrocarbon Fragment Structure in Hydroxide and Cationic Reagent on Their Collectability, Proc. 14th Int. Conf. InterExpo-GEO-Sibir, Novosibirsk: 2018, vol. 6, pp. 65–77.
14. Huang Z., Zhong H., Wang S., Xia L., Zou W., and Liu G. Investigations on Reverse Cationic Flotation of Iron Ore by Using a Gemini Surfactant: Ethane-1,2-Bis (Dimethyl-Dodecyl-Ammonium Bromide), Chem. Eng. J., 2014, vol. 257, pp. 218–228.
15. Kondrat’ev, S. A. Fizicheskaya forma sorbtsii reagenta i ee naznachenie vo flotatsii (Physisorption of Reagent and the Purpose in Flotation), Novosibirsk: Nauka, 2018.
16. Melik-Gaikazyan, V.I., Apolyarnye agenty. Fiziko-khimicheskie osnovy teorii flotatsii (Apolar Agents, Physicochemical Fundamentals of Flotation), Moscow: Nauka, 1983, pp. 182–188.
17. Kurkov, A.V., Secondary Action Reagents—A Tool to Enhance Flotation Efficiency of Nonsulfide Ore, Proc. 2nd Congress of the CIS Countries Dressers, 1999, p. 63.
18. Kurkov, A.V. and Pastukhova, I.V., Computer Visualization of Structure and Mechanism of a New-Class Organic Phosphorus Collectors, Tsv. Metally, 2013, no. 1, pp. 30–34.
19. Quast, K., Flotation of Hematite Using C6-C18 Saturated Fatty Acids, J. Min. Eng., 2006, no. 19, pp. 582–597.
20. Aleinikov, N.A. and Ivanova, V.A., Synthesis and Application of New Flotation Reagents in Ore Processing, Obogashchenie rud i problema bezotkhodnoi tekhnologii (Ore Dressing and No-Waste Technology Problem), Leningrad: Nauka, 1980, pp. 163–183.
21. Leja, J,. Interactions at Interfaces in Relations to Froth Flotation, Proc. 2nd Int. Congress Surface Activity, Butterworths, London, 1957, vol. 3, pp. 273–296.
22. Yakovleva, A.A., Chyong, S.N., Pridatchenko, Yu.V., Shuvaeva, E.M., Critical Micellization Concentration of Sodium Oleate, Prikl. Khim. Biotekhnol., 2013, no. 1 (4), pp. 105–114.
23. Ignatkina, V.A., Experimental Investigation of Change in the Contrast between Flotation Properties of Calcic Minerals, J. Min. Sci., 2017, vol. 53, no. 5, pp. 897–906.
24. Titkov, S., Gurkova, T., Sabirov, R., Novoselov, V., Aliferova, S., Chumakova, T., and Malishev, U., Reciprocal Effect of Depressants and Frothers on Collectors Interaction with Minerals, Proc. 23rd Int. Min. Proc. Congr., Istanbul, Turkey, 2006, vol. 8.
25. Yunash, A.A., Ivanov, G.V., and Petukhov, V.N., Increasing of Efficiency for the Apolar Reagents’ Influence by Their Modification, Byull. KuzGTU, 2004, no. 4, pp 76–78.
26. Zhu, H., Qin, W., Chen, C., and Liu, R., Interactions between Sodium Oleate and Polyoxyethylene Ether and the Application in the Low-Temperature Flotation of Scheelite at 283 K, J. Surfact Deterg., 2016, vol. 19, pp. 1289–1295.
27. Ivanov, V.A. and Mitrophanova, T.V., Innovation in Complex and Integrated Reprocessing of Mineral Raw Material, Plaksin’s Lectures, 2013, pp. 473–475.
28. Ignatkina, V.A., Usichenko, S.D., and Milovich, F.O., Effect of Nonionic Oxyhydryl Compounds and Their Mixtures with Oleate on Flotation Activity of Calcite, MIAB, 2018, no. 10, pp. 169–179.
29. Pugh, R.J., The Interaction of Polyethylene Oxide Non-Ionic Surfactant Layers Adsorbed on Hydrophobic Minerals, Int. J. Min. Proc., 1991, vol. 33, pp. 307–320.
INFLUENCE OF ACIDS ON EXTRACTION EFFICIENCY OF ZIRCONIUM AND RARE EARTH METALS IN EUDIALYTE CONCENTRATE LEACHING
V. A. Chanturia, V. G. Minenko, E. V. Koporulina, M. V. Ryazantseva, and A. L. Samusev
Academician Melnikov Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences, Moscow, 111020 Russia
e-mail: Andrey63vzm@mail.ru
The influence of nitric, sulfuric and chlorohydric acids on the morphology, composition of elements, structural and chemical transformation of mineral surface and leaching of eudialyte concentrate is studied using a set of the modern analytical techniques. Specific features are revealed in the nature and degree of eudialyte decomposition under the influence of different acids. These features affect the intensity of removal of basic cations of Al, Na, Ca, Mg, K, Ti, Mn, Fe, Sr and Zr from the mineral surface. The behavior and regular patterns in the formation of silica gel and secondary phases during dissolution of eudialyte concentrates are examined. Sulfuric acid, which ensures the highest extraction of Zr and rare earth metals in pregnant solution, contributes to maximum formation of silica gel and considerable quantity of gypsum and insoluble sulfates, which results in high loss of Zr and rare earth metals. The use of nitric and chlorohydric acids reduces the loss of Zr and rare earth metals by 2–5 times.
Acid leaching, eudialyte concentrate, zirconium, rare earth metals, silica gel, loss of valuable components
DOI: 10.1134/S106273911906637X
REFERENCES
1. Naumov, A.V., World Market of Rare Earth Metals: Review, Tsvet. Metallurg., 2008, no. 1, pp. 22–31.
2. Savel’eva, I.L., The Rare-Earth Metals Industry of Russia: Present Status, Resource Conditions of Development, Geography and Natural Resources, 2011, vol. 32, no. 1, pp. 65–71. DOI: doi.org/ 10.1134/ S1875372811010112.
3. Samonov, A.E. and Melent’ev, G.B., Evdialit: pereotsenka promyshlennoi znachimosti (Eudialyte: Commercial Re-Evaluation). Available at: http:// www.newcemi.ru/letter.php?nid=382.
4. Kuleshevich, L.V. and Dmitrieva, A.V., Rare-Earth Mineralization in Karelia’s Alkaline and Moderately Alkaline Complexes, Associated Metasomatic Rocks and Ores, Gornyi Zhurnal, 2019, no. 3, DOI: 10.17580/gzh.2019.03.09.
5. Zakharov, V.I., Skiba, G.S., Solov’ev, A.V., Lebedev, V.N., and Maiorov, D.V., Some Aspects of Acid Processing of Eudialyte, Tsv. Metally, 2011, no. 11, pp. 25–29.
6. Lebedev, V.N., Sulfuric Acid Technology for Eudialyte Concentrate, Zh. Prikl. Khim., 2003, vol. 76, no. 10, pp. 1601–1605.
7. Lebedev, V.N., Shchur, T.E., Maiorov, D.V., Popova, L.A., and Serkova, R.P., Acid Decomposition of Eudialyte and Some Rare Metal Concentrates of the Kola Peninsula, Zh. Prikl. Khim., 2003, vol. 76, no. 8, pp. 1233–1237.
8. Zakharov, V.I., Voskoboinikov, V.B., Skiba, G.S., Solov’ev, A.V., Maiorov, D.V., and Matveev, V.A., Development of Acid Technology for Integrated Processing of Eudialyte, Zap. Gorn. Inst., 2005, vol. 165, pp. 83–85.
9. Davris, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I., and Friedrich, B., Leaching of Rare Earth Elements from Eudialyte Concentrate by Suppressing Silica Gel Formation, J. Min. Eng., 2017, vol. 108, pp. 115–122.
10. Bogatyreva, E.V., Chub, A.V., Ermilov, A.G., Khokhlova, O.V., Efficiency of Alkaline–Acid Method of Intergated Leaching of Eudialyte Concentrate. Part I, Tsv. Metally, 2018, no. 7, pp. 57–61.
11. Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., and Lee, J.Y., Review on Hydrometallurgical Recovery of Rare Earth Metals, Hydrometallurgy, 2016, vol. 165, pp. 2–26.
12. Ma, Y., Stopic, S., Gronen, L., and Friedrich, B., Recovery of Zr, Hf, Nb from Eudialyte Residue by Sulfuric Acid Dry Digestion and Water Leaching with H2O2 as a Promoter, Hydrometallurgy, 2018, vol. 181, pp. 206–214.
13. Ma Y., Stopic S., Gronen L., Milivojevic M., Obradovic S., and Friedrich B. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching, Metals, 2018, vol. 8, issue 4, p. 267.
14. Chanturia, V.A., Chanturia, E.L., Minenko, V.G., and Samusev, A.L., RF patent no. 2674183, Byull. Izobret., 2018, no. 34.
15. Chanturia, V.A., Chanturia, E.L., Minenko, V.G., and Samusev, A. L. Acid Leaching Process Intensification for Eudialyte Concentrate Based on Energy Effects, Obogashchenie Rud, 2019, no. 3, pp. 29–36. DOI: 10.17580/or.2019.03.05.
16. Vaccarezza, V. and Anderson, C., Beneficiation and Leaching Study of Norra Karr Eudialyte Mineral, Kim H. et al. (eds) Rare Metal Technology,2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. DOI: oi.org/10.1007/978–3-319–72350–1_4.
17. Balinski, P.A., Atanasova, O., Wiche, et al., Recovery of REEs, Zr(Hf), Mn and Nb by H2SO4 Leaching of Eudialyte Concentrate, Hydrometallurgy, 2019, vol. 186, pp. 176–186. DOI: 10.1016/j.hydromet. 2019.04.007.
18. Bansal, N.P., Influence of Several Metal Ions on the Gelation Activation Energy of Silicon Tetraethoxide, J. Am. Ceram. Soc., 1990, vol. 73, no. 9, pp. 2647–2652.
19. Marshall, W.L. and Chen, C.-T.A., Amorphous Silica Solubilities. Part VI: Postulated Sulfatesilicic Acid Solution Complex, Geochim, Cosmochim, Acta, 1982, vol. 46, no. 3, pp. 367–370.
20. Matveev, V.A., Mayorov, D.V., and Solovev, A.V., Integrated Technology of Sulfuric Acid Treatment for Eudialyte Concentrate, Tsvetnye Metally, 2018, no. 1, pp. 20–27. DOI: 10.17580/tsm.2018.01.02.
STRUCTURAL CHARACTERISTICS AND PROCESSABILITY OF SPHALERITE IN LEAD–ZINC ORE OF THE GOREVKA DEPOSIT
A. A. Plotnikova, V. I. Bragina, and Yu. V. Knyazev
Siberian Federal University, Krasnoyarsk, 660041 Russia
e-mail: alena_plotnikova_0909@inbox.ru
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Science, Krasnoyarsk, 660036 Russia
Kiriensky Institute of Physics, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
The theoretical and experimental substantiation of the behavior of ferrous sphalerite in magnetic separation is given in terms of the Gorevka deposit ore. In sphalerite of this deposit, the content of isomorphous iron ranges as 4–9%. The Mossbauer spectroscopy showed the singlet and two doublet lines of iron, demonstrating separate arrays of iron atoms in sphalerite lattice, with formation of Fe-Fe pairs and clusters of three or more iron atoms. It is found that distribution of iron in sphalerite into three forms coincides for magnetic and nonmagnetic products of zinc concentrate separation. It is determined that magnetic separation undivides sphalerite grains by the isomorphous iron content but is governed by the genetic features of the deposit formation—association of sphalerite with magnetic minerals (pyrrhotine and siderite) and the absence of such associations in galena.
Lead–zinc ore, iron-bearing sphalerite, pyrrhotine, X-ray phase analysis, micro-X-ray spectrum analysis, high-gradient separation, Mossbauer spectroscopy
DOI: 10.1134/S1062739119066381
REFERENCES
1. Izoitko, V.M., Tekhnologicheskaya mineralogiya i otsenka rud (Engineering Mineralogy and Ore Evaluation), Saint-Petersburg: Nauka, 1997.
2. Chupenova, R.T., Bykov, R.A., and Seksenova, N.K., Osobennosti izvlecheniya tsinka pri flotatsii polimetallicheskoi rudy Ridder–Sokol’nogo mestorozhdeniya (Specificity of Zinc Extraction in Flotation of Complex Ore from the Ridder–Sokol deposit). Available at: http://www.rusnauka.com/pdf/239514.pdf.
3. Jian-Tao Lang, Si-Qing Liu, Xu Dong, and Yi Pei, Current Situation on Flotation of Cu–Pb–Zn Sulfide Ore, J. Advances in Engineering Research, 2018, vol. 120, pp. 1972–1976.
4. Jiang, C.L., Qu, S.S., and Wang, L.Z., Study on the Occurrence of Cu–Pb–Zn–Ag in a Polymetallic Ore in Inner Mongolia and the Mineralogical Factors Affecting Mineral Processing, J. Metallurgical Engineering, 2015, pp. 41–44.
5. Abramov, A. A. Flotatsionnye metody obogashcheniya (Flotation Methods), Moscow: MGGU, 2008.
6. Kondrat’eva, A.A., Bragin, V.I., Burdakova, E.A., Baksheeva, I.I., and Glumova, A.A., Improvement of Complex Ore Processing Technology by Using Combinations f Collecting Agents, GIAB, 2013, no. 8, pp. 34–39.
7. Pomianowski, A., Szczypa, J., Poling, G.W., and Leja, J., Influence of Iron Content in Sphalerite–Marmatite on Copper Ion Activation in Flotation, Proc. of the 11th Min. Proc. Congr., Cagliari, 1975, pp. 639–653.
8. Mukherjee, A.D. and Sen, P.K., Floatability of Sphalerite in Relation to Its Iron Content, J. Mines, Metals and Fuels, 1976, vol. 24, no. 10, pp. 327–330.
9. Gigowski, B., Vogg, A., Wierer, K., and Dobias, B., Effect of Fe Lattice Ions on Adsorption, Electrokinetic, Calorimetric and Flotation Properties of Sphalerite, Int. J. Min. Proc., 1991, vol. 33, pp. 103–120.
10. Boulton, A., Fornasier, D., and Ralston, J., Effect of Iron Content in Sphalerite on Flotation, J. Min. Eng., 2005, vol. 18, pp. 1120–1122.
11. Bulatovic, S.M., Handbook of Flotation Reagents, Elsevier Sci., 2007.
12. Gunter, C.G., Electro-Magnetic Ore Separation, Hill Publishing Company, New York, 1909.
13. Johansson, B., Purification of Complex Lead Concentrate by High Intensity Magnetic Separation, Proc. Conf. on Min. Proc., Feb., Lutea, 1990, pp. 105–115.
14. Jirestig, J. and Forssberg, E., Magnetic Characterization of Sulfide Ores: Examples from Sweden, J. Magnetic and Electrical Separation, 1993, vol. 4, pp. 31–45.
15. Plotnikova, A.A. and Bragin, V.I., Upgrading Lead Concentrates by Magnetic Methods, Tsv. Metally, 2018, no. 12, pp. 21–26.
16. Korolev, N.A., Venger, M.K., Korolev, I.A., and Voznaya, A.A., Engineering Mineralogy Applications in Ore Dressing Circuits, Vestn. SibGIU, 2018, no. 1 (23), pp. 27–31.
17. Ozhogina, E.G., Engineering Mineralogy of Manganese Ore in Siberia, Russian Workshop on Engineering Mineralogy: Transactions, Petrozavodsk: Karel. NTS RAN, 2009, pp. 28–32.
18. Bulatov, F.M., Typomorphism and Specific Crystallochemistry of Stratified Silicates by the Mossbauer Spectroscopy, Georesursy, 2012, no. 6 (48), pp. 3–8.
19. Xing-Wu Liu, Shu Zhao, Yu Meng, Qing Peng, Albert K. Dearden, Chun-Fang Huo, Yong Yang, Yong-Wang Li, and Xiao-Dong Wen, Mossbauer Spectroscopy of Iron Carbides: From Prediction to Experimental Confirmation, Scientific Reports, 2016, vol. 6, pp. 1–10.
20. Pearce, I.C., Pattrick, R. A. D., and Vaughan, D.J., Electrical and Magnetic Properties of Sulfides, Reviews in Mineralogy and Geochemistry, 2006, vol. 61, pp. 127–180.
21. Bogdanov, O.S., Spravochnik po obogashcheniyu rud (Ore Dressing Manual), Moscow: Nedra, 1983, vol. 2.
22. Zussman, J., Deer, W., and Howie, R.A., Introduction to the Rock-Forming Minerals, Mineralogical Society of Great Britain and Ireland, 3rd Edition, 2013.
23. Ramdohr, P., The Ore Minerals and Their Intergrowths, Pergamon, 1969.
24. Barton, P. B. Jr. and Toulmin, P., Phase Relations Involving Sphalerite in the Fe–Zn–S System, J. Economic Geol., 1966, vol. 61, pp. 815–849.
25. Barnes, H.L., Geochemistry of Hydrothermal Ore Deposits, 3rd Edition, Wiley, 1997.
26. Scott, S.D. and Kissin, S.A., Sphalerite Composition in the Fe–Zn–S System below 300°G, J. Economic Geol., 1973, vol. 68, pp. 475–479.
27. Chareev, D.A., Osadchii, V.O., Shiryaev, A.A., Nekrasov, A.N., Koshelev, A.V., and Osadchii, E.G., Single Crystal Fe-Bearing Sphalerite: Synthesis, Lattice Parameter, Thermal Expansion Coefficient and Microhardness, J. Phys. and Chem. of Min., 2017, pp. 287–296.
28. Benedetto, F.Di, Andreozzi, G.B., Bernardini, G.P., Borgheresi, M., Caneschi, A., Cipriani, C., Gatteschi, D., and Romanelli, M., Short-Range Order of Fe2+ In Sphalerite by Fe Mossbauer Spectroscopy and Magnetic Susceptibility, J. Phys. and Chem. of Min., 2005, vol. 32, pp. 339–348.
29. Wright, K. and Gale, J.D., A First Principles Study of the Distribution of Iron In Sphalerite, Geohimica et Cosmochimica Acta, 2010, vol. 74, pp. 3514–3520.
30. Lepetit, P., Bente, K., Doering, T., and Luckhaus, S., Crystal Chemistry of Fe-Containing Sphalerites, J. Phys. and Chem. of Min., 2003, vol. 30, no. 4, pp. 185–191.
31. Burdakova, E.A. and Kondrat’ev, S.A., Contribution of Physisorption of Collectors to Flotation Aggregate Formation in Terms of Sulfide Ores, Plaksin’s Lectures–2017: Recent Problems of Integrated Processing of Rebellious Ore and Mining Waste, Krasnoyarsk: SFU, 2017, pp. 196–199.
32. Zielinski, P.A., Larson, K.A., and Stradling, A.W., Preferential Deportment at Low-Iron Sphalerite to Lead Concentrates, J. Min. Eng., 2000, vol. 13, pp. 357–363.
33. Kondoro, J. W. A., Mossbauer Study of Vacancies in Natural Pyrrhotite, J. Alloys and Compounds, 1999, vol. 289, pp. 36–41.
INTEGRATED PROCESSING METHOD FOR SYNNYRITE WITH PRODUCTION OF ALUMINA AND POTASSIUM SULFATE
I. G. Antropova, E. N. Alekseeva, and A. D. Budaeva
Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 670047 Russia
e-mail: inan@binm.ru
The article presents the research findings obtained in deep integrated processing of rebellious high-potassium aluminum silicates from the Kalyum deposit within the Synnyr alkaline massif—synnyrite—with production of alumina as well as potassium and magnesium sulfates. The introduction of magnesium-bearing mineral—dolomite—as an additive at the stage of thermochemical decomposition of the acid-resistant minerals in the initial raw material (K-feldspar group) provides improved efficiency of the processes due to cheapening of baking, increased marketable production and reduced solid waste. It is found that leaching of activated synnyrite by 60% sulfuric acid promotes deposition of the silicon component as amorphous silica, which facilitates the further processing of pregnant potassium-, magnesium- and aluminium-bearing sulfuric acid solutions with marketable production.
Synnyrite, integrated processing, thermochemical activation, sulfuric acid decomposition, alumina, potassium and magnesium sulfates
DOI: 10.1134/S1062739119066393
REFERENCES
1. Kostyk, V.P., Panina, L.I., Zhidkov, A.Ya., Orlova, M.P., and Bazarova, T.Yu., Kalievyi shchelochnoi magmatizm Baikalo-Stanovoi riftogennoi sistemy (Potash Alkaline Magmatism of the Baikal–Stan Rift Zone), Novosibirsk: Nauka, 1990.
2. Ageeva, O.A. and Borutzky, B.Y., Kalsilite in the Rocks of the Khibiny Massif: Morphology, Paragenesis, Genetic Conditions, New Data on Minerals, 2004, vol. 29, pp. 40–49.
3. Ageeva, O.A., Abart, R., Habler, G., Borutzky, B., and Trubkin, N.V., Oriented Feldspar-Feldspathoid Intergrowths in Rocks of the Khibiny Massif: Genetic Implications, Mineralalogy and Petrology, 2012, Vol. 106, Issue. 1–2. — P. 1 – 17. doi: 10.1007/s00710–012–0216–8
4. Sklyarova, G.F. and Arkhipova, Yu.A., Alunite Ore Development in the Amur Region, J. Min. Sci., 2018, vol. 54, no. 1, pp. 158–165.
5. Bea, F., Montero, P., Haissen, F., Rjimati, E., Molina, J.F., and Scarrow, J.H., Kalsilite-Bearing Plutonic Rocks: The Deep-Seated Archean Awsard Massif of the Reguibat Rise, South Morocco, West African Craton, Earth-Science Reviews, 2014, vol. 138, pp. 1–24. DOI: 10.1016/j.earscirev.2014.08.003.
6. Arkhangel’skaya, V.V., Synnyrite Deposits of Russia, Razv. Okhr. Nedr., 2014, no. 6, pp. 20–24.
7. Zhidkov, A.Ya., Ushakov, A.A., and Khrustalev, V.K., Kalyum Synnyrite Deposit—The First Deposit of Super-Potassium Alumina Raw Material in the Synnyr Massif, Problemy khozyaistvennogo osvoeniya zony BAMa (Problems of the BAM Zone Development), 1981, pp. 66–72.
8. Jiayu Ma, Yuanhang Qin, Zaikun Wu, Tielin Wang, and Cunwen Wang, The Leaching Kinetics of K-Feldspar in Sulfuric Acid with the Aid of Ultrasound, Ultrasonics Sonochemistry, 2016, vol. 35, Part A, pp. 304–312. DOI: 10.1016/j.ultsonch.2016.10.006.
9. Safrygin, Yu.S., Stepanova, N.I., Filonenko, L.A., Polyakovkii, V.Ya., and Zakharov, V.I., USSR Author’s Certificate 1761671, Byull. Izobret., 1992, no. 34.
10. Konstantinova, K.K., Nikiforov, K.A., and Mokhosoev, M.V., USSR Author’s Certificate 1421693, Byull. Izobret., 1988, no. 33.
11. Tan, D.J., Ma, H.W., Li, G., Liu, H., and Zou, D., Sintering Reaction of Pseudoleucite Syenite: Thermodynamic Analysis and Process Evaluation, Frontiers in Earth Sci., 2009, vol. 16, issue 4, pp. 269–276. DOI: 10.1016/S1872–5791(08)60084–6.
12. Yuan, B., Li, C., Liang, B., Lu, L., Yue, H.R., Sheng, H.Y., Ye, L.P., and Xie, H.P., Extraction of Potassium from K-Feldspar via the CaCl2 Calcination Route, Chinese J. of Chemical Eng., 2015, vol. 23, issue 5, pp. 1557–1564. DOI: 10.1016/j.cjche.2015.06.012.
13. Jena, S.K., Dhawan, N., Misra, P.K., Mishra, B.K., and Das, B., Studies on Extraction of Potassium Values from Nepheline Syenite, Int. J. Min. Proc., 2014, vol. 133, pp. 13?22. DOI: 10.1016/j.minpro. 2014.09.006.
14. Jia-nan Liu, Yu-chun Zhai, Yan Wu, Jun Zhang, and Xiao-yi Shen, Kinetics of Roasting Potash Feldspar in Presence of Sodium Carbonate, J. Central South University, 2017, vol. 24, Issue 7, pp. 1544–1550. DOI: 10.1007/s11771–017–3559–9.
15. Procedure RD 52.24.415–2007. Mass Concentration of Potassium Ions in Water. Potentiometry Procedure with Ion-Selective Electrode, Rostov N/D, 2007.
16. Tikhonov, V.N., Analiticheskaya khimiya magniya (Analytical Chemistry of Magnesium), Moscow: Nauka, 1973.
17. Antropova, I.G., Alekseeva, E.N., Budaeva, A.D., and Dorzhieva, O.U., Thermochemical Treatment of Super Potash Alumosilicate Raw Material (Synnyrity) with Magnesium-Bearing Natural Additives, Obog. Rud, 2018, no. 6, pp. 14–19. DOI: 10.17580/or.2018.06.03.
18. Lainer, Yu.A., Kompleksnaya pererabotka alyuminiisoderzhashchego syr’ya kislotnymi sposobami (Integrated Processing of Aluminum-Bearing Raw Materials by Acids), Moscow: Nauka, 1982.
19. Adamyan, V.L., Sergeeva, G.A., Kondratenko, N.V., Totskii, D.V., and Boiko, V.O., Kinetics of Decomposition and Thermal Dissociation of Potash Alum in Fire Extinguishing Powders, Perspekt. Nauki, 2016, vol. 85, no. 10, pp. 7–9.
MINING THERMOPHYSICS
MATHEMATICAL MODELING OF HEAT-EXCHANGE PROCESSES IN OUTDOOR STORAGE OF FROZEN COAL
Yu. A. Khokholov, V. L. Gavrilov, and V. I. Fedorov
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, 677980 Russia
e-mail: khokholov@igds.ysn.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: gvluhorsk@mail.ru
The modeling procedure is developed to describe heat-exchange processes in outdoor summer storage piles of frozen coal produced in winter. This procedure takes into account thermophysical properties of coal and the pile bottom soil, pile structure, climatic factors and the presence of a heat-insulating coating over the pile. In terms of central Yakutia, it is shown that maximum transition of coal from frozen state (piling in January–March) to thawed condition at the pile height more than 5 m will make 25–35% by the end of the warm season (beginning of October). Application of simple and available heat-insulating materials can reduce thawing intensity by up to 2 times. Natural cold weakens the aggravating effect of oxidizing processes on coal quality in long-term storage of coal and its shipment to remote and hard-to-reach places.
Permafrost zone, coal, storage, outdoor storage, oxidation, modeling, heat and mass exchange, Central and North Yakutia
DOI: 10.1134/S1062739119066405
REFERENCES
1. Khrisanfova, A.I. and Litvinov, V.L., Tekhnologiya khraneniya uglei i meropriyatia po sokrashcheniyu poter’ topliva (Coal Storage Technology and Fuel Loss Reduction Activities), Moscow: Nedra, 1970.
2. Ravich, M.B., Effektivnost’ ispol’zovaniya topliva (Fuel Utilization Efficiency), Moscow: Nauka, 1977.
3. Roddatis, K.F. an Poltaretskii, A.N., Spravochnik po kotel’nym ustanovkam maloi proizvoditel’nosti (Reference Book on Low-Capacity Boiler Plants), Moscow: Energoatomizdat, 1989.
4. Desnam, N.A. and Miroshnichenko, D.V., Use of Oxidized Coal in Coking: Review, Koks Khim., 2015, no. 5, pp. 2–9.
5. Goryushinskii, V.S., Gubarev, M.P., and Shulepov, V.V., Improvement of Loading/Unloading and Haulage/Storage Operation with Solid Fuel in Coal Yards, Vestn. Transp. Povolzh., 2008, no. 3, pp. 40–46.
6. Miroshnichenko, D.V., Desna, N.A., and Kaftan, Yu.S., Oxidation of Coal under Field Conditions. Report 2: Change of Viscoplastic Properties of Coal in Oxidation, Koks Khim., 2014, no. 10, pp. 2–8.
7. Miroshnichenko, D.V., Desna, N.A., and Kaftan, Yu.S., Oxidation of Coal under Field Conditions. Report 4: Temperature of Coal in Pile, Koks Khim., 2015, no. 2, pp. 2–8.
8. Shesternev, D.M., Physical and Chemical Weathering of Rock Masses in Permafrost Environments, MIAB, 2017, no. 3, pp. 350–360.
9. Coal Storage at Surface and Underground Mines, Processing and Sorting Plants, Instruction no. 67 as of February 10, 1970. Moscow: Minugleprom SSSR, 1970.
10. Coal Fuel Storage at Heat-Power Engineering Plants, Instruction no. 65 as of February 14, 1974. Modified as at July 2011. Available at: http://www.libussr.ru/doc_ussr/usr_8255.htm (accessed at: July 5, 20019).
11. Regulations RD 34.44.101–96. SO 34.44.101–96. Outdoor Storage of Coal, Oil Shale and Milled Peat at Power-Generating Plants, Moscow: SPO ORGRES, 1996.
12. Smirnova, N.N., Nikolaeva, N.V., Brichkin, V.N., and Kuskov, V.B., Analytical Solutions of Some Heat Transfer Problems in Mining Practice, J. Min. Sci., 2014, vol. 50, no. 1, pp. 81–86.
13. Kaimonov, M.V. and Panishev, S.V., Modeling Temperature Field Dynamics in Post-Blasting Open Pit Mines in Permafrost, J. Min. Sci., 2016, vol. 52, no. 3, pp. 601–607.
14. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.
15. Samarskii, A.A. and Moiseenko, B.D., Efficient End-to-End Calculation Scheme for a Multi-Dimensional Stefan’s Problem, Zh. Vychislit. Matem. Mat. Fiz., 1965, no. 5, pp. 816–827.
16. Fel’dman, G.M., Tetel’baum, A.S., Shender, N.I., and Gavril’ev, R.I., Posobie po prognozu temperaturnogo rezhima gruntov Yakutii (Guidelines on Thermal Behavior Prediction in Soil in Yakutia), Yakutsk: IM SO AN SSSR, 1988.
17. Kurtener, D.A. and Chudnovskii, A.F., Raschet i regulirovanie teplovogo rezhima v otkrytom i zashchishchennom grunte (Calculation and Control of Heat Conditions in Open and Insulated Soil), Leningrad: Gidrometeoizdat, 1969.
18. Pavlov, A.V., Raschet i regulirovanie merzlotnogo rezhima pochvy (Freeze-and-Thaw Calculation and Control in Soil), Novosibirsk: Nauka, 1980.
19. Gavril’ev, R.I., Teplofizicheskie svoistva komponentov prirodnois sredy v kriolitozone (Thermophysical Properties of Natural Environment Components in the Permafrost Area), Novosibirsk: SO RAN, 2004.
20. Perel’shtein, G.Z., Vodno-teplovaya melioratsiya merzlykh porod na Severo-Vostoke SSSR (Water-and-Heat Melioration of Frozen Rocks in the Northeast of the USSR), Novosibirsk: Nauka, 1979.
21. Shver, Ts.A. and Izyumenko, S.A. (Eds.), Klimat Yakutska (Climate of Yakutsk), Leningrad: Gidrometeoizdat, 1982.
22. Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1983.
23. Samarkskii, A.A. and Vabishchevich, P.N., Vychislitel’naya teploperedacha (Computational Heat Transfer), Moscow: Editorial URSS, 2003.
24. Kondrat’ev, K.Ya., Pivovarova, Z.I., and Fedorova, M.P., Radiatsionnyi rezhim naklonnykh poverkhnostei (Radiation Mode of Inclined Surfaces), Leningrad: Gidrometeoizdat, 1978.
25. Zakharov, E.V., Kurilko, A.S., and Popov, V.I., The Alternating Temperature Effects as a Factor for Energy Saving Technologies of Complex Preparation of Raw Materials in Permafrost Conditions, MIAB, 2015, no. 5, pp. 84–91.
GEOCRYOLOGICAL ANALYSIS OF ROCKS TO PREDICT ADVERSE FREEZE-AND-THAW EFFECTS
L. L. Fedorova, G. A. Kulyandin, and D. V. Savvin
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, 677980 Republic of Sakha (Yakutia), Russia
e-mail: igds@igds.ysn.ru
The geophysical investigations are carried out at the Kangalass open pit coal mine using the round penetrating radar and electrical tomography. The main frost effects in rock mass and in water retaining dam are described. The investigation procedure is developed, and the wave fields are characterized. The GPR surveys aimed to reveal water invasion zones in a rock block to be blasted and to trace dynamics of a seasonal thawing layer are presented. The integrated analysis of GPR and electrotomography data is performed to determine adverse freeze-and-thaw processes at the dam bottom. Applicability of GPR in prediction of unfavorable freeze-and-thaw activities is demonstrated.
Ground penetrating radar, electrotomography, permafrost zone, freeze-and-thaw activities, cryogenic conditions, water invasion, seasonal thawing layer, overburden rocks, water retaining dam, Kangalass open pit coal mine
DOI: 10.1134/S1062739119066417
REFERENCES
1. Panishev, S.V. and Kaimonov, M.V., Technical Approach to Prediction of Dragline Productiveness in Blasted Rock Handling at Open Pit Mines in Permafrost Zone, J. Min. Sci., 2017, vol. 53, no. 4, pp. 702–707.
2. Arcone, S.A., Lawson, D.E., Delaney, A.J., Strasser, J.C., and Strasser, J.D., Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost, J. Geophysical, 1998, vol. 63, pp. 1573–584.
3. Beres, M.Jr. and Haeni, F.P., Application of Ground Penetrating Radar Methods in Hydrogeologic Studies, J. Ground Water, 1991, pp. 375–386.
4. Yingzhao Ma, Yinsheng Zhang, Farhan, S.B., and Yanhong Guo, Permafrost Soil Water Content Evaluation Using High-Frequency Ground-Penetrating Radar in Amdo Catchment, Central Tibetan Plateau, GPR 2012: Proc. of the 14th Int. Conf. on Ground Penetrating Radar, Shanghai, China, 2012, vol. 2, pp. 571–574.
5. Olenchenko, V.V. and Shein, A.N., Capabilities of Geophysical Methods in Fining Pleistocene Megafauna in Flood-Plain and Above the Flood-Plain Deposits of the Yuribei River, Yamal, Kriosfera Zemli, 2013, vol. 17, no. 2, pp. 83–92.
6. Sokolov, K.O., Frequency–Time Presentation of Georadar Profiles based on Continuous Wavelet Transform, J. Min. Sci., 2014, vol. 50, no. 2, pp. 256–259.
7. Gavrilov, V.L., Ermakov, S.A., and Khosoev, D.V., Estimation of the State Of Open-Cast Mining of Coal Deposits of Central and North Yakutia, MIAB, 2010, no. 11, pp. 29–36.
8. Modification of Transportation System in Reconstruction of the Kangalass Open Pit Mine (Revision 2001): Project Documentation 4633-IOS 1.2, Vladivostok: Mechel, DalvostNIIproektugol, 2010, vol. 3.
9. Nabatov, V.V., J. Min. Sci., 2017, vol. 52, no. 2.
10. Harry, M.J., Ground Penetrating Radar: Theory and Applications, Elsevier, 2009.
11. Pajewski, L., Benedetto, A., Derobert, X., Giannopoulos, A., Loizos, A., Manacorda, G., Marciniak, M., Schettini, C., and Trinks, I., Applications of Ground Penetrating Radar in Civil Engineering COST Action TU1208, Proc. 7th Int. Workshop on Advanced Ground Penetrating Radar, 2013, pp. 1–6.
12. Omel’yanenko, A.V. and Fedorova, L.L., Georadiolokatsionnye issledovaniya mnogoletnemerzlykh porod (Ground-Penetrating Radar Investigation of Permafrost Rocks), Yakutsk: YaNTS SO RAN, 2006.
13. Baryshnikov, V.D., Khmelinin, A.P., and Denisova, E.V., GPR Detection of Inhomogeneities in Concrete Lining of Underground Tunnels, J. Min. Sci., 2014, vol. 50, no. 1, pp. 25–32.
14. Kulyandin, G.A., Omelyanenko, A.V., and Omelyanenko, P.A., Methods of GPR Angular Scanning, GPR 2014—Proc. of the 15th Int. Conf. on Ground Penetrating Radar, Brussels, 2014, pp. 571–574.
15. Bobachev, A.A., Jakovlev, A.G., and Jakovlev, D.V., Electrical Resistivity Tomography—High-Resolution Electrical Prospecting with Direct Current, J. Eng. Geol., 2007, pp. 31–35.
16. URL: http://www.geotech.ru/market/katalog_oborudovaniya/elektrorazvedochnaya_apparatura_i_apparatura_ dlya_elektrotomografii/mnogokanalnyj_elektrorazvedochnyj_apparaturno-programmnyj_kompleks_omega-48/ (accessed: 28.06.2019).
17. Kaminskii, A.E., Instruktsiya k programme dvumernoi interpretatsii dannykh metoda soprotivlenii i vyzvannoi polyarizatsii ZondRes2D (Guidelines on 2D Interpretation Program for Data from Resistivity Method and Induced Polarization—ZondRes2D), Saint-Petersburg: Zond Software, 2012.
18. GeoScan32. URL: http://logsys.ru/download/new/geoscan32manual.pdf (accessed: 28.06.2019).
19. Fedorova, L.L., Savvin, D.V., Mandarov, D.A., and Fedorov, M.P., GPR Diagnostic of Cryogenic Processes in Underlying Material of Motor Roads in Yakutsk, Inzh. Izysk., 2017, no. 9, pp. 36–43.
20. Fedorova, L.L., Sokolov, K.O., Savvin, D.V., and Fedorov, M.P., Mapping of Structural Inhomogeneities in Bedrock on Placer Deposits in Cryolithozone by GPR Method, MIAB, 2014, no. 11, pp. 267–273.
21. Sokolov, K.O., Fedorova, L. L. Savvin, D.V., and Struchkov, A.S., Justification of Structure and Functionality of GPR Monitoring Algorithm for Moisture Content of Permafrost Rocks, Fundament. Issled., 2017, no. 9, pp. 93–98.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|