Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2018 ãîä » JMS, Vol. 54, No. 2, 2018

JMS, Vol. 54, No. 2, 2018


GEOMECHANICS


PHENOMENOLOGICAL MODEL OF ROCK DEFORMATION AROUND MINE WORKINGS
M. V. Kurlenya and V. E. Mirenkov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: mirenkov@misd.ru

A new mechanism of rock deformation around underground mine workings is presented. The method is developed for calculating geomechanical state of rock mass; this method takes into account rock weight, the action of which coincides with the directions of tensile stresses on the mine working contour, while these directions differ in the floor. The proposed calculation method for rock deformation includes two additional parameters characterizing the ratio of mine working roof displacements to the floor displacements and the ratio of day surface displacements to roof displacements which are determined experimentally.

Mine working, phenomenological model, stresses, strain, inverse problems

DOI: 10.1134/S1062739118023521 

REFERENCES
1. Mikhlin, S.G., Stresses in rock mass above coal seam, Izv. AN SSSR. OTN, 1942, no. 7–8, pp. 13–28.
2. Barenblatt, G.I. and Khristianovich, S.A., Roof rock falls during mining, Izv. AN SSSR. OTN, 1955, no. 11, pp. 73–86.
3. Mirenkov, V.E. and Krasnovsky, A.A., Accounting for depth-wise linear change of stresses in the intact rock mass in geomechanical problems, J. Min. Sci., 2014, vol. 50, no. 3, pp. 431–436.
4. Clausen, J., Bearing capacity of circular footings on a Hoek-Brown material, Int. J. of Rock Mech. Min. Sci., 2013, vol. 57, pp. 34–41.
5. Li, X., Li, D., Lin, Z., Zhao, G., and Wang, W., Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modeling, Int. J. of Rock Mech. Min. Sci., 2013, pp. 42–56.
6. Shen, H. and Abbas, S.M., Rock slope reliability analysis based on distinct element method and random set theory, Int. J. of Rock Mech. Min. Sci., 2013, vol. 61, pp. 15–22.
7. Savchenko, S.N., Geomedium deformation in concurrent recovery of two productive strata at the Shtokmanovsky deposit, J. Min. Sci., 2010, vol. 46, no. 6, pp. 630–638.
8. Seryakov, V.M., The inclusion of rheological properties of rocks to calculation of stress–strain state of an undermined rock mass, J. Min. Sci., 2010, vol. 46, no. 6, pp. 606–611.
9. Neverov, S.A. and Neverov, A.A., Geomechanical assessment of ore drawpoint stability in mining with caving, J. Min. Sci., 2013, vol. 49, no. 2, pp. 265–272.
10. Vazhbakht, B. and Zsaki, A.Ì., A finite element mesh optimization method incorporating geologic features for stress analysis of underground excavations, Int. J. of Rock Mech. Min. Sci., 2013, vol. 59, pp. 111–119.
11. Mirenkov, V.E., Method of stress calculation in rock mass around underground openings, considering unit weight, J. Min. Sci., 2016, vol. 52, no. 3, pp. 432–437.


ELECTROMAGNETIC EMISSION OF ROCKS AFTER LARGE-SCALE BLASTS
A. A. Bespal’ko, L. V. Yavorovich, A. A. Eremenko, and V. A. Shtirts

National Research Tomsk Polytechnic University, Tomsk 634050 Russia
e-mail: besko48@tpu.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: eremenko@ngs.ru
Gornaya Shoria Division, EVRAZRUDA, Tashtagol, Russia
e-mail: Vladimir.Shtirts@evraz.com

Physical modeling results on electromagnetic response of rock mass to low-energy impacts in the Tashtagol iron ore deposit are presented. It is found that multiple low-energy series of impacts initially increase the amplitudes of electromagnetic signals which later on decrease to the same level. This circumstance is indicative of the fact that the slowly varying levels of electromagnetic signals recorded after large-scale blasts are governed by displacements of rocks on various slip planes. The changes in the stress–strain state of rocks proceed slowly taking from units to tens of hours.

Electromagnetic emission, rock, blast, deposit, amplitude, friction

DOI: 10.1134/S1062739118023533 

REFERENCES
1. Bespal’ko, A.A., Yavorovich, L.V., Viitman, E.E., Fedotov, P.I., and Shtirts, V. A. Dynamoelectric energy transfers in a rock mass under explosion load in terms of the Tashtagol mine, J. Min. Sci., 2010, vol. 46, no. 2, pp. 136–142.
2. Bespal’ko, A.A., Yavorovich, L.V., Bombizov, A.A., and Loshchilov, A.G., Electromagnetic signal recorder for stress state control in rocks, Kontrol’. Diagnostika, 2011, no. 11, pp. 14–17.
3. Eremenko, A.A., Fedorenko, A.N., and Kopytov, A.I., Provedenie i kreplenie gornykh vyrabotok v udaroopasnykh zonakh zhelezorudnykh mestorozhdenii (Roadway Construction and Supports in the Rockburst-Hazardous Areas at Iron-Ore Deposits), Novosibirsk: Nauka, 2008.
4. Eremenko, A.A., Bespal’ko, A.A., Eremenko, V.A., and Yavorovich, L.V., Diagnostika geofizicheskikh predvestnikov geodinamicheskikh yavlenii i razvitie geotekhnologii razrabotki zhelezorudnykh mestorozhdenii (Detection of Geophysical Signs of Geodynamic Events and Geotechnology for Iron Ore Mining), Novosibirsk: Nauka, 2016.
5. Stavrogin, A.N. and Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Strength of Rocks and Stability of Excavations at Great Depths), Moscow: Nedra, 1985.
6. Egorov, P.V., Shtumpf, G.G., Renev, A.A., Shevelev, Yu.A., Makhrakov, I.V., and Sidorchuk, V.V., Geomekhanika (Geomechanics), Kemerovo: KGTU, 2002.
7. Sobolev, G.A. and Demin, V.M., Kinetics of electromagnetic and acoustic emissions as a precursor of instability at contacts of blocks, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 4, pp. 834–836.
8. Lasukov, V.V. and Mastov, S.R., Electromagnetic precursor of rock collapse, J. Min. Sci., 1993, vol. 29, no. 2, pp. 106–110.
9. Lasukov, V.V., Ozone, percolation and aerosol mechanisms of an electromagnetic earthquake predictor, Russian Physics J., 2000, vol. 43, no. 2, pp. 143–148.
10. Ivanov, V.V., Egorov, P.V., Kolpakova, L.A., and Pimonov, A.G., Crack dynamics and electromagnetic emission by loaded rock masses, J. Soviet Mining, 1988, vol. 24, no. 5, pp. 406–412.
11. Yakovitskaya, G.E., Analysis of spectrum characteristics and attenuation of electromagnetic emission signals under destruction of rocks, Synopsis of Cand. Tech. Sci. Thesis, Novosibirsk, 1991.
12. Gordeev, V.F. and Lasukov, V.V., Physics of the electromagnetic emission method of quality control of materials and its prospects, Russian Physics J., 2001, vol. 44, no. 7, pp. 771–778.
13. Golyamin, I.P., Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. Little Encyclopedia), 1979.
14. Oparin V. N., Yushkin V. F., Akinin A. A., and Balmashova E. G. A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387–401.
15. Gornaya entsiklopediya. Rubriki: Geologiya poleznykh iskopaemykh. Akusticheskie svoistva gornykh porod (Mining Encyclopedia. Sections: Geology of Minerals. Acoustic Properties of Rocks), Moscow: Sov. entsikl., 1984–1991.
16. Rzhevsky, V.V. and Yamshchikov, V.S., Akusticheskie metody issledovaniya i kontrolya gornykh porod v massive (Acoustic Methods of Research and Control of Rock Mass), Moscow: Nauka, 1983.
17. Khaikin, S.E., Fizicheskie osnovy mekhaniki (Basic Physics of Mechanics), Moscow: Nauka, 1971.
18. Lobanova T. V., Novikova E. V. Rock movement at the Tashtagol iron-ore deposit in the course of large-scale underground blasting, J. Min. Sci., 2008, vol. 44, no. 3, pp. 245–252.
19. Sashurin, A.D., Sdvizhenie gornykh porod na rudnikakh chernoi metallurgii (Movement of Rocks in the Iron and Steel Industry Mines), Yekaterinburg: IGD UrO RAN, 1999.
20. Lobanova, T.V., Rock mass movement in the Tashtagol deposit is a reflection of geodynamic processes, Vestn. SGIU, 2012, no. 1, pp. 16–22.


ROCK FAILURE


FEATURES OF UNIAXIAL COMPRESSION FAILURE OF BRITTLE ROCK SAMPLES WITH REGARD TO GRAIN CHARACTERISTICS
V. P. Efimov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: efimov-pedan@mail.ru

The results are presented for uniaxial compression testing of brittle rock samples; their failure occur in the form of columnar cracking along the axis of applying the force. Test results are compared with characteristic quantities determining tensile strength. Sample failure is modeled with regard for grain characteristics, which makes it possible to estimate the ratio of compression strength to tensile strength.

Strength, crack resistance, rock failure, structural parameter, mineral grain

DOI: 10.1134/S1062739118023545 

REFERENCES
1. Fairhurst, C., and Cook, N. G. W., The Phenomenon of Rock Splitting Parallel to the Direction of Maximum Compression in the Neighbourhood of a Surface, Proc. of the 1st Congress of the International Society of Rock Mechanics, Lisbon, 1966.
2. Vvedenie v mekhaniku skal’nykh porod (Introduction to Hard-Rock Mechanics), Bok, Kh., Ed., Moscow: Mir, 1983.
3. Zhurkov, S.N., Kinetic Concept of the Strength of Solids, Izv. AN SSSR, Neorg. Mat., 1967, vol. 3, no. 10, pp. 1767–1777.
4. Gelazov, M.A., Kuksenko, V.S., and Slutsker, A.I., Fibrillar Structure and Submicroscopic Cracks in Oriented Crystalline Polymers, FTT, 1970, vol. 12, pp. 100–108.
5. Efimov, V.P., Investigation Into the Long-Term Strength of Rocks under Loading with a Constant Rate, J. Min. Sci., 2007, vol. 43, no. 6, pp. 600–606.
6. Kucheryavy, F.I., Mikhalyuk, A.V., and Demchenko, L.A., Energy of Activation and Energy Intensity of Rock Fracture, Izv. Vuzov. Gorny Zh., 1980, no. 5, pp. 57–63.
7. Veksler, Yu.A., Durability of Rocks Under Compression, J. Min. Sci., 1979, vol. 15, no. 3, pp. 250–254.
8. Griffith,A.A., Theory of Rupture, Proc. First Int. Congr. Applied Mechanics, Delft, 1924. Khan, Kh., Teoriya uprugosti (Theory of Elasticity), Moscow: Mir, 1988.
9. Novozhilov, V.V., On the Foundations of a Theory of Equilibrium Cracks in Elastic Solids, PMM, 1969, vol. 33, no. 5, pp. 797–812.
10. Lajtai, E.Z., Effect of Tensile Stress Gradient on Brittle Fracture Initiation, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1972, vol. 9, no. 5, pp. 569–578.
11. Suknev, S.V., Novopashin, M.D., Determination of Local Mechanical Properties of Materials, Doklady Physics, 2000, vol. 45, issue 7, pp. 339–341.
12. Legan, M.A., Correlation of Local Strength Gradient Criteria in a Stress Concentration Zone with Linear Fracture Mechanics, Journal of Applied Mechanics and Technical Physics, 1993, vol. 34, no. 4, pp. 585–592.
13. Kharlab, V.D., Minin, V.A., Kriterii prochnosti, uchityvayushchii vliyanie gradient napryazhennogo sostoyaniya. Issledovaniya po mekhanike stroitel’nykh konstruktsii i materialov (Strength Criterion Considering Effect of Stress Gradient. Research on Mechanics of Engineering Structures and Materials), Leningrad: LISI, 1989.
14. Kornev, V.M., Generalized Sufficient Strength Criteria. Description of Pre-Fracture Zone, Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 5, pp. 763–769.
15. Efimov, V.P., Rock Tests in Nonuniform Fields of Tensile Stresses, Journal of Applied Mechanics and Technical Physics, 2013, vol. 54, no. 5, pp. 857–865.
16. Gol’dshtein, R.V., Compression Fracture, Uspekh. Mekh., 2003, vol. 2, pp. 2–20. Gol’dshtein, R.V., Osipenko, N.M., Structures in Fracture Processes, Izv. RAN. MTT, 1999, no. 5, pp. 49–71.
17. Hoek, E., Bieniawski, Z.T., Brittle Rock Fracture Propagation in Rock under Compression, Int. J. Fract. Mech., 1965, vol. 1, no. 3, pp. 137–155.
18. Lajtai, E.Z., Brittle Fracture in Compression, Int. J. Fract., 1974, vol. 10, no. 4, pp. 525–536.
19. Lajtai, E.Z. and Lajtai, V.N., The Collapse of Cavities, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1975, vol. 12, vol. 4, pp. 81–86.
20. Evans, A.G., Biswas, D.R., and Fulrath, R.M., Some Effects of Cavities on the Fracture of Ceramics, I. Cylindrical Cavities, II. Spherical Cavities, J. Am. Ceram. Soc., 1979, vol. 62, pp. 95–106.
21. Sammis, C.G., Ashby, M.F., The Failure of Brittle Porous Solids under Compressive Stress States, Acta Metall., 1986, vol. 34, no. 3, pp. 511–526.
22. Davis, T., Healy, D., Bubeck, A., and Walker, R., Stress Concentrations around Voids in Three Dimensions. The Roots of Failure, Journal of Structural Geology, 2017, vol. 102, pp. 193–207.
23. Odintsev, V.N., Mechanism of the Zonal Disintegration of a Rock Mass in the Vicinity of Deep-Level Workings, J. Min. Sci., 1994, vol. 30, no. 4, pp. 334–343.
24. Nikitin, L.V. and Odintsev, V.N., Mechanics of Disconnecting Destruction of Compressed Gas-Bearing Rocks, Izv. AN SSSR. MTT, 1988, no. 6, pp. 135–144.
25. Srouli, D.E., Vyazkost’ razrusheniya pri ploskoi deformatsii. Razrushenie (Fracture Toughness at Plane Deformation), vol. 4, Moscow: Mashinostroenie, 1977.
26. Spravochnik fizicheskikh svoistv gornykh porod (Register of Physical Properties of Rocks), E. D. Mel’nikov (Ed.), Moscow: Nedra, 1975.
27. Zhurkov, S.N., Kuksenko, V.S., Petrov, V.A., Savel’ev, V.N., and Sultanov, U.O., On Predicting the Failure of Rocks, Izv. AN SSSR. Fiz. Zem., 1977, no. 6, pp. 11–18.
28. Mushkhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of Mathematical Theory of Elasticity), Moscow: Nauka, 1966.


EFFECT OF CRYOGENIC PRE-TREATMENT ON BREAKAGE CHARACTERISTICS OF ROCKS
R. Bisai, S. Goel, A. Hatwal, S. K. Pal, A. Majumder, and T. K. Nandi

Department of Mining Engineering, IIT Kharagpur, WB 721302, India
e-mail: rohan.bisai1@gmail.com
Cryogenic Engineering Center, IIT Kharagpur, WB 721302, India
e-mail: rohan.bisai1@gmail.com

Improvement of energy efficiency in comminution of rocks using various pretreatment methods is being explored worldwide. This paper presents experimental data on breakage characteristics of granite and sandstone using cryogenic pre-treatment. The samples were treated with varying duration of immersion in liquid nitrogen. Combined pretreatment using oven heating followed by quenching in liquid nitrogen were also explored. The results indicate that using cryogenic pretreatment uniaxial tensile strength of granite can be decreased by more than 40% while in uniaxial compressive strength about 28% reduction is possible. For sandstone as much as 33% reduction in uniaxial compressive strength was observed.

Cryogenic pre-treatment, comminution, granite, sandstone

DOI: 10.1134/S1062739118023557 

REFERENCES
1. Sikong, L. and Bunsin, T., Mechanical property and cutting rate of microwave treated granite rock, Songklanakarin J. of Science and Technology, 2009, 31(4), pp. 447–452.
2. Sahoo, B.K., De, S., and Meikap, B.C., Improvement of grinding characteristics of Indian coal by microwave pre-treatment, Fuel Processing Technology, 2011, 92, pp. 1920–1928.
3. Jones, D.A., Kingman, S.W., Whittles, D.N., and Lowndes, I.S., The influence of microwave energy delivery method on strength reduction in ore samples, Chemical Engineering and Processing, 2000, 46, pp. 291–299.
4. Amankwah, R.K. and Ofori-Sarpong, G., Microwave heating of gold ores for enhanced grindability and cyanide amenability, Mineral Engineering, 2011, 24, pp. 541–544.
5. Singh, V., Samuelraj, I. O., Venugopal, R., Jagadeesh, G., and Banerjee, P. K., Study the effect of electrical and mechanical shock loading on liberation and milling characteristics of mineral materials, Minerals Engineering, 2014, 70, pp. 207–216.
6. Wielen, K. P. V., Pascoe, R., Weh, A., Wall, F., and Rollinso, G., The influence of equipment settings and rock properties on high voltage breakage, Minerals Engineering, 2013, 46–47, pp. 100–111.
7. Razavian, S.M., Rezai, B., and Irannajad, M., Investigation on pre-weakening and crushing of phosphate ore using high-voltage electric pulses, Advanced Powder Technology, 2014, 25, pp. 1672–1678.
8. Andres, U., Development and prospects of mineral liberation by electrical pulses, Int. J. of Mineral Processing, 2010, 97. pp. 31 – 38.
9. Garrenton, L. F. G., Hermandez, Y. P. V., and Lambert, C.V., Application of ultrasound in comminution, Ultrasonics, 2000, 38, pp. 345–352.
10. Fitzgibbon, K.E. and Veasey, T.J., Thermally-assisted liberation—A review, Minerals Engineering, 1990, 3(1–2), pp. 181–85.
11. Mokhfi, T. and William, P.A., Temperature effects on physical and mechanical behavior of granite: experimental investigation of material damage, J. of ASTM International, 2008, 5(3), pp. 1–13.
12. Brotons, V., Tomas, R., Ivorra, S., and Alarcon, J. C., Temperature influence on the physical and mechanical properties of porous rock: San Julian’s calcarenite, Engineering Geology, 2013, 167, pp. 117–127.
13. Wonnacott, G. and Wills, B.A., Optimisation of thermally assisted liberation of a tin ore with the aid of computer simulation, Mineral Engineering, 1990, 3(1–2), pp. 187–198.
14. Lytle, J., Choi, N. and Prisbrey, K. Influence of preheating on grindability of coal, Int. J. of Mineral Processing, 1992, 36, pp. 107–112.
15. Masri, M., Sibai, M., and Shao, J.F., Mainguy M., Experimental investigation of the effect of temperature on the mechanical behavior of tournemire shale, Int. J. of Rock Mechanics and Mining Sciences, 2014, 70, pp. 185–191.
16. Shi, L. and Jinyu, X., An experimental study on the physica-mechanical properties of two post-high-temperature rocks, Engineering Geology, 2014, 185, pp. 63–70.
17. Takarli, M. and Prince-Agbodjan, W., Temperature effects on physical properties and mechanical behavior of granite: experimental investigation of material damage, J. of ASTM International, 2008, 5(3), pp. 1–13.
18. Somani, A., Nandi, T.K., Pal, S.K., and Majumder, A.K., Pre-treatment of rocks prior to comminution—A critical review of present practices, Int. J. of Mining Science and Technology, 2017, vol. 27, no. 2, pp. 339–348.
19. Cha, M., Yin, X., Kneafsey, T., Johanson, B., Alqahtani, N., Miskimins, J., Patterson, T., and Wu, Y., Cryogenic fracturing for reservoir stimulation-laboratory studies, J. of Petroleum Science and Engineering, 2014, 124, pp. 436–450.
20. Gupta, D. V. S. and Bobier, D.M., The History and Success of Liquid CO2/N2 Fracturing System, SPE-40016-MS: Canadian Fracmaster Ltd., 1998.
21. National Materials Advisory Board, Comminution and Energy Consumption: Report of the Committee on Comminution and Energy Consumption, Washington (D .C.), National Research Council, 1981.
22. Banerjee, T., Bandyopadhyay, S., and Das, P.K., Cryogenic stone crushing: A review and prediction, Int. J. of Innovative Research in Science, 2013, 2, pp. 2310–2314.
23. Zoru, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A., and Acikalin, S., Prediction of uniaxial compressive strength of sandstones using petrography-based models, Engineering Geology, 2008, vol. 96, issues 3–4, pp. 141–158.
24. Shakoor, A. and Bonelli, R.E., Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones, Bulletin of the International Association of Engineering Geology, 1991, 28, pp. 55–71.
25. Ulrich, T.J. and Darling, T.W., Observation of anomalous elastic behavior in rock at low temperatures, Geophysical Research Letters, 2001, vol. 28, no. 11, pp. 2293–2296.
26. Hanley, E.J., Dewitt, D.P., and Roy, R.F., The thermal diffusivity of eight well-characterized rocks for the temperature range 300–1000 K, Engineering Geology, 1978, vol. 12, pp. 31–47.
27. Cai, C., Li, G., Huang, Z., Shen, Z., and Tian, S., Rock pore structure damage due to freeze during liquid nitrogen fracturing, Arab. J. Sci. Eng., 2014, 39, pp. 9249–9257.
28. Cai, C., Li, G., Huang, Z., Shen, Z., Tian, S., and Fu, X., Experiment of coal damage due to super-cooling with liquid nitrogen, J. of Natural Gas Science and Engineering, 2015, 22, pp. 42–48.
29. Cai, C., Gao, F., Li, G., Huang, Z., and Hou, P., Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws, J. Nat. Gas Sci. Eng., 2016, 29, pp. 30–36.
30. Rao, Q.-H., Wang, Z., Xie, H.-F., and Xie, Q., Experimental study of properties of sandstone at high temperature, J. of Central South University of Technology (English Edition) 14 (s1), 2007, pp. 478–483.
31. Smol’nikov, E.A. and Kossovich, G.A., Cold treatment of cutting tools, Metal Science and Heat Treatment, 1980, vol. 22, no. 10, pp. 704–705.


SCIENCE OF MINING MACHINES


IMPROVEMENT OF DOWN-THE-HOLE AIR HAMMER EFFICIENCY BY OPTIMIZING SHAPES OF COLLIDING PARTS
I. A. Zhukov, B. N. Smolyanitsky, and V. V. Timonin

Siberian State Industrial University, Novokuznetsk, 654007 Russia
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: bsmol@misd.ru
Siberian State Transport University, Novosibirsk, 630049 Russia

Design development of down-the-hole (DTH) air hammers is discussed with the aim of increasing efficiency of rock drilling. The problem is solved by making hammering piston with curvilinear frees surfaces which are in no contact with the hammer body. This ensures generation of rock-breaking impact at the minimum energy input. New designs of hammering pistons are developed for DTH air hammer models PP110EN and PP110NK designed at the Institute of Mining, Siberian Branch Russian Academy of Sciences. Experiments prove that selection of rational shape of hammering pistons allows improving performance of DTH air hammers by 15% at the average.

Air hammer drill, hammering piston, impact, rock, failure

DOI: 10.1134/S1062739118023569 

REFERENCES
1. Alimov, O.D., and Dvornikov, L.T., Buril’nye mashiny (Drilling Machines), Moscow: Mashinostroenie, 1976.
2. Begagoen, I.A., Dyadyura, A.G., and Bazhal, A.I., Buril’nye mashiny. Raschet, konstruktsii, dolgovechnost’ (Drilling Rigs. Calculations, Design, Durability), Moscow: Nedra, 1972.
3. Ivanov, K.I., Latyshev, V.A., and Andreev V. D., Tekhnika bureniya pri razrabotke mestorozhdenii poleznykh iskopaemykh (Drilling Technique for Mineral Deposits Exploitation), Moscow: Nedra, 1987.
4. Aleksandrova, E.V., and Sokolinsky, V.B., Prikladnaya teoriya i raschety udarnykh system (The Applied Theory and Calculations of the Impact Systems), Moscow: Nauka, 1969.
5. Aleksandrov, E.V., The Principal of Impact Energy Transmission, Discovery no. 13 made in USSR with priority from 30.10.1957, Byull. Izobret., 1964, no. 7.
6. Dvornikov, L.T., and Zhukov, I.A., Rational Design of Impact Systems of Technological Purpose, Vestn. SibGIU, 2012, no. 2, pp. 15–20.
7. Zhukov, I.A., Initial Foundations to Study the Influence of Pistons Shapes on the Shape of an Impact Impulse in Impact Machines, Vestn. KGTU, 2014, no. 5, pp. 25–27.
8. Zhukov, I.A., Longitudinal Vibrations of Pins in Respect to Impact Machines of Technological Purposes, Mashinostr. Inzh. Obraz., 2016, no. 1, pp. 40–49.
9. Sudnishnikov, B.V., Esin, N.N., and Tupitsyn, K.K., Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deystviya (Research and Design of Pneumatic Percussion Machines), Novosibirsk: Nauka, 1985.
10. Smolyanitsky, B.N., Repin, A.A., Danilov, B.B., et al., Povyshenie effektivnosti i dolgovechnosti impul’snykh mashin dlya sooruzheniya protyazhennykh skvazhin v porodnykh massivakh (Increase in Efficiency and Durability of Pulse-Generation Machines for Long Hole Drilling in Rocks), B. F. Simonov (Ed.), Novosibirsk: SO RAN, 2013.
11. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh, A.I., Timonin, and V.V., Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50, no. 5, pp. 929–937.
12. Lipin, A.A., Belousov, A.V., and Timonin, V.V., Downhole Hammer, RF patent no. 85185, MPK E21V 4/14, Byull. Izobret., 2009, no. 21.
13. Timonin, V.V., Application of Downhole Hammers in Underground Mine Development, Gorn. Obor. Elektr., 2015, no. 2 (111), pp. 13–17.
14. Alimov, O.D., Manzhosov, V.K., and Erem’yants, V.E., Udar. Rasprostranenie voln deformatsii v udarnykh sistemakh (Percussion. Travel of Deformation Waves in Percussive Systems), Moscow: Nauka, 1985.


CALCULATION OF LIFE OF FUNCTIONAL PARTS IN THE STRUCTURE OF MINING MACHINES
O. P. Panfilova, V. S. Velikanov, I. G. Usov, E. Yu. Matsko, and I. M. Kutlubaev

Nosov Magnitogorsk State Technical University, Magnitogorsk, 455000 Russia
e-mail: halikova@inbox.ru

The issues connected with the prediction of mining machinery life are discussed. The basic index of reliability is an average life. The formulas are substantiated for calculating the average life of gear wheels, friction couple parts, shafts, and axles. The procedure proposed to estimate the life standard deviation is based on the method of linearization of functions of random variables. In this way, the life of standard parts of mining equipment can be found as random values with regard to operation conditions. Application of the procedure is exemplified by calculations of the life of a roller bearing. The calculation results are confirmed in the numerical experiment by the Monte Carlo method.

Part, life, prediction, procedure, system, links, scheme, linearization

DOI: 10.1134/S1062739118023570 

REFERENCES
1. Velikanov, V.S., Usov, I.G., Abdrakhmanov, A.A., and Usov, I.I., Modeling and Optimization of Mining Machine Operation Modes with Matlab, Gornyi Zhurnal, 2017, no. 12, pp. 78–81.
2. Olizarenko, V.V., Osnovy ekspluatatsii gornykh mashin i oborudovaniya (Principles of Mining Machines and Facility Operation), Magnitogorsk: Nosov MSTU, 2008.
3. Vujic, S., Miljanovich, I., Maksimovic, S., Milutinovic, A., Benovic, T., Hudej, M., Dmitrijevic, B., Cebasek, V., and Gajic, G., Optimal Dynamic Management of Exploitation Life of the Mining Machinery: Models with Undefined Interval, J. Min. Sci., 2010, vol. 46, no. 4, pp. 425–430.
4. Vujic, S., Miljanovich, I., Boshevski, S., Kasas, K., Milutinovic, A., Gojkovic, N., Pejovic, J., Dmitrijevic, B., Gajic G., and Cebashek, V., Optimal Dynamic Management of Exploitation Life of the Mining Machinery: Models with Limited Interval, J. Min. Sci., 2010, vol. 46, no. 5, pp. 554–560.
5. Gerike, B.L., Gerike, P.B., and Kozlovsky, G.I., Diagnostika gornykh mashin i oborudovaniya (Mining Machinery and Facility Diagnostics), Moscow: IPO. U. Nikitkinykh vorot, 2012.
6. Makarov, A.N., Theoretical Framework of Construction, Calculation Methods and Design of Metallurgical Production Manipulating Equipment, Dr. Tech. Sci. Dissertation, Magnitogorsk, 1996.
7. Makarov, A.N., Kutlubaev, I.M., and Usov, I.G., Osnovy mekhaniki mnogodvigatel’nykh mashin (Fundamentals of Multi-Motor Vehicles), Magnitogorsk: Nosov MSTU, 2006.
8. Reshetov, D.N. (Ed.), Mashinostroenie. Entsiklopediya. Detali mashin. Konstruktsionnaya prochnost’. Trenie, iznos, smazka (Engineering. Encyclopedia. Machine Components. Structural Strength. Friction, Wearing, Lubrication), Moscow: Mashinostroenie, 1995.
9. Osanloo, M., and Hekmat, A., Prediction of Shovel Productivity in the Gol-e-Gohar Iron Mine, J. Min. Sci., 2005, vol. 41, no. 2, pp. 177–184.
10. Molotilov, S.G., Cheskidov, V.I., and Norri, V.K., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers. Part I, J. Min. Sci., 2008, vol. 44, no. 4, pp. 376–385.
11. Molotilov, S.G., Cheskidov, V.I., Norri, V.K., and, Botvinnik, A.A., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers. Part II: Engineering Capacity Calculation, J. Min. Sci., 2009, vol. 45, no. 1, pp. 43–58.
12. Molotilov, S.G., Cheskidov, V.I., Norri, V.K., Botvinnik, A.A., and Il’bul’din, D.Kh., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers. Part III: Service Capacity Determination, J. Min. Sci., 2010, vol. 46, no. 1, pp. 38–49.
13. Segarra, P., Sanchidrian, J.A., Lopez, L.M., and Querol, E., On the Prediction of Mucking Rates in Metal Ore Blasting, J. Min. Sci., 2010, vol. 46, no. 2, pp. 167–176.
14. Manakov, A.L., Igumnov, A.A., and Kolarzh, S.A., Monitoring Technical State of Transportation Vehicles and Production Machines, J. Min. Sci., 2013, vol. 49, no. 4, pp. 630–636.
15. Panachev, I.A., and Kuznetsov, I.V., Management procedure for life cycle of rear axle metalworks of heavy haulers, J. Min. Sci., 2015, vol. 51, no. 2, pp. 267–273.
16. Chichinadze, A.V., Berliner, E.M., Braun, E.D., et al., Trenie, iznos i smazka. Tribologiya i tribotekhnika (Friction, Wearing and Lubrication. Tribology and Triboengineering), Moscow: Mashinostroenie, 2003.
17. Klyuev, V.V., Bolotin, V.V., Sosnin, F.R., et al., Mashinostroenie. Entsiklopediya. Nadezhnost’ mashin (Engineering. Encyclopedia. Machines Reliability), Moscow: Mashinostroenie, 2003.
18. Ventsel’, E.S., Teoriya veroyatnostei: uchebnik dlya vuzov (Theory of Probabilities: Textbook for Higher Education), Moscow: Vyssh. Shk., 2002.
19. Kutlubaev, I.M., Makarov, A.N., Usov, I.G., and Khalikova, O.R., Electronic Database for Metallurgical Equipment Maintenance and Repair Arrangement, Remont. Vosstanovlenie. Modernizatsiya, 2008, no. 3, pp. 37–41.
20. Rukavishnikova, A.I., Monte-Carlo and quasi Monte-Carlo algorithms for Solving Linear Algebraic Equation, Dr. Tech Sci. Dissertation, Saint-Petersburg, 2009.
21. Khalikova, O.R., Methodology of Construction and Database Support of Metallurgical Equipment, Dr. Tech. Sci. Dissertation, Magnitogorsk, 2009.


MINERAL MINING TECHNOLOGY


SUBSTANTIATION OF PROTECTIVE CUSHION THICKNESS IN MINING UNDER OPEN PIT BOTTOM WITH THE CAVING METHODS AT UDACHNAYA PIPE
I. V. Sokolov, A. A. Smirnov, Yu. G. Antipin, I. V. Nikitin, and M. V. Tishkov

Institute of Mining, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620075 Russia
e-mail: geotech@igduran.ru
Yakutniproalmaz Institute, Mirny, Republic of Sakha (Yakutia), Russia

The results of the research aimed to substantiate parameters of loose ore and rock mass (protective cushion) formed to protect and isolate underground mines from the open pit mine at Udachnaya kimberlite pipe under mining with the caving methods are presented. The thickness of the cushion is determined based on the effect of an impact of caved rocks and the resultant air blast, and is meant to isolate aerodynamically and thermally the open pit and underground mines. The thickness of the protective cushion is calculated with regard to an increase in the depth of mining down to a level of –680 m.

Kimberlite deposit, protective rock mass, caving methods, mine ventilation, ore drawing

OI: 10.1134/S1062739118023582 

REFERENCES
1. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Baranovsky, K.V., Rational Design of Ore Discharge Bottom in Transition from Open Pit to Underground Mining in Udachny Mine, J. Min. Sci., 2013, vol. 49, no. 1, pp. 90–98.
2. Bondarenko, I.F., Khon, V.I., Nikitin, R.Ya., and Vasil’ev, A.V., The features of Technology of Drilling and Blasting Operations on the Stage of Rework of a Superdeep Kimberlite Quarry Udachny, Vzryv. Delo, 2014, no. 111/68, pp. 132–144.
3. Bondarenko, I.F., Zharikov, S.N., Zyryanov, I.V., and Shemenev, V.G., Burovzryvnye raboty na kimberlitovykh kar’erakh Yakutii (Drilling and Blasting Operations in Open Pit Kimberlite Mines in Yakutia), Ekaterinburg: IGD UrO RAN, 2017.
4. Kovalenko, A.A., and Tishkov, M.V., The Evaluation of the Udachnaya Pipe Deposit Underground Mining Using Caving System, GIAB, 2017, no. 4, pp. 117–128.
5. Sokolov, I.V., Antipin, Yu.G., and Nikitin, I.V., Basic Principles and Assessment Criteria of Technological Strategy for Underground Mining in Transition Zones, GIAB, 2017, no. 9, pp. 151–160. doi: 10.25018/0236–1493–2017–9-0–151–160.
6. Volkov, Yu.V., and Sokolov, I.V., Optimization Underground Geotechnology in the Strategy of Ore Deposits Development by Combined Mining, Gornyi Zhurnal, 2011, no. 11, pp. 41–44.
7. Savich, I.N., and Nasibullin, N.N., On Formation of a Safety Cushion in Underground Kimberlite Ores Mining, GIAB, 2004, no. 3, pp. 209–210.
8. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Kul’minsky, A.S., Extraction of Udachnaya Kimberlite Pipe Reserves under Open Pit Bottom in the Severe Climate, Mining and Hydrogeological Conditions, Gornyi Zhurnal, 2011, no. 1, pp. 63–66.
9. Volkov, Yu.V., Smirnov, A.A., Sokolov, I.V., Antipin, Yu.G., and Chagovets, G.A., Protective pillow in a combined kimberlite deposit mining, Kombinirovvannaya geotekhnologiya: kompleksnoe osvoenie i sokhranenie nedr zemli: trudy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Combined Geotechnology: Integrated Development and Reservation of Earth’s Crust Interior: Proc. of Int. Sci. Tech. Conf.), Magnitogorsk: MGTU, 2011, pp. 34–44. 10. Snitko, N.K., Staticheskoe i dinamicheskoe davlenie gruntov i raschet podpornykh stenok (Static and Dynamic Soil Pressure and Supporting Walls Calculation), Leningrad: Stroiizdat, 1970.
11. Pokrovsky, G.I., and Fedorov, S.M., Vozvedenie gidrotekhnicheskikh zemlyanykh sooruzhenii napravlennym vzryvom (The Building of Hydrotechnical Earth Structures with a Directed Blast), Moscow: Striizdat, 1971.
12. Chernigovsky, A.A., Raschet zaryadov pri massovykh vzryvakh na vybros (Calculation of Charges in Major Cast Blasting), Moscow: Nedra, 1976.
13. Tsytovich, N.A, Mekhanika gruntov (Soil Mechanics), Moscow: Vyssh. Shk., 1983.
14. Padukov, V.A., and Antonenko, V.A., Sposob otsenki vliyaniya vzryva, velichiny podvizhki i uplotneniya magazinirovannoi rudy pri otboike v zazhime. Fizika i tekhnologiya razrabotki rudnykh mestorozhdeny v Zapolyr’e (A Method of Estimation of Blasting, Movement and Compression of Shrinked Ore in Clamp Breakage. Development Physics and Technology of Ore Deposits in the Subarctic Region), Leningrad: Nauka, 1967.
15. Imenitov, V.R., Abramov, V.F., and Merkulov, A.N., Calculation of Required Thickness of a Rock Cushion in Conditions of Potential Bulk Caving, Gornyi Zhurnal, 1973, no. 7, pp. 7–10.
16. Imenitov, V.R, and Popov, V.V., Identification of Parameters of the Safety Cushion Over Production Tunnel Workings, Gornyi Zhurnal, 1973, no. 10, pp. 24–26.
17. Shubin, G.V., Zarovnyaev, B.N., Bondarenko, I.F., and Kurilko, A.S., Full-Scale Investigation of Flowability of Ore And Overburden Rocks to be Used for Safety Cushion Creation at the Bottom of Udachny Open Pit Mine, ALROSA, Gornyi Zhurnal, 2015, no. 4, pp. 15–19.
18. Kulikov, V.P., Investigation of Aerodynamic Connection of Return Air Horizons with the Surface at Vysokogorny Mine, Dr. Tech. Sci. Dissertation, Sverdlovsk, 1960.
19. Kulikov, V.P., Way of Improvement of the General Mine Ventilation, Kolyma, 1962, no. 12, pp. 26–28.
20. Yartsev, V.A., Problems Connected with Ventilation of Ore Mines with Aerodynamically Active Rock Falls, Dr. Tech. Sci. Dissertation, Sverdlovsk, 1967.
21. Tokmakov, V.V., Selection of Energetically Justified Ventilation Method of Mines with Aerodynamically Active Rock Falls, Dr. Tech. Sci. Dissertation, Sverdlovsk, 1968.
22. Drozdov, A.V., Zakhoronenie drenazhnykh rassolov v mnogoletnemerzlykh porodakh (na primere kriolitozony Sibirskoi platformy) (Burial Dumping of Drainage Brines in Permafrost Formations (Case Study of Siberian Platform Cryolithic Zone)), Irkutsk: IGTU, 2007.
23. Rzhevsky, V.V., and Novik, G.Ya., Osnovy fiziki gornykh porod (Fundumentals of Physics of Rocks), Moscow: Nedra, 1984.
24. Ushakov, K.Z. (Ed.), Spravochnik po rudnichnoi ventilyatsii (Mine Ventilation Reference Book), Moscow: Nedra, 1977.
25. Zarovnyaev, B.N., Shubin, G.V., Kurilko, A.S., and Khokholov, Yu.A., Temperature and Moisture Content Forecast for Safety Cushion in Ore Extraction below Pit Bottom in Permafrost, Gornyi Zhurnal, 2016, no. 9, pp. 33–36.
26. Zarovnyaev, B.N., Shubin, G.V., Vasil’ev, I.V., Kurilko, A.S., and Kaimonov, M.V., The Features of Combined Cleaning-Up of Deep Lying Diamond Pipes in Permafrost, GIAB, 2012, no. 7, pp. 189–19.


DEVELOPMENT OF TECHNOLOGY FOR FILLING VOIDS BETWEEN METAL FRAME SUPPORT AND ADJACENT ROCK MASS BY FOAM MATERIALS
Yu. N. Shaposhnik, A. A. Neverov, S. A. Neverov, A. I. Konurin, and D. A. Shokarev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: nnnaa@mail.ru
Expert PRO, Ust-Kamenogorsk, 070004 Kazakhstan

The problem connected with the mine support with metal frames in unstable rock mass subjected to stoping is analyzed. In terms of the complicated geological conditions of the Orlov mine (East Kazakhstan), the application of Blok-Fil phenol resin in filling voids and domes after rock falls in the gap between the metal frames and roof is tested at the laboratory and pilot scale. It is found that owing to complete filling of voids with resin, no dynamic loads on the support due to rock falls and self-heating of ore and mine air are observed.

Support, voids, adjacent rocks–metal frame void, filling, oxidation processes, technologies, phenol resin, laboratory experiments, pilot-scale tests, safety

DOI: 10.1134/S1062739118023594 

REFERENCES
1. Krupnik, L.A., Shaposhnik, Yu.N., Shokarev, D.A., Shaposhik, S.N., and Konurin, A.I., Improvement of Support Technology in Artemevsk Mine of Vostoktsvetmet, J. Min. Sci., 2017, vol. 53, no. 6, pp. 1096–1102.
2. Tapsiev, A.P., and Uskov, V.A., Support Design Criteria for Mine Workings in the Zone of Influence of Stoping in Zapolyarny Mine, J. Min. Sci., 2014, vol. 50, no. 4, pp. 680–689.
3. Martynenko, I.I., Martynenko, I.A., and Minakova, Zh.A., Influence of Unsupported Space Filling on Support Strength, GIAB, 2005, pp. 160–163.
4. Erofeev, L.M., and Miroshnikova, L.A., Povyshenie nadezhnosti krepi gornykh vyrabotok (Increasing the Reliability of Mine Workings Supports), Moscow: Nedra, 1988.
5. Maksimov, A.P., Shashenko, A.N., and Rozhko, A.N., Influence of Backfilling Quality on the Bearing Capacity of Metal Arch Support, Shakht. Str., 1987, no. 3, pp. 21–23.
6. Lugantsev, B.B., Martynenko, I.I., and Martynenko, I.A., Influence of voids behind the support on the shift of the gallery roof, Ugol’ Ukrainy, 1994, no. 10, pp. 11–12.
7. Aleksandrov, A.N., Influence of Backfilling Voids between Metal Frames on the Stability of Mines, Shakht. Str., 1986, no. 8, pp. 7–9.
8. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Experience in Introduction of Technology of Filling of the Domes with Saponific Resins at the Mines of TOO Vostoktsvetmet, Bezopasn. Trud. Prom., 2017, no. 7, pp. 38–42.
9. Klimchuk, I.V., and Malanchenko, V.M., Experience of Polymer Technologies in Mines in Russia, Gorn. Prom., 2007, no. 4, pp. 22–25.
10. Klimchuk, I.V., Implementation of New Polymeric Technologies at Coal Production Enterprises of Kuzbass, Glyukauf, 2007, no. 1 (2), pp. 88–90.
11. Klimchuk, I.V., and Malanchenko, V.M., Solution to the Safety Problems at Mining Enterprises of Russia, Glyukauf, 2008, no. 2 (3), pp. 95–97.
12. Efimov, A.I., Malanchenko, V.M., Klimchuk, I.V., et al., Implementation of New Technologies of Excavation Support at Ore Mines of the Polar Branch, Gornyi Zhurnal, 2005, no. 2., pp. 38–42.
13. Semenov, S.N., New Methods of Adjacent Rocks–Metal Frame Void Backfilling during Mining Operations and Operational Safety Increase during Elimination of Rock Fall at the Don MPP Mines, Problemy nedropol’zovaniya: materialy V Vseross. molodezhnoi nauch.-prakt. konf. (Mineral Resourses Management: Proc. All-Russian Applied Science Conference of Young People), Ekaterinburg: IGD UrO RAN, 2011.
14. Getze, E.A., Experience of Using Various Methods of Backfilling in Drifting Faces, Glyukauf, 1982, no. 1, pp. 17–19.
15. Brait, F., and Schroer, D., Backfilling of the Voids with Frame Support Sets by Means of Bullflex Method, Glyukauf, 1980, no. 13, pp. 12–17.
16. Pir, Yu., and Pal’, M.Kh., Backfilling of Anchoring Space with Light Foam-Cement Mixture, Possibilities and Limitations, Glyukauf, 1988, no. 11, pp. 7–12.
17. Schroer, D., and Ingenabel’, K., Mechanized Backfilling of Anchoring Space of Drives, Glyukauf, 1974, no. 8, pp. 8–11.
18. Schroer, D., Backfilling Methods and Their Efficiency, Glyukauf, 1977, no. 15, pp. 21–24.
19. Uvarova, V.A., Methodological Background of Control of Mine Polymeric Materials Fire and Toxic Properties, Dr. Tech. Sci. Dissertation, Moscow, 2016.
20. Knop, A., and Sheib, V., Fenol’nye smoly i materialy na ikh osnove (Phenolic Resins and Materials on Their Basis), Shutova, F.A., Ed., Moscow: Khimiya, 1983.
21. Kovrizhnykh, A.M., Usol’tseva, O.M., Kovrizhnykh, S.A., Tsoi, P.A., and Semenov, V.N., Investigation of Strength of Anisotropic Rocks under Axial Compression and Lateral Pressure, J. Min. Sci., 2017, vol. 53, no. 5, pp. 831–836.
22. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
23. Litvinsky, G.G., Gaiko, G.L., Maleev, L.M., and Voloshin, V.B., Mezhramnye ograzhdeniya shakhtnoi krepi (Mine Support Lagging), Alchevsk: DonGTU, 2000.
24. Ogorodnikov, Yu.N., Ochkurov, V.I., and Maksimov, A.B., Calculation of Loadings on Arch Mine Working Support KMP-A3 at Yakovlevsky Iron Ore Deposit, Zap. Gorn. Inst., 2007, vol. 172, pp. 33–38.
25. Mirenkov, V.E., Interaction between Enclosing Rocks and Roof Support during Stoping, J. Min. Sci., 2017, vol. 53, no. 5, pp. 811–817.
26. Darkov, A.V., and Shaposhnikov, N.N., Stroitel’naya mekhanika (Structural Mechanics), Moscow: Vysch. Shk., 1986.
27.Acherkan, N.S., Spravochnik mashinostroitelya (Reference Book of Mechanical Engineer), Moscow: Mashgiz, 1956.
28. Solodyankin, A.V., and Gapeev, S.N., Numerical Modeling of the Influence of Adjustable Backfilling Parameters on Stress–Strain State of the Developing Rock Mass, Problemy gornogo dela i ekologii gornogo proizvodstva: materialy IV Mezhdunar. Nauch.-prakt. konf. (Problems of Mining Engineering and Ecology of Mining: Proc. 6th International Research to Practice Conference), 2009.


EXPERIMENTAL RESEARCH OF PHYSICAL PROCESSES IN SELECTIVE EXTRACTION OF ORES AND ROCKS IN FLAT LODE MINING
K. N. Trubetskoy, Yu. P. Galchenko, and A. S. Shuklin

IPKON, Russian Academy of Sciences, Moscow, 111020 Russia
e-mail: schtrek33@mal.ru
Resursy Albazino (Polimetal), Krasnoyarsk, 660049 Russia
e-mail: ashuklin@mirpoao.ru

The results of the experimental research into processes that take place during differently directed controlled trajectory blasting of ore and rock in underground mining of flat-dipping lodes are presented. It is found that methods for designing blast patterns should take into account both linear concentration of energy and dynamics of the increase in resistance to throw of rocks and ore in a narrow stoping area. Based on the modeling data, the throw coefficient and blasting front advance are plotted as functions of geometrical and energy characteristics of the model. It is shown that blasting and throw of ore in the stoping zone is accompanied with the effect of additional fragmentation of ore due to collision with the stope roof.

Flat-dipping lodes, mining, differently directed controlled trajectory blasting, rock mass, throw efficiency, ore mass, additional fragmentation

DOI: 10.1134/S1062739118023606 

REFERENCES
1. Trubetskoy, K.N., and Galchenko, YU. P. Nature-Like Mining Technologies: Prospect of Resolving Global Contradictions When Developing Mineral Resources of the Lithosphere, Herald of the Russian Academy of Science, 2017, vol. 87, no. 4, pp. 378–384.
2. Galchenko, Yu.P, and Sabyanin, G.V., Problemy geotekhnologii zhil’nykh mestorozhdenii (Problems of Lode Deposits Geotechnology), Moscow: Nauchtekhlitizdat, 2011.
3. Pickering, R. G. B., Presidential address: Has the South African narrow reef mining industry learnt how to change, J. of the Southern African Institute of Mining and Metallurgy, 2007, vol. 107, pp. 557–565.
4. Buslenko, N.P., Modelirovanie slozhnykh sistem (Modeling of Complex Systems), Moscow: Nauka, 1978.
5. Drukovanny, M.F., Komir, V.M., and Kuznetsov, V.M., Deistvie vzryva v gornykh porodakh (Blast Effect in Rocks), Kiev: Nauk. Dumka, 1973.
6. Krotkov, V.V., Lobanov, D.P., Nesterov, Yu.V., and Abdul’manov, I.G., Gorno-khimicheskaya tekhnologiya dobychi urana (Mining-Chemical Technology of Uranium Extraction), Moscow: GEOS, 2001.
7. Nasonov, I.D., and Resin V. I., Modelirovanie fizicheskikh protsessov v gornom dele (Physical Processes Simulation in Mining), Moscow: AGN, 1999.
8. Trubetskoy, K.N., Galchenko, Yu.P., and Shuklin, A.S., High-Efficiency Geotechnology for Integrated Development of Flat and Inclined Lodes, Gornyi Zhurnal, 2018, no. 2, pp. 73–77.
9. Galchenko, Yu.P., Lizunkin, M.V., and Shuklin, A.S., Ecological Features of a Split Extraction in Underground Development of Shallow Lodes, Ecol. Sistem. Prib., 2012, no. 11, pp. 69–75.


ANALYSIS OF. A. GREEN TRANSPORT PLANT FOR DEEP SEA MINING SYSTEMS
W. Ma, G. Lodewijks, and D. Schott

Department of Maritime & Transport Technology, Delft University of Technology, Delft, the Netherlands
e-mail: W.Ma@tudelft.nl
School of Aviation, Faculty of Science, University of New South Wales, Sydney NSW 2052, Australia

Deep sea mining was identified in the middle of last century. However, its industrialization and commercialization today are limited in the costal mining industry due to the high mining cost and technical issues. The purpose of this paper is to analyze a green transport plan of deep sea mining systems in terms of the optimal efficiency of the rigid pipe lifting system and the total energy consumption. The deep sea mining facilities considered in this paper consist of a mineral collecting machine, a flexible hose, a rigid pipe, a grinding machine, a concentrating machine and a horizontal pipe conveyor. Centrifugal pump modelling and its working principle are researched, because it is the major transport facility. The relationship between the optimal efficiency, total energy consumption, transport loss factor, and the relating mining parameters is determined by numerical simulations and fittings under Fortran and Matlab environment, and the optimization under 1st Opt environment. The research conducted in this paper is valuable for the pre-evaluation of deep sea mining transport systems and the further realization of its industrialization and commercialization process.

Deep sea mining, green transport plan, optimal efficiency, total energy consumption, transport loss factor, centrifugal pump

DOI: 10.1134/S1062739118023618 

REFERENCES
1. Chung, J.S., Deep-Ocean Mining: Technologies for Manganese Nodules and Crusts, Int. J. Offshore Polar Eng., 1996, vol. 6 (04), pp. 244–254.
2. Wilburn, D.R., and Bleiwas, D.I., Platinum-Group Metals—World Supply and Demand, US Geological Survey Open-File Report, 2004, 1224, 2004–1224.
3. Collins, P.C., Kennedy, B., Copley, J., Boschen, R., Fleming, N., Forde, J., Ju, S.J., Lindsay, D., Marsh, L., Nye, V., and Patterson, A., Vent Base: Developing a Consensus Among Stakeholders in the Deep-Sea Regarding Environmental Impact Assessment for Deep-Sea Mining–A Workshop Report, Mar. Pol., 2013, vol. 42, pp. 334–336.
4. Handschuh, R., Grebe, H., Panthel, J., Schulte, E., Wenzlawski, B., Schwarz, W., Atmanand, M.A., Jeyamani, R., Shajahan, M.A., Deepak, C.R., and Ravindran, M., Innovative Deep Ocean Mining Concept Based on Flexible Riser and Self-Propelled Mining Machines, The Fourth ISOPE Ocean Mining Symposium, International Society of Offshore and Polar Engineers, Poland, 2001.
5. Ma, W., Schott, D., and Lodewijks, G., A New Procedure for Deep Sea Mining Tailings Disposal, Minerals, 2017, vol. 7 (4), p. 47.
6. Deepak, C.R., Shajahan, M.A., Atmanand, M.A., Annamalai, K., Jeyamani, R., Ravindran, M., Schulte, E., Handschuh, R., Panthel, J., Grebe, H., and Schwarz, W., Developmental Tests on the Underwater Mining System Using Flexible Riser Concept, The Fourth ISOPE Ocean Mining Symposium, International Society of Offshore and Polar Engineers, Poland, 2001.
7. Welling, C.G., An Advanced Design Deep Sea Mining System, The Offshore Technology Conference, Houston, Texas, 1981.
8. Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., and Iwamori, H., Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements, Nat. Geosci., 2011, vol. 4 (8), pp. 535–539.
9. Ma, W., Schott, D., and Lodewijks, G., Continuous Line Bucket Lifting Versus Pipe Lifting, J. Offshore Mech. Arct. Eng. Trans. ASME, 2017.
10. Davarzani, H., Fahimnia, B., Bell, M., and Sarkis, J., Greening ports and maritime logistics: A review. Transport. Res. Part D-Transport., 2016, vol. 48, pp. 473–487.
11. Sharma, R., Deep-Sea Mining: Economic, Technical, Technological, and Environmental Considerations for Sustainable Development, Mar. Technol. Soc. J., 2011, vol. 45 (5), pp. 28–41.
12. Chung, J.S., Whitney, A.K., and Loden, W.A., Nonlinear Transient Motion of Deep Ocean Mining Pipe, J. Energy Resour. Technol.-Trans. ASME, 1981, vol. 103, pp. 2–10.
13. Felippa, C.A., and Chung, J.S., Nonlinear Static Analysis of Deep Ocean Mining Pipe, Part I: Modeling and Formulation, ASME. J. Energy Resour. Technol., 1981, vol. 103, pp. 11–15.
14. Chung, J.S., and Tsurusaki, K., Advance in Deep-Ocean Mining Systems Research, The Fourth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Osaka, Japan, 1994, pp. 18–31.
15. Chung, J.S., and Felippa, C.A., Nonlinear Static Analysis of Deep Ocean Mining Pipe, Part II: Numerical Studies, J. Energy Resour. Technol.-Trans., 1981, vol. 103 (1), pp. 17–25.
16. Huang, X., Liu, Z., and Yang, W., Comparative Study of SGS Models for Simulating the Flow in a Centrifugal-Pump Impeller Using Single Passage, Eng. Comput., 2015, vol. 32 (7), pp. 2120–2135.
17. Guo, Z., Zhang, D., Liu, H., He, Z., and Shi, L., Green Transportation Scheduling with Pickup Time and Transport Mode Selections Using a Novel Multi-Objective Memetic Optimization Approach, Transport. Res. Part D-Transport., 2016.
18. Liu, Y., and Cirillo, C., Small Area Evaluation of Vehicle Ownership and Use, Transport. Res. Part D-Transport., 2016, vol. 47, pp. 136–148.
19. Jonkers, C.O., The Loss Factor of Transport, Fordenund Heben, 1981, vol. 31 (2), pp. 98–101.
20. Lodewijks, G., The Transport Loss Factor Revisited, Proceedings of the 5th International Conference for Conveying and Handling of Particulate Solids, Sorrento, Italy, 2006 (key-note presentation).
21. Digiesi, S., Mossa, G., and Mummolo, G., A Loss Factor Based Approach for Sustainable Logistics, Prod. Plan. Control, 2012, vol. 23 (2–3), pp. 160–170.
22. Van Roy, J., Leemput, N., De Breucker, S., Geth, F., Tant, P., and Driesen, J., An Availability Analysis and Energy Consumption Model for a Flemish Fleet of Electric Vehicles, Brussels, Belgium, 2011.
23. Walker, I.S., Energy Implications of In-Line Filtration in California Homes, ASHRAE Transactions, 2014.
24. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., and Bakajin, O., Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes, Science, 2006, vol. 312 (5776), pp. 1034–1037.
25. Workman, L., and Eloranta, J., The Effects of Blasting on Crushing and Grinding Efficiency and Energy Consumption, Proc. 29th Con Explosives and Blasting Techniques, Int. Society of Explosive Engineers, Cleveland OH, 2003, pp. 1–5.
26. Haffez, G. S. A., Correlation between Work Index and Mechanical Properties of Some Saudi Ores, Mater. Test., 2012, vol. 54(2), pp. 108–112.
27. Haffez, G. S. A., Correlation between Bond Work Index and Mechanical Properties of Some Saudi Ores, J. Eng. Sci., 2012, vol. 40 (1), pp. 271–280.
28. Peng, Y., Xia, J.X., Cao, B., Ren, H.T., and Wu, Y., Spatial Configurations and Particle Transportation Parameters of Flexible Hose in Deep-Sea Mining System, The Eleventh Ocean Mining and Gas Hydrates Symposium, International Society of Offshore and Polar Engineers, Kona, Big Island, Hawaii, USA, 2015.
29. Shook, C.A., Pipelining Solids: The Design of Short Distance Pipelines Paper Presented at the Symposium on Pipeline Transport of Solids, The Canadian Society for Chemical Engineering, Toronto, 1969.
30. Shook, C.A., and Daniel, S.M., Flow of Suspensions of Solids in Pipelines: Part I. Flow with a Stable Stationary Deposit, Can. J. Chem. Eng., 1965, vol. 43 (2), pp. 56–61.
31. Durand, R., and Condolios, E., The Hydraulic Transport of Coal and Solid Material in Pipes, The Proceedings of Colloquium on Hydraulic Transportation, France, 1952.
32. Spelay, R.B., Adane, K.F., Sanders, R.S., Sumner, R.J., and Gillies, R.G., The Effect of Low Reynolds Number Flows on Pitot Tube Measurements, Flow Meas. Instrum., 2015, vol. 45, pp. 247–254.
33. Shook, C.A., and Bartosik, A.S., Particle-Wall Stresses in Vertical Slurry Flows, Powder Technol., 1994, vol. 81 (2), pp. 117–124.
34. Gonzalez, J., Fernandez, J., Blanco, E., and Santolaria, C., Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump, J. Fluids Eng.-Trans. ASME, 2002, vol. 124 (2), pp. 348–355.
35. Park, Y.C., Yoon, C.H., Lee, D.K., and Kwon, S.K., Experimental Studies on Hydraulic Lifting of Solid liquid Two phase Flow, Ocean and Polar Research, 2004, vol. 26 (3–4), p. 647.
36. Van Wijk, J.M., Van Grunsven, F., Talmon, A.M., and van Rhee, C., Simulation and Experimental Proof of Plug Formation and Riser Blockage During Vertical Hydraulic Transport, Ocean Eng., 2015, vol. 101, pp. 58–66.
37. Engelmann, H.E., Vertical Hydraulic Lifting of Large-Size Particles-a Contribution to Marine Mining, In Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, 1978.
38. Jiang, L., Li, P., Tian, L., and Han, W., Experiment Study on Critical Velocity in Vertical Pipes for Hydraulic Lifting, The Sixth ISOPE Ocean Mining Symposium, International Society of Offshore and Polar Engineers, Changsha, Hunan, China, October 9–13, 2005.
39. Jain, S.V., Swarnkar, A., Motwani, K.H., and Patel, R.N., Effects of impeller diameter and rotational speed on performance of pump running in turbine mode. Energy Conv. Manag., 2015, vol. 89, pp. 808–824.
40. Zhang, Y., and Steven, R., Pipe Conveyor and Belt: Belt Construction, Low Rolling Resistance and Dynamic Analysis, The 2012 SME Annual Meeting and Exhibit, Seattle, WA, 2012, pp. 616–619.
41. Dmitriev, V.G., and Sergeeva, N.V., Tractive Calculation of Belt Tubular Conveyors, GIAB, 2009, vol. 16, pp. 144–169.
42. Zamiralova, M.E., and Lodewijks, G., Energy Consumption of Pipe Belt Conveyors: Indentation Rolling Resistance, FME Transactions, 2012, vol. 40 (4), pp. 171–176.
43. Xia, J.X., Ni, J.R., and Mendoza, C., Hydraulic Lifting of Manganese Nodules Through a Riser, J. Offshore Mech. Arct. Eng. Trans. ASME, 2004, vol. 126 (1), pp. 72–77.
44. Zou, W., COMRA’s Research On Lifting Motor Pump, The Seventh ISOPE Ocean Mining Symposium, International Society of Offshore and Polar Engineers, Lisbon, Portugal, 2007, pp. 177–180.
45. Chung, J.S., Lee, K., and Tischler, A., Two-Phase Vertically Upward Transport of Silica Sands in Dilute Polymer Solution: Drag Reduction and Effects of Sand Size and Concentration The Seventh ISOPE Ocean Mining Symposium, International Society of Offshore and Polar Engineers, Lisbon, Portugal, 2007, pp. 188–196.


PENETRATION RATE AND SPECIFIC ENERGY PREDICTION OF ROTARY–PERCUSSIVE DRILLS USING DRILL CUTTINGS AND ENGINEERING PROPERTIES OF SELECTED ROCK UNITS
M. Z. Abu Bakar, I. A. Butt, and Y. Majeed

Geological Engineering Department, University of Engineering and Technology, Lahore, Pakistan
Department of Civil Engineering, University of Lahore, Lahore, Pakistan
e-mail: mzubairab1977@gmail.com
Mining Engineering Department, University of Engineering and Technology, Lahore, Pakistan

This study discusses the prediction of penetration rate and specific energy of button bit equipped rotary–percussion drilling machines from drill cuttings and geo-mechanical properties of rocks. The operational parameters of drilling machines measured from selected locations were utilized for the calculation of specific energy of drilling operations. For this purpose three on-going hydropower projects and four active mining quarries of Pakistan were selected. The drill cuttings were further used to determine various descriptors of the chip size distribution including the coarseness index and Rosin–Rammler’s absolute size constant. A complete set of geo-mechanical rock tests were conducted in the laboratory and includes uniaxial compressive strength, Brazilian tensile strength, point load strength, Schmidt rebound hardness, P-wave velocity, dry density, porosity and brittleness indices. Regression analyses were performed to predict the penetration rate and specific energy of drilling from geo-mechanical properties of rocks. The models so developed were also validated by adopting the t-test and the F-test statistical techniques. Moreover, statistical models were also developed to evaluate penetration rate from various descriptors of the chip size distribution. Dependence of bit size on coarseness index and mean particle size was also discussed.

Penetration rate, specific energy, coarseness index, Rosin–Rammler’s constant, uniaxial compressive strength, Brazilian tensile strength, point load strength, Schmidt rebound hardness, density, porosity, P-wave velocity

DOI: 10.1134/S106273911802363X

REFERENCES
1. McFeat-Smith, I., and Fowell, R.J., Selection and Application of Roadheaders for Rock Tunneling, Proc. Rapid Excavation and Tunneling Conference–RETC, Altanta, 1979.
2. Tanaino, A.S., Rock Classification by Drillability. Part I: Analysis of the Available Classifications, J. Min. Sci., 2005, vol. 41, no. 6, pp. 541–549.
3. Altindag, R., Correlation of Specific Energy with Rock Brittleness Concepts on Rock Cutting, J. South Afr. Inst. Min. Metall., 2003, vol. 103, no. 3, pp. 163–172.
4. Pfleider, E.P., and Blake, R.L., Research on the Cutting Action of the Diamond Drill Bit, Min. Eng., 1953, vol. 5, pp. 187–195.
5. Rabia, H., and Brook, N., An Empirical Equation for Drill Performance Prediction, Proc. 21st Symp. on Rock Mech., University of Missouri-Rolla, USA, 1980, pp. 104–112.
6. Ersoy, A., and Waller, M.D., Drilling Detritus and the Operating Parameters of Thermally Stable PDC Core Bits, Int. J. Rock Mech. Min. Sci., 1997, vol. 34, no. 7, pp. 1109–1123.
7. Altindag, R., Evaluation of Drill Cuttings in Prediction of Penetration Rate by Using Coarseness Index and Mean Particle Size in Percussive Drilling, Geotech. and Geol. Eng., 2004, vol. 22, pp. 417–425.
8. Kahraman, S., Develi, K., and Yasar, E., Predicting the Penetration Rate of Percussive Blast Hole Drills Using Coarseness Index and Median Particle Size, CIM Bulletin, 2004, vol. 97, no. 15, pp. 1–4.
9. Tuncdemir, H., Bilgin, N., Copur, H., and Balci, C., Control of Rock Cutting Efficiency by Muck Size, Int. J. Rock Mech. Min. Sci., 2008, vol. 45, pp. 278–288.
10. Abu Bakar, M.Z., and Gertsch, L.S., Radial Pick Cutting Performance in Dry and Saturated Sandstone, Society for Mining, Metallurgy and Exploration, 2012, vol. 332, pp. 396–405.
11. Abu Bakar, M.Z., Gertsch, L.S., and Rostami, J., Evaluation of Fragments from Disc Cutting of Dry and Saturated Sandstone, Rock Mech. Rock Eng., 2014, vol. 47, pp. 1891–1903.
12. Selmer-Olsen, R., and Blindheim, O.T., On the Drillability of Rock by Percussive Drilling, Proceedings of the 2nd Congress of the Int. Society for Rock Mechanics, Belgrade, Yugoslavia, 1970, pp. 65–70.
13. Howarth, D.F., Adamson, W.R., and Berndt, J.R., Correlation of Model Tunnel Boring and Drilling Machine Performances with Rock Properties, Int. J. Rock Mech. Min. Sci., 1986, vol. 23, pp. 171–175.
14. Thuro, K., and Spaun, G., Introducing the Destruction Work as a New Rock Property of Toughness Referring to Drillability in Conventional Drill and Blast Tunneling, Barla, G. (Ed.), Eurock 96: Prediction and Performance in Rock Mech. and Rock Eng., 1996, vol. 2, pp. 707–713.
15. Thuro, K., Drillability Prediction: Geological Influences in Hard Rock Drill and Blast Tunneling, Geol. Rundsch., 1997, vol. 86, pp. 426–438.
16. Altindag, R., The Evaluation of Rock Brittleness Concept on Rotary Blast Hole Drills, J. South Afr. Inst. Min. Metall., 2002, vol. 102, pp. 61–66.
17. Kahraman, S., Bilgin N., and Feridunoglu, C., Dominant Rock Properties Affecting the Penetration Rate of Percussive Drills, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, pp. 711–723.
18. Dahl, F., Bruland, A., Jakobsen, P.D., Nilsen, B., and Grov, E., Classifications of Properties Influencing the Drillability of Rocks, Based on the NTNU/SINTEF Test Method, Tunneling and Underground Space Technology, 2012, vol. 28, pp. 150–158.
19. Seifabad, M.C., and Ehteshami, P., Estimating the Drilling Rate in Ahvaz Oil Field, J. Petrol. Exploration Prod. Technology, 2013, vol. 3, pp. 169–173.
20. Ngerebara, O.D., and Youdeowei, P., Correlation of Mechanical Properties of Some Rocks in South-Eastern Nigeria, Int. J. Sci. and Res. Pub., 2014, vol. 4, pp. 1–6.
21. Hoseinie, S.H., Ataei, M., and Aghababaie, A., A laboratory Study of Rock Properties Affecting the Penetration Rate of Pneumatic Top Hammer Drills, J. Min. and Env., 2014, vol. 5, pp. 25–34.
22. Protodyakonov, M.M., Mechanical Properties and Drillability of Rocks, Proceedings of the 5th Symp. on Rock Mech., University of Minnesota, 1962, pp. 103–118.
23. Teale, R., The Concept of Specific Energy in Rock Drilling, Rock Mech. Min. Sci., 1964, vol. 2, pp. 57–73.
24. Mellor, M., Normalization of Specific Energy Values, Int. J. Rock Mech. Min. Sci., 1972, vol. 9, pp. 661–663.
25. Copur, H., Tuncdemir, H., Bilgin, N., and Dincer, T., Specific Energy as a Criterion for the Use of Rapid Excavation Systems in Turkish Mines, Trans. Int. Min. Metall. Sect. Min. Tech., 2001, vol. 110, pp. A149–A157.
26. Rabia, H., Specific Energy as a Criterion for Drill Performance Prediction, Int. J. Rock Mech. Min. Sci. Geomech., 1982, vol. 19, pp. 39–42.
27. Bullock, R.L., Tunneling and Underground Construction Techniques, Mining 383 Course, Missouri University of Science and Technology, Rolla, MO, USA, 2009.
28. Roxborough, F.F., Research in Mechanical Rock Excavation: Progress and Prospects, Proceedings of the Rapid Excavation and Tunneling Conference, 1985, vol. 1, pp. 225–243.
29. Fowell, R.J., The Mechanics of Rock Cutting, Hudson, J.A. (Eds.), Comprehensive Rock Engineering, 1993, vol. 4, pp. 155–175.
30. Evans, I., A Theory on the Basic Mechanics of Coal Ploughing, Proceedings of the Int. Symp. on Min. Research, Missouri, 1961, vol. 2, pp. 761–798.
31. Nishimatsu, Y., The Mechanics of Rock Cutting, Int. J. Rock Mech. Min. Sci., 1972, vol. 9, pp. 261–270.
32. Atici, U., and Ersoy, A., Correlation of Specific Energy of Cutting Saws and Drilling Bits with Rock Brittleness and Destruction Energy, J. of Materials Proc. Tech., 2008, vol. 209, pp. 2602–2612.
33. Paone, J., Madson, D., and Bruce, W.E., Drillability Studies—Laboratory Percussive Drilling, USBM RI 7300, 1969.
34. Moore, P.L., Drilling Practices Manual, Tulsa: Penn Well Books, 1974.
35. Huang, S.L., and Wang, Z.W., The Mechanics of Diamond Core Drilling of Rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abst., 1997, vol. 34, pp. 6–12.
36. ASTM D4543, Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances, 2008.
37. Roxborough, F.F., and Rispin, A., The Mechanical Cutting Characteristics of the Lower Chalk, Tunnels and Tunneling, 1973, pp. 45–67.
38. Rosin, P., and Rammler, B., The Laws Governing the Fineness of Powdered Coal, J. Inst Fuel, 1933, vol. 7, pp. 29–36.
39. Aytekin, Y., The Measurement Methods of Fine Particle, Ege. Univ. Press., no. 2, 1979, pp. 114.
40. ASTM D7012, Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, 2010.
41. ASTM D3967, Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM International, West Conshohocken, PA, 2016. doi.org/10.1520/D3967–16.
42. ASTM D573, Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classification, 2008.
43. ASTM D83, Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method, 2005.
44. Aydin, A., ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised version, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, no. 3, pp. 627–634.
45. ISRM, Suggested Methods for Determining Sound Velocity, Int. J. of Rocks Mech. and Min. Sci. and Geomech., 1978, vol. 15, pp. 53–58.
46. ISRM, Suggested Methods for Determining Water Content, Porosity, Density, Absorption and Related Properties and Swelling and Slake-Durability Index Properties, Int. J. of Rocks Mech. and Min. Sci. and Geomech., 1979, vol. 16, pp. 141–156.
47. Bilgin, N., and Kahraman, N., Drillability Prediction in Rotary Blast Hole Drilling, 1st Int. Min. Congress and Exhibition of Turkey-IMCET, 2003.
48. Roxborough, F.F., and Sen, G.C., Breaking Coal and Rock, Australasian Coal Mining Practice, 1986, vol. 12, pp. 130–147.
49. Bilgin, N., Seyrek, T., and Sahriar, K., Roadheader Performance in Istanbul, Golden Horn Clean up Contributes Valuable Data, Tunnels and Tunneling, 1988, vol. 20, no. 6, pp. 41–47.
50. Reddish, D.J., and Yasar, E., A New Portable Rock Strength Index Test Based on Specific Energy of Drilling, Int. J. of Rock Mech. Min. Sci. and Geomech., 1996, vol. 33, no. 5, pp. 543–548.
51. Tiryaki, B., and Dikmen, A.C., Effects of Rock Properties on Specific Cutting Energy in Linear Cutting of Sandstones by Picks, Rock Mech. and Rock Eng., 2006, vol. 39, no. 2, pp. 89–120.
52. Altindag R. Estimation of Penetration Rate in Percussive Drilling by Means of Coarseness Index and Mean Particle Size, Rock Mech. and Rock Eng., 2003, vol. 36, no. 4, pp. 323–332.


MINERAL DRESSING


INFLUENCE EXERTED BY ULTRASOUND PROCESSING ON EFFICIENCY OF LEACHING, STRUCTURAL, CHEMICAL, AND MORPHOLOGICAL PROPERTIES OF MINERAL COMPONENTS IN EUDIALYTE CONCENTRATE
V. A. Chanturia, V. G. Minenko, A. L. Samusev, M. V. Ryazantseva, E. L. Chanturia, and E. V. Koporulina

Academician Melnikov Research Institute of Comprehensive Exploitation of Mineral Resources,
Russian Academy of Sciences, Moscow, 111020 Russia
e-mail: Andrey63vzm@mail.ru

The investigation of influence exerted by ultrasound processing on recovery of zirconium and rare earth elements in pregnant solution of acid leaching of eudialyte concentrate is described. The methods of X-ray photoelectron spectroscopy and analytical scanning electron microscopy are used to study structural, chemical and morphological characteristics as well as elemental composition of minerals in eudialyte concentrate before and after acid leaching.

Eudialyte concentrate, leaching, nitric acid, ultrasound, zirconium, rare earth elements

DOI: 10.1134/S1062739118023641 

REFERENCES
1. Glembotsky, V.A., Ul’trazvuk v obogashchenii poleznykh iskopaemykh (Ultrasound in Mineral Dressing), Alma-Ata: Nauka, 1972.
2. Revnivtsev, V.I. and Dmitriev, Yu.G., Use of Ultrasound for Removal of Harmful Admixtures of Artificial Abrasive Materials, Primenenie ul’trazvuka v mashinostroenii (Use of Ultrasound in Machine Engineering), Moscow: TSINTIAM, 1963, pp. 36–42.
3. Rostovtsev, N.M., Study of the Process of Ultrasonic Dispersion of Solids, Synopsys of Theses of Cand. Phys,-Math, Sci., 1961.
4. Kats, M.Ya., Cavitation Strength of Some Minerals, Akust. Zh., 1961, vol. 7, no. 1, pp. 47–52.
5. Chanturia, V.A., Minenko, V.G., Samusev, A.L., Chanturia, E.L., and Koporulina, E.V., The Mechanism of Influence Exerted by Integrated Energy Impacts on Intensified Leaching of Zirconium and Rare Earth Elements from Eudyalite Concentrate, J. Min. Sci., 2017, vol. 53, no. 5, pp. 890–896.
6. Chanturia, V.A., Chanturia, E.L., Minenko, V.G., Samusev, A.L., RF patent application no. 2017131236.
7. Kol’tasov, S.I and Aleskovsky, V.B., Silikagel’, ego stroenie i khimicheskie svoistva (Silica Gel, Structure and Chemical Properties), Leningrad, 1963.
8. Zakaznova-Herzog, V.P., Nesbitt, H.W., Bancroft, G.M., and Tse, J. S. Characterization of Leached Layers on Olivine and Pyroxenes Using High-Resolution XPS and Density Functional Calculation, Geochimica and Cosmochimica Acta, 2008, vol. 72, no. 1, pp. 69–86.
9. Gerasimov, M.V., Dikov, Yu.P., and Yakovlev, O.E., Cluster Type of Silicate Evaporation: New Experimental Data, Petrologiya, 2012, vol. 20, no. 5, pp. 439–448.
10. Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., et al., NIST X-Ray Photoelectron Spectroscopy Database. Standard Reference Database 20, version 3.4 (Web version), 2000–2008. http://srdata.nist.gov/ xps.
11. Boyarkov, A.V., Nikolichev, D.E., Tetel’baum, A.I., Belov, A.I., Ershov, A.V., and Mikhailov, A.N., Chemical and Phase Composition of Silicon Oxide Films with Nano-Clusters Obtained by Ionic Implantation of Carbon, Fiz. Tverd. Tela, 2012, vol. 54, issue 2, pp. 370–377.
12. Gross, Th., Ramm, M., Sonntag, H., Unger, W., Weijers, H.M., and Adem, E.H., An Xps Analysis of Different Siî2 Modifications Employing A C 1s as well as an Au 4f 7/2 Static Charge Reference, Surface and Interface Analysis, 1992, vol. 18, no. 1, pp. 59–64.
13. Chukanov, N.V., Infrared Spectra of Mineral Species, New York, London: Springer Dodrecht Heidelberg, 2013.
14. Voynets, V.F and Volynets, M.P., Analiticheskaya khimiya azota (Analytical Chemistry of Nitrite), Moscow: Nauka, 1977.
15. Almenda, R.M. and Pantano, C.G., Structural Investigation of Silica Gel Films by Infrared Spectroscopy, J. Appl. Phys., 1990, vol. 68, no. 8, pp. 4225–4232.


MATHEMATICAL MODELING OF MINERALIZED INDUSTRIAL WASTEWATER TREATMENT BY PRESSURE FLOTATION
N. L. Medyanik, I. Yu. Shevelin, and S. N. Kakushkin

Nosov Magnitogorsk State Technical University, Magnitogorsk, 455000 Russia
e-mail: chem@magtu.ru

The mathematical model of treatment of mineralized mine wastewater by pressure flotation is described. The model provides information on concentration of metal substrates in each state of the process at any arbitrary time. The numerical experiments based on the model prove its reliability and accuracy.

Numerical modeling, mineralized industrial wastewater, multi-stage pressure flotation, metal substrate, complexing agent, metal substrate–agent–bubble flotation systems

DOI: 10.1134/S1062739118023653 

REFERENCES
1. Sebba, F., Ionnaya flotatsiya (Ion Flotation), Moscow: Metallurgia, 1965.
2. Gol’man, A., Ionnaya flotatsiya (Ion Flotation), Moscow: Nedra, 1982.
3. Ksenofontov, B.S., Possibilities of Use of Ionic Flotation for Sewage Treatment, Ekologiya Prom. Proizv., 2013, no. 1 (81), pp. 25–28.
4. Ksenofontov, B.S., Ivanov, M.V., and Titov, K.V., Intensification of Sewage Treatment by Flotation by a Vibration Method, Ekologiya Prom. Proizv., 2012, no. 2, pp. 30–33.
5. Ksenofontov, B.S., Ivanov, M.V., and Bairamova, A.D., Ways of Intensification of Process of Flotation of Sewage Treatment with Vibration Use, Ekologiya Prom. Proizv., 2012, no. 1, pp. 41–44.
6. Ksenofontov, B.S. and Antonova, E.S., Models of Floatation and Accompanying Processes of Water Purification Bezopasnoct Zhiznedeyatel’nosti, 2014, no. 10, pp. 42–48.
7. Medyanik, N.L., Varlamova, I.A., and Kalugina, N.L., Features of Selection of Complexing Organic Reagents Quantum-Chemical Method for Selective Extraction of Heavy Metal Cations from Solutions, Vestnik MGTU, 2013, no. 3 (43), pp. 14–19.
8. Kurkov, A.V. and Pastukhova, I.V., Flotation as the Subject-Matter of Supramolecular Chemistry, J. Min. Sci., 2010, vol. 46, no. 4, pp. 438–445.
9. Usmanova, N.F. and Bragin, V.I., Supramolecular Complex Formation with Interaction of Carboxylic Collector and Amido Acids Group Reagent in Flotation, Obogashch. Rud, 2011, no. 1, pp. 23–25.
10. Medyanik, N.L., Girevaya, Kh.Ya., Shevelin, I.Yu., and Bessonova, Yu.A., RF Patent no. 2522630, Byull. Izobret., 2014, no. 20, p. 10.


IMPROVEMENT OF OXIDIZING ROASTING OF MOLYBDENITE CONCENTRATE BY ADDITION OF MAGNESITE
D. P. Khomoksonova, E. S. Kashkak, and I. G. Antropova

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 670047 Russia
e-mail: inan@binm.ru
Tuva State University, Kyzyl, 667000 Russia

The results of the thermodynamic modeling are presented for oxidizing roasting of refractory molybdenite (MoS2) with magnesite (MgCO3). The phase and chemical compositions of the MoS2–MgCO3–O2 system and its changes are determined depending on the temperature and quantity of the additive agent. The modeling reveals feasibility of thermochemical decomposition of molybdenite with the formation of water- and soda-soluble compounds MgMoO4 and MgSO4, which is an evidence of efficiency of magnesium carbonate in the capacity of an additive agent. The optimal conditions of the thermochemical decomposition of molybdenite determined theoretically from thermodynamic calculations are proved experimentally.

Molybdenite concentrate, magnesite, thermodynamic modeling, roasting, magnesium molybdate, magnesium sulfate

DOI: 10.1134/S1062739118023665 

REFERENCES
1. Zelikman, A.N. and Meerson, G.A., Metallurgiya redkikh metallov (Rare Metal Metallurgy), Moscow: Metallurgiya, 1973.
2. Liu W., Xu H., Yang X., and Shi X., Extraction of Molybdenum from Low-Grade Ni-Mo Ore in Sodium Hypochlorite Solution under Mechanical Activation, Minerals Engineering, 2011, vol. 24, no. 14, pp. 1580–1585.
3. Amer, A.M., Hydrometallurgical Recovery of Molybdenum from Egyptian Qattar Molybdenite Concentrate, Physicochem. Probl. Min. Proc., 2011, vol. 47, no. 14, pp. 105–112.
4. Aleksandrov, P.V., Medvedev, A.S., Milovanov, M.F., Imideev, V.A., Kotova, S.A., and Moskovskikh, D.O., Molybdenum Recovery from Molybdenite Concentrates by Low-Temperature Roasting with Sodium Chloride, Int. J. Min. Proc., 2017, vol. 161, pp. 13–20.
5. Vatolin, N.A., Khalezov, B.D., Kharin, E.I., and Zelenin, E.A., Review of Ways to Process Molybdenite Concentrates and Search for an Ecologically Friendly Process, GIAB, 2011, no. 12, pp. 170–175.
6. Khalezov, B.D., Kharin, E.I., Vatolin, N.A., and Zelenin, R. A. RF Patent no. 2536615, Byull Izobret., 2014, no. 36, p. 7.
7. Saily, A., Khurana, U., Yadav, S.K., and Tandon S. N. Thiophosphinic Acids as Selective Extractants for Molybdenum Recovery from a Low Grade Ore and Spent Catalysts, Hydrometallurgy, 1996, vol. 41, pp. 99–105.
8. Olson, G.J. and Clark, T.R., Bioleaching of Molybdenite, Hydrometallurgy, 2008, vol. 93, pp. 10–15.
9. Abdollahi, H., Noaparast, M., Shafaei, S.Z., Manafi, Z., Munoz, J.A., and Tuovinen, O.H., Silver-Catalyzed Bioleaching of Copper, Molybdenum and Rhenium from a Chalcopyrite–Molybdenite Concentrate, Int. Biodeterioration & Biodegradation, 2015, vol. 104, no. 1–2, pp. 194–200.
10. Lasheen, T.A., El-Ahmady, M.E., Hassib, H.B., and Helal, A.S., Molybdenum Metallurgy Review: Hydrometallurgical Routes to Recovery of Molybdenum from Ores and Mineral Raw Materials, Min. Proc. Extr. Metall. Rev., 2015, vol. 36, no. 3, pp. 145–173.
11. Vladimirov, L.P., Termodinamicheskie raschety ravnovesiya metallurgicheskikh reaktsii (Thermodynamic Calculations of Metallurgical Reaction Equilibrium), Moscow: Metallurgiya, 1970.
12. Belov, E.G. and Trusov, B.G., Termodinamicheskoe modelirovanie khimicheski reagiruyushchikh system (Thermodynamic Modeling of Chemically Reacting Systems), Moscow: MGTU, 2013.


EFFICIENT PHYSICOCHEMICAL TREATMENT TECHNOLOGY FOR NEPHELINE CONCENTRATES
V. S. Rimkevich, A. P. Sorokin, A. A. Pushkin, and I. V. Girenko

Institute of Geology and Nature Management, Far East Branch, Russian Academy of Sciences, Blagoveshchensk, 675000 Russia
e-mail: igip@ascnet.ru
Amur Science Center, Far East Branch, Russian Academy of Sciences, Blagoveshchensk, 675000 Russia
e-mail: amyrnc@ascnet.ru

The processes of physicochemical treatment of nepheline concentrates are studied theoretically and experimentally, and the optimal conditions are determined for the integrated fluoride–ammonium recovery of different useful components. The enabling innovative technology is proposed for the production of amorphous silica, alumina, red iron oxide, calcium fluoride and other marketable products.

Nepheline concentrates, physicochemical treatment, integrated recovery, enabling technology, amorphous silica, alumina, useful components

DOI: 10.1134/S1062739118023677 

REFERENCES
1. Voitkevich, G.V. and Bessonov, O.A., Khimicheskaya evolyutsiya Zemli (Chemical Evolution of the Earth), Moscow: Nedra, 1986.
2. Sizyakov, V.M., Shmorgunenko, N.S., Smirnov, M.N., and Dantsit, S.Ya., Processes for Integrated Treatment of Alumosilica Rocks Intended for Production of Alumina and Other Products, Nefelinovoe syr’yo (Raw Nepheline Materials), Moscow: Nauka, 1981, pp. 289–309.
3. Zakharov, V.I., Kalinnikov, V.T., Matveev, V.A., and Maiorov, D.V., Khimiko-tekhnologicheskie osnovy i razrabotka novykh napravlenii kompleksnoi pererabotki i ispol’zovaniya shchelochnykh alyumosilikatov (Chemical and Technological Fundamentals and Development of Novel Trends in Integrated Processing and Utilization of Alkali Alumosicates), Apatity: KNTs RAN, 1995.
4. Matveev, V.A., Phosphoric Acid Process to Treat Nepheline-Bearing Materials, Khim. Tekhnologiya, 2008, no. 7, pp. 297–300.
5. Matveev, V.A., Perspectives to Apply Sulphuric Acid–Sulfite Process for Integrated Nepheline Processing, Tsv. Met., 2008, no. 9, pp. 47–50.
6. Makarov, D.V., Belyaevsky, A.T., Men’shikov, Yu.P., Nesterov, D.P., and Yusupov, M.F., A Study of the Mechanism and Kinetics of Interaction between Nepheline Powder and Ammonium Hydrofluoride, Russian Journal of Applied Chemistry, 2007, vol. 80, no. 2, pp. 175–180.
7. Zhang, W., Hu, Z., Liu, Y., Chen, H., Gao, S., and Gaschnig, R.M., Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: a New Development in Open-Vessel Digestion, Anal. Chem., 2012, vol. 84, no. 24, pp. 10686–10693.
8. Rimkevich, V.S., Sorokin, A.P., and Girenko, I.V., Fluoride Technique to Process Cyanidte Concentrates with Integrated Recovery of Valuable Components, GIAB, 2014, no. 7, pp. 137–147.
9. Khalil, N.M., Agila, R., Othman, H.A., and Ewais, E.M., Improvement of the Extraction Efficiency of Nanosized Alumina from Libyan Clay, InterCeram, International Ceramic Review, 2009, vol. 58, no. 6, pp. 388–393.
10. Gulyuta, M.A., Andreev, V.A., Buinovsky, A.S., et al., Research of Activation of Persistent Uranium Ores by Ammonium Fluoride Solutions, Izv. TPU, 2014, vol. 324, no. 3, pp. 53–59.
11. Rimkevich, V.S., Sorokin, A.P., Pushkin, A.A., and Girenko, I.V., Integrated Processing Technology for Calcium-Bearing Alumosilicate Raw Material, J. Min. Sci., 2017, vol. 53, no. 4, pp. 762–770.
12. Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Matter): Manual, ed. Akhmetova T. G., Moscow: Vyssh. Shkola, 2002.
13. Melent’ev, G.B. and Delitsyn, L.M., Nepheline as Unique Raw Mineral-and-Chemical Material of the XXI Century: Mineral Resource and Environmental Challenges and Priorities in their Solution, Ekol. Prom. Proizv., 2004, no. 2, pp. 51–68.
14. Cherkasov, G.N., Prusevich, A.M., and Sukharina, A.M., Neboksitovoe alyuminievoe syr’yo Sibiri (Non-bauxite Aluminium-Bearing Material Reserves in Siberia), Moscow: Nedra, 1988.
15. Kratky spravochnik fiziko-khimicheskikh velichin (Concise Critical Tables), ed. Ravdel’ A.A. and Ponomareva A. M., Leningrad: Khimiya, 1983.
16. Lidin, R.A., Andreeva, L.P., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Inorganic Chemistry Reference Book), Moscow: Khimiya, 1987.
17. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya Khimiya (Physical Chemistry), Moscow: Khimiya, 1999.
18. Demyanova, L.P., Rimkevich, V.S., and Buynovskiy, A.S., Elaboration of Nanometric Amorphous Silica from Quartz-Based Minerals Using the Fluorination Method, J. of Fluorine Chemistry, 2011, Vol. 132, no. 12, pp. 1067–1071.
19. D’yachenko, A.N. and Kraidenko, R.I., Fluorine-Ammonium Process to Separate Silicon–Iron–Copper–Nickel Concentrate into Discrete Oxides, Izv. TPU, 2007, vol. 311, no. 3, pp. 38–41.


MINING ECOLOGY AND EXPLOITATION OF THE EARTH’S BOWELS


RECOVERY OF TUNDRA ECOSYSTEM AFTER CLOSURE OF THE VALKUMEI MINE IN CHUKOTKA
G. V. Kalabin, V. I. Gornyi, T. A. Davidan, S. G. Kritsuk, and A. A. Tronin

Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences, Moscow, 111020 Russia
e-mail: kalabin.g@gmail.com
Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg, 197110 Russia
e-mail: v.i.gornyy@mail.ru

Applicability of local and regional scale satellite images in evaluation of vegetation in tundra in the zones of mining in permafrost area is proved. The research results on the environmental impact of the Valkumei Mine, Chukotka Autonomous Region, after its closure are described and analyzed.

Satellite monitoring, tundra vegetation, ecosystem, vegetation index, cryolithic zone, mines

DOI: 10.1134/S1062739118023689 

REFERENCES
1. Kalabin, G.V., Use of Remote Sensing to Assess the Environmental Setting of the Territories–Zones of Mining Complex Enterprises, Mining World Express (MWE), 2012, vol. 1, no. 1, pp. 1–7.
2. Kalabin, G.V., Ecodynamics in Areas of Georesources Development in Russia, Lambert Academic Publishing, 2012.
3. Gosudarstvennaya programma. Sotsial’no-ekonomicheskoe razvitie Arkticheskoi zony Rossiiskoi Federatsii (Socio-Economic Development of the Arctic Zone of the Russian Federation), Government Decree, dated 31.08.2017, no. 1064.
4. Chestnykh, O.V., Lopes de Gerenyu, V.O., The Post-Fire Changes of Carbon Cycle in the Subarctic Tundra in North-East of European Russia, Abstracts of Papers, 2-oi Mezhdunarod. Conf., Emissiya i stok parnikovykh gazov na territorii severnoi Evrazii (2nd Int. Conf., Emission and Sink of Greenhouse Gases on the Northern Eurasia Territory), Pushchino, 2003, pp. 124–125.
5. Chukotka Autonomous District. Available at: https://www.investinregions.ru/en/regions/chukotka/ (Accessed 15 September 2017).
6. Peveksky Mining and Processing Plant. Available at: http://www.mining-enc.ru/p/pevekskij-gorno-obogatitelnyj-kombinat/ (Accessed 15 September 2017)
7. Sevryukov, N.N., Tin, Gornaya entsiklopedia (Mining Encyclopedia), vol. 3, Moscow, 1969.
8. Prirodnye resursy i ecologiya Rossii, Federal’ny atlas (Natural Resources an Ecology of Russia, Federal Atlas), Moscow, 2002.
9. Bartalev, S.A., Egorov, V.A., Zharko, V.O., Lupyan, E.A., Plotnikov, D.E., Khvostikov, S.A., and Shabanov, N.V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Satellite Mapping of Russia’s Vegetation Cover), Moscow: IKI RAN, 2016.
10. Zamolodchikov, D.G., Karelin, D.V., and Ivashchenko, A.I., Postfire Alterations of Carbon Balance in South Tundras, Ekologiya, 1998, no. 4, pp. 271–276.
11. Racine, C.H., Tundra Fire Effects on Soils and Three Plant Communities Along a Hill-Slope Gradient in the Seward Peninsula, Alaska, Arctic., 1981, vol. 34, no. 1, pp. 71–84.


GEOECOLOGICAL ASSESSMENT OF THE MALYI KHINGAN RIDGE AREA USING LAND SURFACE REMOTE SENSING DATA
V. I. Usikov and L. N. Lipina

Institute of Mining, Far East Branch, Russian Academy of Sciences, Khabarovsk, 680000 Russia
e-mail: v-i-usikov@yandex.ru

The spotlight is on the use of Earth remote sensing data in geoecological assessment of the Malyi Khingan Ridge area in the Far East. Based on the analysis of satellite observations over the Sutara gold placer mining range, the time variation of the disturbed land is determined. It is found that natural recovery of bio-geo-cenosis takes an active part in the process. Using the normalized difference vegetation index (NDVI), the behavior and rates of self-healing of the disturbed lands are assessed. Complete recovery of vegetation in gold placer mining areas up to a level comparable with the adjacent territories takes 7 to 10 years.

Earth remote sensing, satellite images, gold placer mining cluster, normalized difference vegetation index, self-healing

DOI: 10.1134/S1062739118023690 

REFERENCES
1. Bolsunovsky, M.A., Perspective Directions of Space Earth Remote Sensing Development, Geomatika, 2009, no. 2, pp. 12–15.
2. Nosenko, Yu.I., Loshkarev, P.A., Joint Spatially Distributed Earth Remote Sensing Information System–problems, solutions, perspectives , P. 1, Geomatika, 2010, no. 3, pp. 35–42.
3. Isaev, A.S., Bartalev, S.A., and Lupyan, E.A., Earth Observations from Satellites as a Unique Instrument to Monitor Russia’s Forests, Herald of the Russian Academy of Sciences, 2014, vol. 84, no. 12, pp. 413–419.
4. Zol’nikov, I.D., Balandin, V.A., and Boguslavsky, A.E., Data Bank and Geodata Geo-Environment of Novosibirsk, Engineering and Geological Problems of Urbanized Territories: Int. Conf. Proc., vol. 2, Ekaterinburg: Akva-Press, 2001.
5. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., Andreeva, N.V., Schastlivtsev, E.L., and Bykova, A.A., Evaluation of Dust Pollution of Air in Kuzbass Coal-Mining Areas in Winter by Data of Remote Earth Sensing, J. Min. Sci., 2014, vol. 50, no. 3, pp. 549–558.
6. Fiziko-geograficheskoe raionirovanie SSSR. Kharakteristika regional’nykh edinits (Physical-Geographical Regionalization of the USSR. Regional Units Characteristics), Gvozdetsky, N.A., Ed., Moscow: Izd. MGU, 1968.
7. Fetisov, D.M., Anthropogenic Changes of Natural Landscapes in the Russian Part of the Lesser Khingan, Vestn. DVO RAN, 2008, no. 3, pp. 51–57.
8. Kapel’kina, L.P., Natural Revegetation and Remediation of Disturbed Lands of the North, Usp. Sovr. Estest., 2012, no. 11 (1), pp. 98–102.
9. Borzuchowski, J., Schulz, K., Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing Under Controlled Glass House Conditions for Spring Barley and Sugar Beet, Remote Sensing, 2010, vol. 2, no. 7, pp. 1702–1721.
10. Chadra, A.M., Gosh, G.S., Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy (Remote Sensing and Geographic Information Systems), Moscow: Tekhnosfera, 2008.
11. Cherepanov, A.S., Vegetation Indices, Geomatika, 2011, no. 2, pp. 98–102.
12. http:/epizodsspace. no-ip.org/bibl/sutyrina/distantsionnoe/sutyrina-distantsionnoe-2013.pdf.
13. Mesyats, S.P., Volkova, E.Yu., Fundamental Regulations for the Strategy of Returning the Damaged Lands from Man-Made Landscapes to Biospheric Fund, GIAB, no. S4–13, pp. 3–11.
14. Ozaryan, Yu. A., Integrated Assessment of Technogenic Wasteland of Komsomolsk Mining District Using Vega Satellite Service, Sovr. Prob. Dist. Zond. Zem. Kosm., vol. 13, no. 1, pp. 70–78.
15. Chibrik, T.S., El’kin, Yu.A., Formirovanie fitotsenozov na narushennykh promyshlennost’yu zemlyakh (Formation of Plant Communities on Disturbed Industry Lands), Sverdlovsk: Izd. Ural. Univer., 1991.


SELECTION OF BINDING AGENTS FOR DUST PREVENTION AT TAILINGS PONDS AT APATITE–NEPHELINE ORE PROCESSING PLANTS
V. A. Masloboev, A. V. Svetlov, O. T. Konina, G. V. Mitrofanova, A. V. Turtanov, and D. V. Makarov

Kola Science Center, Russian Academy of Sciences, Apatity, 184209 Russia
e-mail: masloboev@admksc.apatity.ru
Institute of the Industrial Ecology Problems of the North, Kola Science Center, Russian Academy of Sciences,
Apatity, 184209 Russia
Orika CIS, Kirovsk, 184250, Russia
Mining Institute, Kola Science Center, Russian Academy of Sciences, Apatity, 184209 Russia
Apatit, Kirovsk, 184250 Russia

The methods of deactivation and reclamation of tailings ponds are studied. The engineering-geological investigations of apatite–nepheline ore flotation tailings in the sites applied with chemicals at ANOF2 processing plant of Apatit Company are carried out. The monitoring of the bonding surface generated by dust suppression agents Alcotact DS1, Dustbind and Floset S44 is performed. The physical properties and the aggressive action resistance, as well as the effect of suppression agent feed in recycling water on the apatite–nepheline ore flotation performance are tested on a laboratory scale. The Dustbind is recommended as the optimal suppression.

Apatite–nepheline ore flotation tailings, dust suppression, tailings pond surface bonding, binding agents

DOI: 10.1134/S1062739118023702 

REFERENCES
1. Reports on Condition and Control of the Environment of the Murmansk Region in 1997–2016. Available at: https://gov-murman.ru/region/environmentstate/ (Accessed 10 December 2017).
2. Priimak, T.I., Zosin, A.P., Fedorenko, Yu.V., Koshkina, L.B., and Kalabin, G.V., Ekologicheskie aspekty protsessov geokhimicheskoi transformatsii khvostov obogashcheniya apatito-nefelinovykh rud Khibinskogo mestorozhdeniya (Ecological Aspects of Geochemical Transformation Processes of Apatite–Nepheline Ore Flotation Tailings of the Khibinsk Deposit) Apatity: KNTs RAN, 1998.
3. Masloboev, V.A., Baklanov, A.A, Mazukhina, S.I., Regina, O.Yu., and Amosov, P.V., Numerical Modeling of Dusting Processes in ANOF-2 Tailings Impoundment, Vestn. MGU, 2014, vol. 17, no. 2, pp. 376–384.
4. Masloboev, V.A., Baklanov, A.A, and Amosov, P.V., Results of Evaluation of Tailings Dumps Dust Intensity, Vestn. MGU, 2016, vol. 19, no. 1, pp. 13–19.
5. Amosov, P.V., Baklanov, A.A., and Masloboev, V.A., The Results of the Assessment of the Atmosphere Pollution under the Tailing Storages Dusting (on the Basis of 3D Modeling), Gornyi Zhurnal, 2017, no. 6, pp. 87–94.
6. Mikhailova, T.L., Khokhryakov, A.V., Rational Land Use in Nonferrous Metallurgy, Gornyi Zhurnal, 1993, no. 6, pp. 97–137.
7. Panov, S.N., Butakov, O.N., and Atavina, T.M., Tailings Ponds: Bioligical Immobilization and Accelerated Recultivation, Ekol. Proizv., 2014, no. 11, pp. 58–61.
8. Pereverzev, V.N., Podlesnaya, N.I., Biologicheskaya rekul’tivatsiya promyshlennykh otvalov na Krainem Severe (Biological Reclamation of Industrial Dumps in the Far North), Apatity: KF AN SSSR, 1986.
9. Mesyats, S.P., Volkova, E.Yu., Basic Provisions of the Strategy of Returning Disturbed Land of Technogenic Landscapes of the Biosphere Foundation, GIAB, 2014, no. 12, pp. 3–11.
10. Lychagin, E.V., Sinitsa, I.V., Improvement of the Dust-Forming Surfaces Consolidation Methods, GIAB, 2007, no. 8, pp. 136–140.
11. Bruev, V.P., Mikhailovsky GOK Ramps Up Production, Gornyi Zhurnal, 2004, no. 1, pp. 25–28.
12. Melent’ev, V.A., Kolpashnikov, N.P., and Volnin, B.A., Namyvnye gidrotekhnicheskie sooruzheniya (Upstream Hydraulic Structures), Moscow: Energiya, 1973.
13. Kretinin, A.V., Borisov, V.G., and Zhushman, V.N., Method for Suppressing Dust at the Existing Tailings, Tsvet. Metallurg., 1988, no. 3, pp. 55–57.
14. Nemirovsky, A.V., Development of the Method of the Upstream Wind-Resistant Tailings Dump, Thesis of Cand. Tech. Sci., Moscow, 2016.
15. Malyarchuk, V.F., Teslenko, L.I., Veretennikov, A.I., Bol’shunov, V.G., Boiko, V.V., and Levchuk, N.N., RF patent no. 2029775, Byull. Izobret., 1995, no. 6.
16. Kichigin, E.V., Tikunova, I.V., and Deineka, L.A., RF patent no. 2137923, Byull. Izobret., 1999, no. 26.
17. Perepelitsyn, A.I., Mochalov, V.I., and Shmigirilov, V.I., RF patent no. 2148720, Byull. Izobret., 2000, no. 13.
18. Brauner, E.N., Physical and Chemical Justification of the Efficiency Increase of the Dust-Forming Surfaces Consolidation Methods at Sites objects of the Transbaikal Mining Complex, Dr. Sci. (Eng.) Dissertation, Chita, 2000.
19. Ushakov, V.V., Brauner, E.N., RF patent no. 2151301, Byull. Izobret., 2000, no. 17.
20. Devi, R. M., Madhavan, N., Adhavan, N., Bhattacharyya, A., and Arumugam, N., Patent no. WO2013108057 A1, 2013.
21. Lobanov, F.I., Chukalina, E.M., Kozlov, L.N., Globa, E.Yu., Kaplunov, Yu.V., and Kaplunov, Yu.V., RF patent no. 2513786, Byull. Izobret., 2014, no. 11.
22. Sergeev, S.V., Sinitsa, I.V., and Lychagin, E.V., RF patent no. 2303700, Byull. Izobret., 2007, no. 21.
23. Sinitsa, I.V., Development and Research of Parameters of the Dust-Forming Tailings Dump Surfaces Consolidation Method, Thesis of Cand. Tech. Sci., Tula, 2008.
24. Shuvalov, Yu.V., Pashkevich, M.A., Kovshov, V.P., Smirnov, Yu.D., Malyshkin, M.M., and Shcherbo, A.S., RF patent no. 2407891, Byull. Izobret., 2010, no. 36.
25. Myazin, V.P., Babello, V.A., Ofitserov, V.F., and Khodkevich, D.V., RF patent no. 2175065, Byull. Izobret., 2001, no. 29.
26. Bruev, V.P., Mineev, V.I., Spiridonov, Yu.S., Kichigin, E.V., and Petrichenko, V.P., RF patent no. 2272147, Byull. Izobret., 2006, no. 8.
27. Strizhenok, A.V., Ecological Safety Management of the Upstream Human-Made Massifs of JSC Apatit in the Course of Their Formation, Dr. Tech. Sci., Dissertation, Saint Petersburg, 2015.
28. Lomtadze, V.D., Inzhenernaya geologiya. Ingenernaya petrologiya (Engineering Geology. Engineering Petrology), Leningrad: Nedra, 1984.


MINING THERMOPHYSICS


COMBUSTION OF FINE DISPERSED DUST-GAS-AIR MIXTURES IN UNDERGROUND WORKINGS
S. V. Cherdantsev, Li Hi Un, Yu. M. Filatov, D. V. Botvenko, P. A. Shlapakov, and V. V. Kolykhalov

VostNII Science Center for Safety in the Mining Industry, Kemerovo, 650002 Russia
e-mail: svch01@yandex.ru

Stationary-state combustion of fine dispersed dust–gas–air mixtures in underground workings is considered. Under the assumption that the single source of heat emission is the carbon oxidation reaction, the second-order nonlinear differential equation is obtained for the determination of temperature and the initial conditions are formulated. The analysis of the solution shows that there exist critical values of the dust–gas–air mixture flow velocity, and the excess over these critical values may result in the mixture combustion. The cross-section of mine working is related with the temperature reached in this cross section.

Underground workings, fine dispersed dust–gas–air mixtures, heat conduction equation, combustion zone, convection, Arrhenius equation, kinetic domain, eigen values, eigen functions

DOI: 10.1134/S1062739118023714 

REFERENCES
1. Frank-Kamenetsky, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.
2. Kantorovich, B.V., Osnovy teorii goreniya i gazifikatsii tverdogo topliva (Foundation of the Theory of Solid Fuel Combustion and Gasification), Moscow, 2013.
3. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M, Matematicheskaya teoriya goreniya i vzryva (The Mathematical Theory of Combustion and Explosions), Moscow: Nauka, 1980.
4. Smirnov, N.N., Zverev, I.N., Geterogennoe gorenie (Heterogeneous Combustion), Moscow: MGU, 1992.
5. Spolding, D.B., Gorenie i massoobmen (Russian Translation) (Combustion and Mass Transfer), Moscow: Mashinostroenie, 1985.
6. Ju, Y., Maruta, K., Microscale Combustion: Technology Development and Fundamental Research, Progress in Energy and Combustion Science, 2011, vol. 37, no. 6, pp. 669–715.
7. Bekdemir, C., Somers, B., and de Goey, P., DNS with Detailed and Tabulated Chemistry of Engine Relevant Igniting Systems, Combustion and Flame, 2014, vol. 161, no. 1, pp. 210–221.
8. Sidorov, A.E., Shevchyuk, V.G., and Kondrat’ev, E.N., Conductive-Radiative Model of a Laminar Flame in Dust Suspensions, Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 3, pp. 257–263.
9. Fedorov, A.V., Ignition of Gaseous Suspensions in an Interacting Continuum Regime, Combustion, Explosion, and Shock Waves, 1998, vol. 34, no. 4. pp. 418–425.
10. Krainov, A.Yu., Self-Ignition of a Two-Component Gas Suspension, Combustion, Explosion, and Shock Waves, 1999, vol. 35, no. 5, pp. 468–475.
11. Vasil’ev, A.A., Vasil’ev, V.A., Calculated and Experimental Parameters of Combustion and Detonation of Mixtures Based on Methane and Coal Dust, Vest. Nauch. Tsentr. Bezop. Rab. Ugol. Prom., 2016, no. 2, pp. 8–39.
12. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Tanashev, Yu.Yu., and Bolotov, V.A, Initiation of Underground Fire Sources, J. Min. Sci., 2016, vol. 52, no. 3, pp. 576–592.
13. Oparin, V.N., Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams, J. Min. Sci., 2017, vol. 53, no. 2, pp. 201–215.
14. Chanyshev, A.I., A Method to Determine a Body’s Thermal State, J. Min. Sci., 2012, vol. 48, no. 4, pp. 660–668.
15. Lykov, A.V., Teplomassoobmen (Heat and Mass Transfer), Moscow: Energiya, 1978.
16. Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.
17. Samarsky, A.A., Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.
18. Lindenau, N.I., Maevskaya, V. M. Vakhrusheva, E.S., et al., Katalog ugley SSSR, sklonnykh k samovozgoraniyu (Directory of Coal of the USSR, Prone to Spontaneous Combustion), Moscow: Nedra, 1982.


NEW METHODS AND INSTRUMENTS IN MINING RESEARCH OF OPERATING MODE AND GEOMETRIC PARAMETERS OF COMBINATION UNIT CUTTER IN INITIATING SLOTTING
P. V. Sazhin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia
e-mail: pavel301080@mail.ru

The structure diagram and operation of a combination unit for drilling and initiating slotting are presented. The loads on the cuttier during initiating slotting are calculated, and the rational operating mode of the hybrid unit is determined.

Interval hydraulic fracturing, combination unit, cutter, initiating slot

DOI: 10.1134/S1062739118023726 

REFERENCES
1. Kishin, V.I., Kurlenya, M.V., and Pisarenko, M.V., Improvement of Geotechnologies and Rock Mass Condition Management Based on Hydraulic Fracturing, GIAB, 2013, no. 6, pp. 23–35.
2. Chernov, O.I., Abramova, O.A., Theoretical Study of Tension-Induced Rock Failure Under Various Slit-Loading Schemes in a Mass, J. Min. Sci., 1994, vol. 30, no. 2, pp. 141–147.
3. Klishin, V.I., Kokoulin, D.I., Hydraulic Coal Seam Fracturing Method, RF patent no. 2472941, Byull. Izobret., 2013, no. 2.
4. Lekontsev, Yu.M., Sazhin, P.V., Directional Hydraulic Fracturing in Difficult Caving Roof Control and Coal Degassing, J. Min. Sci., 2014, vol. 50, no. 5, pp. 914–917.
5. Lekontsev, Yu.M., Sazhin, P.V., Salikhov, A.F., and Isambetov, V.F., Expanding the Scope of the Directional Hydraulic Fracturing Method, Ugol’, 2014, no. 4, pp. 18–21.
6. Dubynin, N.G., Volodarskaya, Sh.G., Yanovskaya. N.B., and Yanovsky, B.G., Influence of Blast-Hole Shape on Efficiency of Explosion of the Charges, J. Min. Sci., 1974, vol. 10, no. 6, pp. 747–749.
7. Lekontsev, Yu.M., Patutin, A.V., Sazhin, P.V., and Temiryaeva, O.A., Hybrid Unit for Directional Hydrofracturing, J. Min. Sci., 2016, vol. 52, no. 3, pp. 511–515.
8. Protasov, Yu.I., Razrushenie gornykh porod (Rock Failure), Moscow: MSMU, 2009.
9. Neskromnykh, V.V., Borisov, K.I., Analytical Study of the Process of Cutting and Chipping of Rocks, Izv. TPU, 2013, vol. 323, no. 1, pp. 191–195.
10. Borisov, K.I., Rock Cutters Dynamics in the Course of Rock Breaking with Cutting and Chipping Tools of PDC Type, Izv. TPU, 2010, vol. 317, no. 1, pp. 161–164.
11. Rubtsov, V.L., Borisov, K.I., Experimental Study of Power Characteristics at PDC Rock Cutting and Chipping, Inzh. Neft., 2014, no. 2, pp. 9–11.


NEW METHODS AND INSTRUMENTS IN MINING PARAMETER OPTIMIZATION OF THE RADIOISOTOPE GAMMA ALBEDO METHOD FOR CONTROLLING QUALITY OF VARIABLE COMPOSITION COALS
Yu. N. Pak and D. Yu. Pak

Karaganda State Technical University, Ministry of Education and Science,
Republic of Kazakhstan, Karaganda, 100027 Republic of Kazakhstan
e-mail: pakgos@mail.ru

The variant of the gamma albedo method is proposed for the radioisotope express control of coal ash content, which ensures the satisfactory accuracy under conditions of variable elemental composition of coal. It is shown that the integral intensity of the secondary (scattered and fluorescent) radiation weakened by filter of certain thickness is a univocal index of coal ash content. The analytical model for the optimization of the secondary radiation filtration parameters is developed. The utility value of the weakening filter is determined as function of ash content and composition of coal.

Ash content control, gamma albedo method, integral intensity of secondary radiation, filter thickness optimization

DOI: 10.1134/S1062739118023738 

REFERENCES
1. Klempner, K.S., Vasil’ev, A.G., Fizicheskie metody kontrolya zol’nosti uglya (Physical Control Methods of Coal Ash Content), Moscow: Nedra, 1978.
2. Starchik, L.P., Pak, Yu.N., Yaderno-fizicheskie metody kontrolya kachestva tverdogo topliva (Nuclear-Physical Analysis Methods of Solid Fuel Quality Control), Moscow: Nedra, 1985.
3. Storm, E., Israel, Kh., Secheniya vzaimodeistviya gamma izlucheniya (Gamma-Radiation Interaction Cross Sections), Moscow: Atomizdat, 1973.
4. Pak, Yu.N., Pak, D.Yu., High-Speed Radioisotopic Quality Monitoring of Coal of Variable Composition, Coke and Chemistry, 2011, vol. 54, no. 4, pp. 108–113.
5. Nalimov, V.V., Primenenie matematicheskoi statistiki pri analize veshchestva (Mathematical Statistics in Substances Analysis), Moscow: Fizmatgiz, 1960.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå