Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2016 ãîä » JMS, Vol. 52, No. 6, 2016

JMS, Vol. 52, No. 6, 2016


GEOMECHANICS


HYDRAULIC FRACTURING FOR IN SITU STRESS MEASUREMENT
S. V. Serdyukov, M. V. Kurlenya, and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

It is experimentally found that shut-in pressure conforms with the fracture initiation pressure if the fracture surfaces are uniformly loaded by fluid. The article shows that equaling minimal stress and shut-in pressure in local fractures results in overestimates. The error depends on the length of a hydrofracturing facility and is high under low compression in rocks (5–10 MPa). The authors put forward decisions aimed at improvement of accuracy and enhancement of information content of hydraulic fracturing in the in situ stress measurement.

Rock mass, stress state, borehole investigations, hydraulic fracturing, fracture, stress measurement, shut-in pressure, hydraulic fracturing facility, measurement error

DOI: 10.1134/S1062739116061563 

REFERENCES
1. Hubbert, M.K. and Willis, D.G., Mechanism of Hydraulic Fracturing, Trans. AIME, 1957, vol. 210, pp. 153–168.
2. Haimson, B.C. and Fairhurst, C., Initiation and Extension of Hydraulic Fracture in Rocks, Soc. Petr. Engrs. J., 1967, pp. 310–318.
3. Bredehoeft, J.D., Wolf, R.G., Keys, W.S., and Shutter, E., Hydraulic Fracturing to Determine the Regional In Situ Stress Field in the Piceance Basin, Colorado, J. Geological Society of American Bulletin, 1976, vol. 87, no. 2, pp. 250–258.
4. Haimson, B.C., Near Surface and Deep Hydrofracturing Stress Measurements in the Waterloo Quartzite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1980, vol. 17, no. 2, pp. 81–88.
5. Cornet, F.H. and Valette, B., In-Situ Stress Determination from Hydraulic Injection Test Data, J. Geophys. Res., 1984, vol. 89, pp. 11527–11537.
6. Ito, T., Sato, A., and Hayashi, K., Two Methods for Hydraulic Fracturing Stress Measurements Needless the Ambiguous Reopening Pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1997, vol. 34, no. 3, paper no. 143.
7. Ito, T., Igarashi, A., Ito, H., and Sano, O., Problem for the Maximum Stress Estimation in Hydrofracturing Method and Its Potential Solution, Proc. US Rock Mech. Symp., 2005, ARMA/USRMS 05–862 (CD-ROM).
8. Zoback, M.D., Rummel, F., Jung, R., and Raleigh, C.B., Laboratory Hydraulic Fracturing Experiments in Intact and Pre-Fractured Rock, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1977, vol. 14, pp. 49–58.
9. Ratigan, J.L., The Use of Fracture Reopening Pressure in Hydraulic Fracturing Stress Measurements, Rock Mech. Rock Engng., 1992, vol. 25, pp. 225–236.
10. Cheung, L.S. and Haimson, B.C., Laboratory Study of Hydraulic Fracturing Pressure Data–How Valid is Their Conventional Interpretation, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1989, vol. 26, pp. 595–604.
11. Rutqvist, J., Chin-Fu, T., and Stephansson, O., Uncertainty in the Maximum Principal Stress Estimated from Hydraulic Fracturing Measurements due to the Presence of the Induced Fracture, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2000, vol. 37, pp. 107–120.
12. Aggson, J.R. and Kim, K., Analysis of Hydraulic Fracturing Pressure Histories: A Comparison of Five Methods Used to Identify Shut-In Pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1987, vol. 24, no. 1, pp. 75–80.
13. Rubtsova, E.V. and Skulkin, A.A., Methods of Indirect Shut-In Pressure Determination in Hydraulic Fracturing Stress Measurement, Proc. Sci. Conf. InterExpo GEO-Sibir-2016, vol. 3, Novosibirsk: SGUGiT, 2016.
14. Mini?frac (DFIT) Analysis for unconventional reservoirs using F. A. S.T. Welltest. Available at: http://www.petroleumengineers.ru/sites/default/files/minifrac_analysis_for_unconventional_reservoirs_using_fast_welltest_16-aug-2013.pdf.
15. Kehle, O.K., The Determination of Fracture Stresses through Analysis of Hydraulic Well Fracturing, J. Geophys. Res., 1964, vol. 69, pp. 259–273.
16. Cornet, F.H., Interpretation of Hydraulic Injection Test for In-Situ Stress Determination, Proc. Int. Workshop on Hydraulic Fracturing Stress Measurements, Zoback and Haimson (Eds.), Monterey, National Academy Press, Washington D. C., 1983, pp. 149–158.
17. Sung, O. Choi., Interpretation of Shut-In Pressure in Hydrofracturing Pressure–Time Records Using Numerical Modeling, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2012, vol. 50, pp. 29–37.
18. Perkins, T.K. and Kern, L.R., Widths of Hydraulic Fractures, J. Petroleum Technology, 1961, vol. 13, no. 9, pp. 937–949.
19. Atroshenko, A.S., Krivosheev, S.I., and Petrov, A.Yu., Fracture Growth under Dynamic Destruction of Polymetylmetacrylate, Zh. Tekh. Fiz., 2002, vol. 72, issue 2, pp. 52–58.
20. Mastrojannis, E.N., Keer, L.M., and Mura, T., Growth of Planar Cracks Induced by Hydraulic Fracturing, Int. J. Num. Meth. Engng., 1980, vol. 15, no. 1, pp. 41–54.
21. Serdyukov, S.V., Kurlenya, M.V., Patutin, A.V., Rybalkin, L.A., and Shilova, T.V., Experimental Test of Directional Hydraulic Fracturing Technique, J. Min. Sci., 2016, vol. 52, no. 4, pp. 615–622.
22. Kurlenya, M.V., Zvorygin, L.V., and Serdyukov, S.V., Control of Longitudinal Hydraulic Fracturing of Wells, J. Min. Sci., 1999, vol. 35, no. 5, pp. 445–454.
23. Shilova, T.V. and Serdyukov, S.V., Protection of Operating Degassing Holes from Air Inflow from Underground Excavations, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1049–1055.
24. Rukovodstvo po otsenke sostoyaniya i svoistv ugol’nogo massiva skvazhinnymi gidravlicheskimi datchikami (Guidelines on Estimation of State and Properties of Coal Using Downhole Hydraulic Sensors), Novosibirsk: IGD SO AN SSSR, 1978.


EXPERIMENTAL RESEARCH INTO THERMOMECHANICAL EFFECTS AT LINEAR AND NONLINEAR DEFORMATION STAGES IN ROCK SALT SPECIMENS UNDER CYCLIC LOADING
V. I. Sheinin, D. I. Blokhin, I. B. Maksimovich, and E. P. Sarana

Gersevanov Research Institute of Bases and Underground Structures,
2-ya Institutskaya ul. 6, Moscow, 109428 Russia
e-mail: geo-mech@yandex.ru
National University of Science and Technology—MISIS,
Leningradskii pr. 4, Moscow, 119049 Russia
e-mail: dblokhin@yandex.ru

The authors discuss capabilities of taking information on mechanical processes in geomaterials under post-limiting elastic deformation based on variation in IR radiation intensity. Experimental results on recording of heat emission from specimens of rock salt exposed to cyclic loading by uniaxial compression are reported. It is concluded that thermomechanical effects are useful in recording of onset of failure activation in geomaterials under cyclic loading.

Geomaterials, rock salt, cyclic loading, axial stress, axial strain, infrared radiation, geomechanical monitoring

DOI: 10.1134/S1062739116061575 

REFERENCES
1. Goodman, R., Introduction to Rock Mechanics, 2nd Edition, Wiley, 1989.
2. Voznesensky, E.A., Dinamicheskaya neustoichivost’ gruntov (Dynamic Instability of Soil), Moscow: Editorial URSS, 1999.
3. Bogdanov, Yu.M., Zhuravleva, T.Yu., Sil’verstov, L.K., and Tavostin, M.N., Investigation of Geomechanical Processes during Gas Injection and Extraction in Underground Gas Storage in Rock Salt, Gaz. Promysh., 2010, no. 6, pp. 72–75.
4. Mokhnachev, M.P., Ustalost’ gornykh porod (Fatigue of Rocks), Moscow: Nauka, 1979.
5. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
6. Boldyrev, G.G., Metody opredeleniya mekhanicheskikh svoistv gruntov. Sostoyanie voprosa (Methods to Determine Mechanical Properties of Soil. State-of the-Art), Penza: PGUAS, 2008.
7. Badge, M.N. and Petros, V., Fatigue and Dynamic Energy Behavior of Rock Subjected to Cyclical Loading, Int. J. Rock Mech. & Min. Sci., 2009, vol. 46, pp. 200–209.
8. Fuenkajorn, K. and Phueakphum, D., Effects of Cyclic Loading on Mechanical Properties of Maha Sarakham Salt, Engineering Geology, 2010, vol. 112, no. 1, pp. 43–52.
9. Guo, Y.T., Zhao, K.L., Sun, G.H., Yang, C.H., Hong-Ling, M.A., and Zhang, G.M., Experimental Study of Fatigue Deformation and Damage Characteristics of Salt Rock under Cyclic Loading, Rock and Soil Mechanics, 2011, vol. 32, no. 5, pp. 1353–1359.
10. Liu, J., Xie, H., Hou, Z., et al., Damage Evolution of Rock Salt under Cyclic Loading in Uniaxial Tests, Acta Geotechnica, 2014, vol. 9, no. 1, pp. 153–160.
11. Momeni, A., Karakus, M., Khanlari, G.R., and Heidari, M., Effects of Cyclic Loading on the Mechanical Properties of a Granite, Int. J. Rock Mech. & Min. Sci., 2015, vol. 77, pp. 89–96.
12. Zhigalkin, V.M., Usol’tseva, O.M., Semenov, V.N., Tsoi, P.A., Asanov, V.A., Baryakh, A.A., Pan’kov, I.L., and Toksarov, V.N., Deformation of Quasi-Plastic Salt Rocks under Different Conditions of Loading. Report I: Deformation of Salt Rocks under Uniaxial Compression, J. Min. Sci., 2005, vol. 41, no. 6, pp. 507–515.
13. Wittke, W., Rock Mechanics, Springer-Verlag Berlin Heidelberg, 1990.
14. Zakharov, V.N., Kubrin, S.S., Feit, G.N., and Blokhin, D.I., Determination of Rock Mass Stresses in Coal Mining under Conditions of Geo- and Gas-Dynamic Hazard, Ugol’, 2012, no. 10, pp. 34–36.
15. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyania massivov gornykh porod (Downhole Geophysical Methods to Estimate and Control Stress–Strain State of Rock Masses), Novosibirsk: Nauka, 1999.
16. Lavrov, A., Fracture-Induced Phenomena and Memory Effects in Rocks: A Review, Strain, 2005, vol. 41, no. 4, pp. 135–149.
17. Lavrov, A.V. and Shkuratnik, V.L., Acoustic Emission during Deformation and Failure of Rocks (Survey), Akust. Zh., 2005, vol. 51, no. 7, pp. 6–18.
18. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritel’nye probory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Measurement Equipment for Simulation and Full-Scale Studies into Nonlinear Deformation and Wave Processes in Block Rock Masses), Novosibirsk: SO RAN, 2007.
19. Sheinin, V.I., Levin, B.V., Motovilov, V.A., Morozov, A.A., and Favorov, A.V., Determination of Periodic Changes in the Stress State of Grounds from Variation in Infrared Radiation Flux, J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 6, pp. 1131–1135.
20. Sheinin, V.I., Levin, B.V., Motovilov, V.A., Morozov, A.A., and Favorov, A.V., Diagnostics of Fast Period Changes in Stresses in Rocks by Infrared Radiometry Data, Fiz. Zemli, 2001, no. 4, pp. 24–30.
21. Sheinin, V.I., Sidorchuk, V.F., and Blokhin, D.I., Experimental Infrared Radometry Measurement of Normal Tangential Stresses on Bottom Hole in Model Soil Mass, Osn., Fund., Mekh. Grunt., 2004, no. 6, pp. 8–11.
22. Wu, L., Liu, S., Wu, Y., and Wang, C., Precursors for Fracturing and Failure, Part II: IRR T-Curve Abnormalities, Int. J. Rock Mech. & Min. Sci., 2006, vol. 43, no. 3, pp. 483–493.
23. Sheinin, V.I. and Blokhin, D.I., Features of Thermomechanical Effects in Rock Salt Samples under Uniaxial Compression, J. Min. Sci. 2012, vol. 38, no. 1, pp. 39–45.
24. Oparin, V.N., Kiryaeva, t.A., Gavrilov, V.Yu., et al., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
25. Nadai, A., Plasticity, McGraw Hill, 1930.
26. Kriksunov, L.Z., Spravochnik po osnovam infrakrasnoi tekhniki (Reference Book on Basics of Infrared Mechanics), Moscow: Sov. Radio, 1978.
27. Il’in, A.S., Thermoelectic Receivers of Optic Radiation of Film and Wire Thermocouples for Precision Measurements, Metrologiya, 2005, no. 11, pp. 19–30.
28. Moskvitin, V.V., Plastichnost’ pri peremennykh nagruzheniyakh (Plasticity under Varied Loading), Moscow: MGU, 1965.
29. Muneer, M., Prakash, R.V., and Balasubramaniam, K., Tensile Deformation Studies in Glass/ Epoxy Composite Specimen Using Infrared Thermography, Int. J. Aerospace Innovations, 2010, vol. 2, no. 1, pp. 13–22.


INFLUENCE OF INJECTION OF THERMOGEL ON OIL DISPLACEMENT BY WATERFLOODING
N. K. Korsakova, V. I. Pen’kovsky, L. K. Altunina and V. A. Kuvshinov

Lavrentiev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 15, Novosibirsk, 630090 Russia
e-mail: kors@hydro.nsc.ru
Institute of Chemistry of Oil, Siberian Branch, Russian Academy of Sciences,
Akademicheskii pr. 4, Tomsk, 634021 Russia
e-mail: alk@ipc.tsc.ru

The article describes physical simulation and mathematical modeling of influence exerted by injection of thermogel on configuration of water flow in water flood recovery. Recovery of oil, especially viscous oil, with such method features unstable displacement front and formation of water fingers that eventually turn into a net of water channels directed toward the lowest flow coefficient between wells. Most of oil remains immobile and is in dynamic equilibrium with the displacement water flow. The authors show that injection of thermogel in a reservoir between wells expands displacement front at the late stage of mining, which allows enhancement of oil recovery factor.

Enhanced oil recovery, viscous oil, capillary attraction shutting-off, gels, waterflooding

DOI: 10.1134/S1062739116061587 

REFERENCES
1. Chuoke, R.L., van Meures, P., and van der Poel, C., The Instability of Slow, Immiscible, Viscous Liquid–Liquid Displacement in Permeable Media, Petrol. Trans., AIME, 1959, vol. 216, pp. 188–194.
2. Antontsev, S.N., Domansky, A.V., Pen’kovsky, V.I., Fil’tratsiya v priskvazhinnoi zone plasta i problemy intensifikatsii pritoka (Flow in the Well Bore Zone and Intensification of Inflow), Novosibirsk: IGiL SO RAN, 1989.
3. Pen’kovsky, V.I., Influence of Capillary Forces on Oil Recovery with Waterflooding, Matematicheskie modeli fil’tratsii i ikh prilozheniya: sb. nauch. tr. (Mathematical Models of Flow and Applications: Collection of Scientific Papers), Novosibisk: IGiL SO RAN, 1999.
4. Danaev, N.T., Korsakova, N.K., and Pen’kovsky, V.I., Massoperenos v priskvazhinnoi zone i elektromagnitnyi karotazh plastov (Mass Transfer in the Well Bore Zone and Electromagnetic Logging), Almaty: Kazak Universiteti, 2005.
5. Pen’kovsky, V.I., Korsakova, N.K., Altunina, L.K., and Kuvshinov, V.A., Development of Oil Inclusions under the Action of Chemical Reagents on the Reservoir, Appl. Mech. Tech. Phys., 2013, vol. 54, no. 3, pp. 415–422.
6. Pen’kovsky, V.I., Korsakova, N.K., Simonov, B.F., and Savchenko, A.V., Residual Oil Pockets and Their Stimulation in Productive Formations, J. Min. Sci., 2012, vol. 48, no. 5, pp. 803–811.
7. Evstigneev, S.E., Simonov, B.F., Savchenko, A.V., and Pen’kovsky, B.I., Computational Solution to the Problem on Unstable Flow of Immiscible Liquids in Fractured Block Structure, GEO-Sibir 2013 Proc., Novosibirsk, pp. 98–103.
8. Danaev, N.Y., Korsakova, N.K., and Pen’kovsky, V.I., Mnogofaznaya fil’tratsiya i elektromagnitnoe zondirovanie skvazhin (Multi-Phase Flow and Electromagnetic Logging), Almaty: Evero, 2014.
9. Altunina, L.K. and Kuvshinov, V.A., Physicochemical Methods of Oil Recovery Enhancement (Review), Usp. Khim., 2007, vol. 76, no. 10, pp. 1034–1052.
10. Altunina, L.K., Kuvshinov, V.A., and Kuvshinov, I.V., Thermotropic Gels, Aerosols and Compositions of Surfactants to Enhance Oil Recovery, Neft’, Gaz, Novatsii, 2015, no. 6, pp. 27–31.
11. Pen’kovsky, V.I., Korsakova, N.K., Altunina, L.K. and Kuvshinov, V.A., Prospects of Recoverability of Bypassed Oil, Proc. 6th All-Russian Conf. Oil and Gas Recovery, Processing and Transport, Tomsk: IOA SO RAN, 2013, pp. 29–34.
12. Verigin, N.N., Injection of Binding Solutions in Rocks to Improve Strength and Water-Impermeability of Waterworks Bases, Izv. AN SSSR. OTN, 1952, no. 5, pp. 674–687.
13. Nazarova, L.A., Nazarov, L.A., Dzhamanbaev, M.D., and Chynybaev, M.K., Evolution of Thermohydrodynamic Fields at Tailings Dam at Kumtor Mine (Kyrgyz Republic), J. Min. Sci., 2015, vol. 51, no. 1, pp. 17–22.
14. Nazarova, L.A., Nazarov, L.A., Epov, M.I., and El’tsov, I.N., Evolution of Geomechanical and Electro-Hydrodynamic Fields in Deep Well Drilling in Rocks, J. Min. Sci., 2013, vol. 49, no. 5, pp. 704–714.
15. Sun, N.Z. and Yeh, W.W.-G., A Proposed Upstream Weight Numerical Method for Simulating Pollutant Transport in Groundwater, Water Resour. Res., 1983, vol. 19, no. 6, pp. 1489–1500.


LASER STRAINMETER IN INTEGRATED GEODYNAMIC MONITORING WITHIN STRELTSOV ORE FIELD
I. Yu. Rasskazov, G. I. Dolgikh, V. A. Petrov, V. A. Lugovoi, S. G. Dolgikhb, B. G. Saksina, and D. I. Tsoia

Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: adm@igd.khv.ru
Ilichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences,
ul. Baltiiskaya 43, Vladivostok, 690043 Russia
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry,
Russian Academy of Sciences,
per. Staromonetnyi 35, Moscow, 119017 Russia

The authors describe operation of a laser strainmeter within the integrated geodynamic monitoring system in Streltsov Ore Field. Capabilities and design features of the strainmeter are discussed. The article demonstrates feasibility of highly accurate measurements of deformation field parameters in an operating mine. Specificity of natural oscillations of the Earth is defined, and deformation of rock mass depending on energy of a destruction source is evaluated.

Induced seismicity, geomechanical monitoring, laser strainmeter, stress state, strain field

DOI: 10.1134/S1062739116061599 

REFERENCES
1. Ishchukova, L.P., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits in Streltsov Ore Filed in Transbaikalia), Irkutsk: Glazovskaya, 2007.
2. Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., and Prosekin, B.A., Geomechanics and Seismicity of the Antei Deposit Rock Mass, J. Min. Sci., 2012, vol. 48, no. 3, pp. 405–412.
3. Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., Shevchenk, B.F., Usikov, V.I., and Gil’manova, G.Z., Current Stress State of the Upper Crust of the Amur Lithospheric Plate, Fiz. Zemli, 2014, no. 3, pp. 104–113.
4. Bortnikov, N.S., Petrov, V.A., Veselovsky, A.V., Kuz’mina, D.A., and Leksin, A.B., GeoInformatin System (GIS)in the Transbaikalia Sector of the Mongolia–Okhotsk Mobile Belt, Rudy Metally, 2012, no. 3, pp. 16–27.
5. Petrov, V.A., Leksin, A.B., Sankov, V.A., Pogorelov ,V.V., and Rasskazov, I.Yu. GIS-Based 3D Geodynamic Modeling of Transbaikalia, Russia, Proc. Int. Conf. GeoFrankfurt 2014 Earth System Dynamics, Goethe University Frankfurt am Main, SDGG Heft 85, Abstract Volume, 2014.
6. Rasskazov, I.Yu., Gladyr’, A.V., Anikin, P.A., Svyatetsky, V.S., and Prosekin, B.A., Development and Upgrading of a Control System for Geodynamic Events of Rock Pressure in Underground Mines of Priargunsky Mining and Chemical Works, Gorny Zh., 2013, no. 8(2), pp. 9–14.
7. Rasskazov, I.Yu., Lugovoy, V.À., Kalinov, G.À., et al., Development of Measuring Complexes for the Assessment and Control of Burst–Hazard during Mining, Proc. 8th Int. Symp. Rockbursts and Seismicity in Mines, Obninsk–Perm, 2013.
8. Gladyr’, A.V., Miroshnikov, V.I., Bolotin, Yu.I., et al., New-Generation Microseismic Monitoring Equipment, GIAB, 2012, no. 5, pp. 174–180.
9. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Parts I–IV, J. Min. Sci., 2012, vol. 48, no. 2; 2013, vol. 49, no. 2; 2014, vol. 50, no. 4; 2016, vol. 52, no. 1.
10. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems of Seismic Deformation Monitoring of Induced Earthquakes and Rockbursts), Novosibirsk: SO RAN, 2009–2010.
11. Berger, R.J. and Lovberg, R.H., Earth Strain Measurements wits Laser Interferometer, Science, 1970, vol. 170, pp. 296–303.
12. Levin, J. and Hall, J.L., Design and Operation of a Methane Absorption Stabilized Laser Strainmeter, J. Geophys. Res., 1972, vol. 77, no. 14, pp. 2595–2610.
13. Aleshin, L.E., Dubrov, M.N., and Yakovlev, A.P., Laser Interferometer to Measure Strains in the Earth Crust, Dokl. Akad. Nauk SSSR, 1980, vol. 256, no. 6, pp. 1343–1346.
14. Korchagin, F.G., Krinitsyn, Yu.M., Khalyapin, Yu.N., et al., Studies of the Free Vibrations of the Earth Using Optical Deformograph, Tikhookean. Geolog., 1986, no. 5, pp. 110–112.
15. Takemoto Shuzo, Momose Hideo, Araya Akito, et al., A 100 m Laser Strainmeter System in the Kamioka Mine, Japan, for Precise Observations of Tidal Strains, Journal of Geodynamics, 2006, vol. 41, pp. 23–29.
16. Bagaev, S.N., Oparin, V.N., Orlov, V.A., Panov, S.V., and Parushkin, M.D., Pendulum Waves and Their Singling Out in the Laser Deformograph Records of the Large Earthquakes, J. Min. Sci., 2010, vol. 46, no. 3, pp. 217–224.
17. Dolgikh, G.I., Kopvillem, U.Kh., and Pavlov, A.N., Observations over the Periods of Free Vibrations of the Earth Using a Strainmeter, Fiz. Zemli, 1983, no. 2, pp. 15–20.
18. Dolgikh, G.I., Valentin, D.I., Dolgikh, S.G., et al., Vertically and Horizontally Oriented Laser Strainmeters in Geophysical Surveys of Transition Zones, Fiz. Zemli, 2002, no. 8, pp. 69–73.
19. Dolgikh, G.I. and Privalov, V.E., Lazernye sistemy (Laser Systems), Vladivostok: Dal’nauka, 2009.
20. Dolgikh, G.I., Rasskazov, I.Yu., Lugovoi, V.A., Anikin, P.A., Tsoi, D.I., Shvets, V.A., and Yakovenko, S.V., Krasnokamensk Laser Strainmeter, Pribor. Tekhn. Eksperiment., 2013, no. 5, pp. 138–139.
21. Dziewonski, A.M. and Gilbert, F., Observations of Normal Modes from 84 Recordings of Tte Alaskan Earthquake of 1964 March 28, Geophys. J. Roy. Astr. Soc., 1972, vol. 27, pp. 393–446.


ROCK FAILURE


WAVE PREFRACTURING OF SOLID ROCKS UNDER BLASTING
A. N. Kochanov and V. N. Odintsev

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: Odin-VN@yandex.ru

Considering features of wave prefracturing (microfailure) of rocks under blasting, the authors put forward a new investigation approach with the use of relations of dynamic elastic stress distribution in rocks and theory of cracks. The obtained relation to estimate prefracturing zone size in relatively solid rocks under confined explosion involves pressure of gases in explosion chamber, rock pressure, crack resistance of rocks, characteristic dimension of natural jointing (presence of defects) and deformation characteristics of rocks. It is shown that dimension of prefracturing zone in rocks depends both on natural and production factors and can differ by a few times.

Rock, confined explosion, elastic wave, tension, microcracks, wave prefracturing, detonation velocity

DOI: 10.1134/S1062739116061613 

REFERENCES
1. Trubetskoy, K.N. (Ed.), Osvoenie i sokhranenie nedr Zemli (Development and Preservation of the Earth’s Interior), Moscow: AGN, 1997.
2. Viktorov, S.D., Galchenko, Yu.P., Zakalinsky V. M., and Rubtsov, S.K., Razrushenie gornykh porod sblizhennymi zaryadami (Rock Destruction by Explosion of Contiguous Charges), Moscow: Nauchtekhlitizdat, 2006.
3. Viktorov, S.D., Eremenko, A.A., and Mashukov, I.V., Tekhnologiya krupnomasshtabnoi vzryvnoi otboiki na udaroopasnykh rudnykh mestorozhdeniyakh Sibiri (Large-Scale Blasting Technology for Rockburst-Hazardous Ore Deposits in Siberia), Novosibirsk: Nauka, 2005.
4. Ganopol’sky, M.I., Baron, V.L., Belin, V.A., Pupkov, V.V., and Sivenkov, V.I., Metody vedeniya vzryvnykh rabot. Spetsial’nye vzryvnye raboty (Blasting Methods. Special Explosive Works), Moscow: MGGU, 2007.
5. Persson, P.-A., Holmberg, R., and Lee, J., Rock Blasting and Explosives Engineering, Boca Raton, Fla.: CRC Press, 1994.
6. Ghose, A.K. and Joshi, A., Blasting in Mining—New Trends, CRC Press, 2012.
7. Adushkin, V.V. and Spivak, A.A., Geomekhanika krupnomasshtabnykh vzryvov (Geomechanics of Large-Scale Explosions), Moscow: Nedra, 1993.
8. Sher, E.N. and Aleksandrova, N.I., Dynamics of Breaking Zone Development during Explosion of a Concentrated Charge in a Brittle Medium, J. Min. Sci., 2000, vol. 36, no. 5, pp. 462–475.
9. Sher, E.N. and Aleksandrova, N.I., Dynamics of Microfailures in Elastic Zone during Explosion of Spherical Charge in Rock, J. Min. Sci., 2001, vol. 37, no. 5, pp. 475–481.
10. Kryukov, G.M., Fizika i momenty raznykh vidov razrusheniya gornoi porody pri vzryve v nei udlinennogo zaryada PVV (Physics and Moments of Different Failure Mechanisms in Rocks under Blasting of an Extended Charge of Plastic-Based Explosive), Moscow: MGGU, 2009.
11. Dugartsyrenov, A.V., Stress State Dynamics in Rocks under Confined Explosion of Concentrated Charge, GIAB, 2007, no. 4, pp. 166–179.
12. Meyers, M., Dynamic Failure: Mechanical and Microstructural Aspects, Journal de Physique IV Colloque, 1994, 04(C8), pp. 597–621.
13. Brian, N.C., Gao, H., Gross, D., and Rittel, D., Review—Modern Topics and Challenges in Dynamic Fracture, J. Mech. and Physics Solids, 2005, vol. 53, pp. 565–596.
14. Dehghan Banadaki, M.M., Stress-Wave Induced Fracture in Rock due to Explosive Action, Ph.D. Thesis, University of Toronto, 2010.
15. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., Nikolaevsky, V.N., Romashin, A.N., and Tsvetkov, V.M., Mekhanicheskii effekt podzemnogo vzryva (Mechanical Effect of Underground Explosion), Moscow: Nedra, 1971.
16. Mosinets, V.N., Drobyashchee i seismicheskoe deistvie vzryva v gornykh porodakh (Crushing and Seismic Effect of an Explosion in Rocks), Moscow: Nedra, 1976.
17. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Dynamics of Deformation in Block Rock Mass), Moscow: Akademkniga, 2003.
18. Aleksandrova, N.I. and Sher, E.N., Modeling of Wave Propagation in Block Media, J. Min. Sci., 2004, vol. 40, no. 6, pp. 579–587.
19. Shemyakin, E.I., Kochanov, A.N., and Den’gina, N.I., Stress Wave Parameters and Rock Pre-failure under Blasting, Razrushenie vzryvom i neobratimye deformatsii gornykh porod (Destruction by Blasting and Irreversible Deformation in Rocks), Moscow: IGD Skochinskogo, 1997, pp. 10–17.
20. Aleksandrov, V.E., Kochanov, A.N., and Levin, B.V., Interrelationships of the Strength and Acoustic Properties of Rocks in the Zone of the Prefracturing Action of an Explosion, J. Min. Sci., 1987, vol. 23, no. 4, pp. 319–321.
21. Kochanov, A.N., Analysis of Rock Prefracturing Parameters as the Basic for the improvement of Blasting Technologies, GIAB, 1996, no. 5, pp. 49–52.
22. Kochanov, A.N., Analysis of structure of micro- and macro-cracks in rocks under dynamic fracture, J. Fundament. Appl. Min. Sci., 2015, vol. 2, pp. 317–321.
23. Silina, O.V., Influence of Prefracturing Zone in Wet Rocks on the Drilling and Blasting Parameters, Thesis Cand. Tech. Sci., Moscow: IGD Skochinskogo, 1994.
24. Leksovsky, A.M., Borovikov, V.A., Bozorov, N.S., Abdumanonov, A.A., Sinani, A.B., and Piletski, S.A., Damage Zone in High-Modulus Materials under Loading by Blasting in Terms of Granite, Pis’ma ZhTF, 2012, issue 16, pp. 90–94.
25. Menzhulin, M.G. and Yurovskikh, A.V., Influence of Natural and Induced Jointing on Rock Prefailure and Destruction by Blasting, GIAB, 2004, no. 1, pp. 90–94.
26. Sadovsky, M.A., Adushkin, V.V., and Spivak, A.A., Dimension of Zones of Irreversible Deformation in Block Medium under Blasting, Fiz. Zemli, 1989, no. 9, pp. 9–15.
27. Sharp, J.A., The Program of Elastic Waves by Explosive Pressure, Geophysics, 1942, vol. 7, pp. 144–154.
28. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow: Nauka, 1974.
29. Odintsev, V.N., Otryvnoe razrushenie massiva skal’nykh porod (Tensile Fracture of Hard Rock Mass), Moscow: IPKON RAS, 1996.
30. Odintsev, V.N., Modeling Softening of Geomaterials under Pulsed Wave Effect, Vzryv. Delo, 2011, no. 106–62, pp. 34–45.
31. Murakami, Y., Stress Intensity Factors Handbook, Oxford: Pergamon Press, 1987.
32. Li, J., Huang, Q., and Ren, X.D., Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials, Materials, 2013, vol. 6, pp. 3241–3253.
33. Smirnov, V.I., Instability of Dynamic Viscosity of Failure, ZhTF, 2006, vol. 76, issue 11, pp. 134–136.
34. Petrov, Yu.V. and Sitnikova, E.V., Prediction of Dynamic Crack Resistance in Structural Materials in Terms of Aircraft Alloy under Impact Action, ZhTF, 2004, vol. 74, issue 1, pp. 58–61.
35. Baklashov, I.V., Deformirovanie i razrushenie porodnykh massivov (Deformation and Failure of Rock Masses), Moscow: Nedra, 1988.
36. Roberts, D.K. and Wells, F.F., The Velocity of Brittle Fracture, Engineering, 1954, vol. 178.


INTENSIFICATION OF NONLINEARITY BY DISPERSED EVENTS IN MEDIA WITH STRUCTURE AND GENERATION OF VARIOUS DOMINANT FREQUENCIES IN P- AND S-WAVES
B. P. Sibiryakov and E. B. Sibiryakov

Trofimuk Institute of Oil and Gas Geology and Geophysics,
Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
e-mail: sibiryakovbp@ipgg.sbras.ru
Novosibirsk State University,
ul. Pirogova 1, Novosibirsk, 630090 Russia
e-mail: sibiryakoveb@ipgg.sbras.ru

A model of a continuum with a structure described by infinite order equations of motion is proposed. In case that a wave is very long as compared with the size of the structure, equations are reduced to the fourth-order equations. A closed equation of motion, including nonlinear, dispersed and wave members, is derived. It is shown that solutions in the form of soliton waves exist only in media where wave velocity grows with pressure. In the media, where soliton waves do not exist, quasi-stationary solutions with multiple frequencies prevail. It is found that the nonlinear effect of multiple frequencies is unexpectedly high even for small deformation as dispersion violently intensifies nonlinear events. Moreover, in the domain of small deformation, there exist solutions for longitudinal and transversal waves with the same length and different frequencies. The solutions for the same length waves with different frequencies most often occur in seismology and seismic explorations.

Continuity operator, microstructure, soliton waves, different frequencies of P- and S-waves

DOI: 10.1134/S1062739116061625 

REFERENCES
1. Sadovsky, M.A., Natural Lumpiness of Rocks, DAN SSSR, 2979, vol. 247, no. 4, pp. 829–832.
2. Slepyan, L.I. and Yakovlev, Yu.S., Integral’nye preobrazovaniya v nestatsionarnykh
zadachakh mekhaniki (Integral Transformations in Nonstationary Mechanical Problems), Leningrad: Sudostroenie, 1980.
3. Oparin, V.N., Tanaino, A.S., and Yushkin, V.F., Discrete Properties of Entities in a Geomedium and Their Canonical Representation, J. Min. Sci., 2007, vol. 43, no. 3, pp. 221–336.
4. Aleksandrova, N.I., Ayzenberg-Stepanenko, M.V., and Sher, E.N., Modeling the Elastic Wave Propagation in a Block Medium under the Impulse Loading, J. Min. Sci., 2009, vol. 45, no. 5, p. 427.
5. Suvorov, V.D., Mishenkina, Z.M., Petrick, G.P., Sheludko, I.F., Seleznev, V.S., and Solovyov, V.M., Structure of the Crust in the Baikal Rift Zone and Adjacent Areas from Deep Seismic Sounding Data, Tectonophysics, 2002, vol. 351, pp. 61–74.
6. Puzirev, N.N., Mandelbaum, M.M., Krylov, S.V., Mishenkin, B.P., Mishenkina, Z.R., Petrick, G.V., and Seleznev, V., New Data from Explosion Seismology in the Baikalian Rift Zone, Tectonophysics, 1979, vol. 56, nos. 1–2.
7. Dehandschutter, B., Vysotskyc, E., Delvaux, D., Klerkx, J., Buslov, M.M., Seleznev, V.S., and de Batiste, M., Structural Evolution of the Teletsk Graben (Russian Altai), Tectonophysics, 2002, vol. 351, pp. 139–167.
8. Gorel’chik, V.I. and Storcheus, A.V., Deep-Seated Long-Period Earthquakes under the Klyuchevskoy Volcano, Geodinamika i vulkanizm Kurilo-Kamchatskoi ostrovoduzhnoi sistemy (Geodynamics and Volcanism in the Kuril-Kamchatka Island Arc), Petropavlovsk–Kamchatski, 2001.
9. Kanai, K., Osida, K., and Iosizava, K., Relations of Period and Amplitudes of Seismic Waves, Slabye zemletryaseniya (Weak Earthquakes), Moscow: IL, 1961, pp. 231–242.
10. Krylov, S.V., Mishen’kin, B.P., Mishen’kina, Z.R. et al., Detal’nye seismicheskie issledovaniya litosfery na P- i S-volnakh (Detailed Seismic Surveys of Lithosphere Using P- and S-Waves), Novosibirsk: Nauka, 1993.
11. Nikolaev, A.V., Problems of Nonlinear Seismology, Phys. Earth Planet. Inter., 1988, vol. 50, no. 1, pp. 1–7.
12. Nikolaev, A.V., Scattering and Attenuation of Seismic Waves in the Presence of Nonlinearity, Pure and Applied Geophys., 1989, vol. 131, no. 4, pp 687–702.
13. Aleshin, A.S., Gushchin, V.V., Nikolaev, A.V., et al., Experimental Studies of Nonlinear Interactions between Surface Seismic Waves, DAN SSSR, 1981, vol. 260, no. 3, pp. 574–575.
14. Khavroshkin, O.B., Seismicheskaya nelineinost’ (Seismic Nonlinearity), Moscow: OIFZ RAN, 2000.
15. Khavroshkin, O.B. and Tsyplakov, V.V., et al., Equipment and Methods for the Experimental Nonlinear Seismology, Seism. Pribor., 2003, issue 39, pp. 43–71.
16. Sibiryakov, B.P., Generation of Nonlinear Oscillations at Weak Perturbations and Generalization of Cracks at Fracture, Physical Mesomechanics, 2007, no. 3, pp. 203–206.
17. Sibiriakov, B.P., Supersonic and Intersonic Cracking in Rock-Like Material under Remote Stresses, Theoretical and Applied Fracture Mechanics, 2002, no. 4, pp. 255–265.
18. Sibiryakov, B.P. and Prilous, B.I., The Unusual Small Wave Velocities in Structural Bodies and Instability of Pore or Cracked Media by Small Vibration, WSEAS Transactions on Applied and Theoretical Mechanics, 2007, no. 7, pp. 139–144.
19. Sibiryakov, B.P., Leite, L. W. B., and Vieira, W. W. S., Model of the Structured Continuum, and the Relation between Specific Surface Area, Porosity and Permeability, Revista Brasileira de Geof?sica, 2013, vol. 31(4), pp. 559–568.
20. Sibiryakov, B.P., Prilous, B.I., and Kopeykin, A.V., The Nature of Instabilities in Blocked Media and Seismological Law of Gutenberg–Richter, WSEAS Transactions on Applied and Theoretical Mechanics, 2011, vol. 6, issue 2, pp. 69–79.
21. Sibiryakov, B.P., Deviations from the Gutenberg–Richter Law on Account of a Random Distribution of Block Sizes, AIP Conf. Proc. 1683, 020214 (2015); http://dx.doi.org/10.1063/1.4932904.
22. Sibiryakov, B.P., The Appearance of Plasticity on the Blocks Surfaces in Geological Media, AIP Conf. Proc. 1623, 579–583 (2014); http://dx.doi.org/10.1063/1.4899011.
23. Sibiryakov, B.P., Prilous, B.I., and Kopeykin, A.V., The Nature of Instability of Blocked Media and Distribution Law of Unstable States, Physical Mesomechanics, 2013, vol. 16, no. 2, pp. 141–151.
24. Sibiryakov, B.P., The Nature of Instability of Blocky Media and Some Scenarios of Disaster Evolution, Tekhnol. Seismorazvedk., 2011, no. 3, pp. 114–117.
25. Gradshtein, I.S. and Ryzhik, I.M., Tablitsa integralov, sum, ryadov i proizvedenii (Table of Integrals, Sums, Series and Products), Moscow: Fizmatgiz, 1963.
26. Maslov, V.P., Operatornye metody (Operator Methods), 1973.
27. Riznichenko, Yu.V., Problemy seismologii (Problems of Seismology), Moscow: Nauka, 1985.
28. Egorov, G.V. and Mashinsky, E.I., Biharmonic P- and S-Waves in an Artificial Porous Medium under Axial Loading, Tekhnol. Seismorazvedk., 2011, no. 1, pp. 72–77.


SCIENCE OF MINING MACHINES


QUANTITATIVE ESTIMATE OF ROTARY–PERCUSSION DRILLING EFFICIENCY IN ROCKS
V. N. Oparin, V. V. Timonin, and V. N. Karpov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.ru

The factors that have significant influence on efficiency of rotary–percussion rock drilling with downhole machines are discussed. The results obtained in physical simulation of dynamic driving of rock-breaking indenters in rocks are reported. The results are analyzed from the standpoint of the phenomenon of alternating response of rocks to dynamic impacts.

Quantitative index of efficiency, rock destruction, downhole air drill hammer, drilling rig, rotary–percussion hole drilling, pendulum waves, dimensionless energy criterion, structure, stress state

DOI: 10.1134/S1062739116061637 

REFERENCES
1. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in the Stressed Geomedia. Part IV, J. Min. Sci., 2016, vol. 52, no. 1, pp. 1–35.
2. Oparin, V.N. and Smolyanitsky, B.N., Promote Efficiency of Drilling in Tunneling and Drilling Rock, Journal of Lioning Technical University (National Science), 2009, vol. 28, no. 3, pp. 445–449.
3. Smolyanitsky, B.N., Repin, A.A., and Danilov, B.B., Enhancing Efficiency and Durability of Pulse-Generating Machines for Long-Hole Drilling in Rocks, Integratsionnye proekty SO RAN (SB RAS Integration Projects), Novosibirsk, 2013, issue 43.
4. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in the Stressed Geomedia. Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–642.
5. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., and Krivetsky, A.V., Mechanical–Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
6. Oparin, V.N., Yushkin, V.F., Porokhovsky, N.N., Grishin, A.N., Kulinich, N.A., Rublev, D.E., and Yushkin, A.V., Effect of Large-Scale Blasting on Spectrum of Seismic Waves in a Stone Quarry, J. Min. Sci., 2014, vol. 50, no. 5, pp. 865–877.
7. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Presentation Scale for Hierarchies in Science of Rocks), Novosibirsk: Nauka, 2011.
8. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-defromirovannogo sostoyaniya massivov gornykh porod (Borehole Geophysical Methods to Detect and Control Stresses and Strains in Rock Masses), Novosibirsk: Nauka, 1999.
9. Oparin, V.N., Energy Criterion of Bulk Rock Failure, Proc. Miner’s Week–2009 Workshop, Moscow: MGGU, 2009.
10. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no. 1, pp. 1–11.
11. Timonin, V.V., Justification of Rock-Breaking Tool and Hydraulic Percussion Machine Designs for Fair and High Quality Rock Drilling, Synopsis Candidate of Engineering Sciences Thesis, Novosibirsk: IGD SO RAN, 2009.
12. Karpov, V.N. and Timonin, V.V., Assessment Procedure of Downhole Impact Machine Efficiency for Field Percussive–Rotary Drilling Rigs, Problems and prospects for Integrated Subsoil Management and Preservation: II Academician Trubetskoy School Head-Notes, Moscow: IPKON RAN, 2016.
13. Timonin, V.V., Rock Failure Processes under Dynamic Indentation of a Group of Indenters from the Viewpoint of the Nonlinear Geomechanics, Geodynamics and Stress State of the Earth’s Interior: Int. Conf. Proc., Novosibirsk: IGD SO RAN, 2008.
14. Timonin, V.V., Energy Content of Percussive Machine Drilling, Problems of the Mechanics of Modern Machines: The 4th Int. Conf. Proc., vol. II, Ulan-Ude, 2009.
15. Tanaino, A.S. and Lipin, A.A., State and Prospects of the Percussive–Rotary Drilling in Quarries, J. Min. Sci., 2004, vol. 40, no. 2, pp. 188–198.
16. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh, A.I., Timonin, V.V., and Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50, no. 5, pp. 943–952.
17. Lipin, A.A., Timonin, V.V., and Tanaino, A.S., Modern Downhole Percussive Drilling Machines, Gornaya tekhnika: catalog-spravochnik (Mining Equipment: Reference Book–Catalog), Saint-Petersburg, 2006, pp. 116–123.
18. Timonin, V.V., Downhole Air Drills for Underground Mines, Gorn. Oborud. Elektromekh. , 2015, no. 2(111), pp. 13–17.
19. Eremenko, V.A., Karpov, V.N., Timonin, V.V., Barnov, N.G., and Shakhtorin, I.O., Basic Trends in Development of Drilling Equipment for Ore Mining with Block Caving Method, J. Min. Sci.., 2015, vol., no. 6, pp. 1113–1125.
20. Vozdvizhensky, B.I., Mel’nichuk, I.P., and Peshalov, Yu.A., Fiziko-mekhanicheskie svoistva gornykh porod i vliyanie ikh na effektivnost’ bureniya (Physical Properties of Rocks and Influence on Drilling Efficiency), Moscow: Nedra, 1973.
21. Golubintsev, O.N., Mekhanicheskie i abrazivnye svoistva gornykh porod i ikh burimost’ (Mechanical Properties, Abrasiveness and Drillability of Rocks), Moscow: Nedra, 1968.
22. Shadrina, A.V., Theoretical and Experimental Research of Wave Processes in a Pipe String in Small-Diameter Drilling from Underground Excavations, Synopsis of Candidate of Engineering Sciences Thesis, Tomsk: NI TPU, 2014.
23. Timonin, V.V. and Kondratenko, A.S., Downhole High-Pressure Air Hammer for Open Pit Mining, InterExpo Geo-Sibir, 2015, vol. 2, no. 3, pp. 251–255.
24. Shakhtorin, I.O. and Timonin, V.V., Finishing of Percussive Machines Using Modern Software, Modern Issues and Modeling of Ground Conditions in Mining: Proc. Int. Conf., Kemerovo, 2015.
25. Repin, A.A., Alekseev, S.E., Timonin, V.V., and Karpov, V.N., Analysis of the Compressed Air Distribution in Down-the-Hole Hammer Drills, Miner’s Week–2015: The 23rd Int. Conf. Proc., 2015, pp. 475–482.
26. Petreev, A.M. and Primychkin, A.Yu., Influence of Air Distribution System on Energy Efficiency of Pneumatic Percussion Unit of Circular Impact Machine, J. Min. Sci., 2015, vol. 51, no. 3, pp. 562–567.
27. Petreev, A.M. and Primychkin, A.Yu., Ring-Type Elastic Valve Operation in Air Hammer Drive, J. Min. Sci., 2016, vol. 52, no. 1, pp. 135–145.
28. Denisova, E.V. and Konurin, A.I., Geomechanical Model of the Pneumatic Borer and Soil Interaction, J. Min. Sci., 2013, vol. 49, no. 5, pp. 724–730.
29. Timonin, V.V. and Belousov, A.V., RF patent no. 156214, MPK E21V4/14 (2006.01), Byull. Izobret., 2015, no. 31.
30. Belousov, A.V. and Timonin, V.V., RF patent no. 2535314, MPK E21V4/14 (2006.01), Byull. Izobret., 2014, no. 34.
31. Belousov, A.V. and Timonin, V.V., RF patent no. 2540368, MPK E21V4/14 (2006.01), Byull. Izobret., 2015, no. 4.
32. Belousov, A.V. and Timonin, V.V., RF patent no. 2549649, MPK E21V4/14 (2006.01), Byull. Izobret., 2015, no. 12.
33. Artsimovich, G.V., Vliyanie zaboinykh uslovii i rezhima bureniya na effektivnost’ prokhodki glubokikh skvazhin (Effect of Bottomhole Conditions and Drilling Mode on Long-Hole Drilling Efficiency), Novosibirsk: Nauka, 1974.
34. Artsimovich, G.V., Issledovanie i razrabotka porodorazrushayushchego instrumenta dlya bureniya (Research and Engineering of Rock-Breaking Tool for Drilling), Novosibirsk: Nauka, 1978.
35. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Relations of Linear Block Dimensions of Rock to Crack Opening in the Structural Hierarchy of Masses, J. Min. Sci., 1993, vol. 29, no. 3, pp. 197–203.
36. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanics and Process Framework Offered by Vibro-Wave Technologies for Enhanced Oil Recovery), Novosibirsk: Nauka, 2010.
37. Oparin, V.N. and Simonov, B.F., Nonlinear Deformation-Wave Processes in the Vibrational Geotechnologies, J. Min. Sci., 2010, vol. 46, no. 2, pp. 95–112.
38. Artsimovich, G.V. and Epshtein, E.F., Udarno-vrashchatel’noe burenie skvazhin gidroudarnikami (Percussive–Rotary Drilling by Hydraulic Drill Hammers), Moscow: Gosgortekhizdat, 1963.
39. Alimov, O.D., Analysis of Percussive–Rotary Drilling, Izv. TPI, 1959, vol. 106.
40. Rebrik, B.M., Burenie skvazhin pri inzhenerno-geologicheskikh izyskaniyakh (Hole Drilling in Geological Engineering Survey), Moscow: Nedra, 1997.
41. Kryukov, G.M. and Kutuzov, B.M., Theoretical Studies into Dynamic Drill–Rock Interaction, Rock Failure in Drilling: All-Union Sci. Conf., Ufa, 1993.
42. Maslennikov, I.K. and Matveev, G.I., Instrument dlya bureniya skvazhin: sprav. posob. (Hole Drilling Tool: Reference Book), Moscow: Nedra, 1981.
43. Sadovsky, M.A., Kedrov, O.K., and Pasechnik, I.N., Seismic Energy and Source Volume of Crustal Earthquakes and Underground Explosions, Dokl. Akad. Nauk, 1985, vol. 283, no. 5, pp. 1153–1156.
44. Burenie shpurov i skvazhin: po materialam Tret’ego Vsesoyuz. Soveshch. bureniyu shpurov i skvazhin (Hole Drilling: Proceedings of the 3rd All-Union Conference on Drilling), Frunze: Ilim, 19687.
45. Pavlova, N.N., Shreiner, L.A., and Portnova, A.G., Experimental Research of Mechanic Properties of Rocks under Mechanical Indentation, Voprosy deformatsii i razrusheniya gornykh porod pri burenii (Issues of Rock Deformation and Failure during Drilling), Moscow, 1961, pp. 4–34.
46. Sulakshin, S.S., Burenie geologorazvedochnykh skvazhin: sprav. posob. (Geological Exploration Hole Drilling: Reference Book), Moscow: Nedra, 1991.
47. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., Some Features of Rock Response to Near-Range Blasting, Dokl. Akad. Nauk, 1987, vol. 293, no. 1, pp. 67–70.
48. Kurlenya, M.V. and Oparin, V.M., Sign-Variable Reaction of Rocks to Dynamic Impacts, J. Min. Sci., 1990, vol. 26m no. 4, pp. 291–300.
49. Kurlenya, M.V., Adushkin, V.V., Garnov, V.V., Oparin, V.N., Revuzhenko, A.F., and Spivak, A.A., Alternating Response of Rocks to Dynamic Impacts, Dokl. Akad. Nauk, 1992, vol. 323, no. 2, pp. 263–265.
50. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.N., Initiation of Elastic Wave Packets under Pulsed Perturbation of Block Structure Media. Pendulum Waves , Dokl. Akad. Nauk, 1993, vol. 333, no. 4, pp. 3–13.


ENHANCEMENT OF LONG HOLE DRILLING EFFICIENCY WITH DRILLING UNITS WITH REPLACEABLE CORE TUBES
A. L. Neverov, A. V. Minakov, V. A. Zhigarev, and D. D. Karataev

Siberian Federal University,
pr. Svobodnyi 79, Krasnoyarsk, 660041 Russia
e-mail: neveroff_man@mail.ru
Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 1, Novosibirsk, 630090 Russia
Norilskgeologiya,
P. O. Box 889, Norilsk, 663330 Russia
e-mail: dd.karataev@norislkgeology.ru

The article presents a procedure to calculate fluid pressure losses in hole drilling with units equipped with replaceable core tubes and using non-Newtonian mud fluids. It is found that main hydraulic loss takes place when mud fluid flows in clearing between a drill string and drill hole walls. Numerical modeling has shown that it is possible to reduce hydraulic pressure loss by 76.5–89.0% by increasing drill string diameter by 2 mm. Based on the analytical research results, diamond drill bits and underreamers with the outer diameters of 78.0 and 78.4 mm, respectively, are manufactured for drilling operations in Talnakh ore field.

Mathematical model, non-Newtonian fluid, fluid pressure loss, nonstandard diamond drill bit

DOI: 10.1134/S1062739116061649 

REFERENCES
1. Budyukov, Yu.E., Vlasyuk, V.I., and Spirin, V.I., Almaznyi porodorazrushayushchii instrument (Diamond Rock-Breaking Tool), Tula: IPP Grif i K, 2005.
2. Budyukov, Yu.E., Sozdanie i proizvodstvo spetsial’nogo almaznogo burovogo instrumenta: obzor (Design and Manufacture of a Special Diamond Drilling Tool: Review), Moscow: MGP Geoinformmark, 1993.
3. Grigor’ev, V.V., Burenie so s’emnymi kernopriemnikami (Drilling with Replaceable Core Tubes), Moscow: Nedra, 1986.
4. Isaev, M.L. and Onishchenko, V.P., Burenie skvazhin so s’emnymi kernopriemnikami (Hole Drilling with Replaceable Core Tubes), Leningrad: Nedra, 1975.
5. Afanas’ev, I.S., Gorbushin, A.P., and Lebedev, V.I., Opyt skorostnogo geologorazvedochnogo bureniya (Experience of Rapid Exploration Drilling), Leningrad: Nedra, 1986.
6. Kravtsov, B.F., Issledovanie, razrabotka i vnedrenie tekhnologii almaznogo bureniya skvazhin na tverdye poleznye iskopaemye (Research, Development and Introduction of Diamond Drilling technology for Hard Minerals), Moscow: VPO Soyuzgeotekhnika, 1984.
7. Kudryashov, B.B. and Yakovlev, A.M., Burenie skvazhin v oslozhnennykh usloviyakh (Hole Drilling in Complicated Conditions), Moscow: Nedra, 1987.
8. Novikov, V.S., Ustoichivost’ glinistykh porod pri burenii skvazhin (Clayey Rock Stability under Hole Drilling), Moscow: Nedra, 2000.
9. Solov’ev, N.V., Promyvka skvazhin s poverkhnostno-aktivnymi i polimernymi dobavkami (Flushing-Out of Wells with Surface-Active and Polymeric Additives), Moscow: MGRI, 1983.
10. Neskoromnykh V. V., Neverov, A.L., Rozhkov, V.P., Karataev, D.D., and Neverov, A.A., Analysis of Ground Conditions for Drilling at the Talnakh Ore Cluster, Izv. TPU, 2015, vol. 326, no. 1, pp. 100–111.
11. Neverov, A.L., Rozhkov, V.P., Karataev, D.D., and Neverov, A.A., Analysis of Influence of Salt Solutions on Hydration of Clayey Minerals during Hole Drilling in Terms of the Talnakh Ore Cluster, Izv. TPU, 2015, vo. 326, no. 2, pp. 103–117.
12. Neverov, A.L., Rozhkov, V.P., Karataev, D.D., Matveev, A.V., and Yur’ev, P.O., Analysis of Influence of Finely Dispersed Slurry on Properties of Drill Fluids during Hole Drilling with Replaceable Core Tubes at the Talnakh Ore Cluster, Izv. TPU, 2015, vol. 326, no. 8, pp. 110–119.
13. Neverov, A.L., Rozhkov, V.P., Samorodsky, P.N., Karataev, D.D., and Neverov, A.A., Research and Development of Mud Fluids for Drilling with KSSK Systems at the Talnakh Ore Cluster, Izv. SO RAN, Series: Geosciences. Geology, Prospecting and Exploration of Ore Deposits, 2014, no. 3(46), pp. 61–73.
14. Neverov, A.L., Rozhkov, V.P., Batalina, L.S., and Mineev, A.V., Influence of Simple Salts on Rheological properties of Polymeric Solutions for Drilling with SSK Systems in Clayey Formations, Izv. TPU, 2013, vol. 323, no. 1, pp. 196–200.
15. Forshkov, L.K. and Mendebaev, T.N., Razvedochnoe burenie s gidroizvlecheniem kernoprimenika (Exploration Drilling with the Hydraulic Removal of Core Tube), Saint-Petersburg: Nedra, 1994.
16. Gorshkov, L.K. and Osetsky, A.I., Development of Principles of Design and Operation of a New Diamond Rock-Breaking Tool), Zap. Gorn. Inst., 2012, vol. 197, pp. 40–46.
17. Belov, I.A. and Isaev, S.A., Modelirovanie turbulentnykh techenii: ucheb. posob. (Modeling Turbulent Flows: Educational Aid), Saint-Petersburg: BGTU, 2001.
18. Ferziger, J.H., Computational Methods for Fluid Dynamics, Berlin: Springer Verlag, 2002.
19. Batchelor, J.K., An Introduction to Fluid Dynamics, Cambridge University Press, 1967.
20. Launder, B.E., Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 1972.
21. Gavrilov, A.A., Minakov, A.V., Dekterev, A.A., and Rudyak, V.A., Modeling Algorithm of Stable Laminar Flows of Non-Newtonian Fluids in Annulus with Eccentricity, Vychislit. Tekhnol., 2012, vol. 17, no. 1, pp. 44–56.
22. Gavrilov, A.A., Dekterev, A.A., Minakov, A.V., and Rudyak, V.A., A Numerical Algorithm for Modeling Laminar Flows in an Annular Channel with Eccentricity, Journal of Applied and Industrial Mathematics, 2011, vol. 5, no. 4, pp. 559–568.


SMALL-SIZE DOWNHOLE AIR DRILL HAMMERS OF INCREASED CAPACITY
A. A. Repin, V. V. Timonin, S. E. Alekseev, D. I. Kokoulin, and A. I. Popelyukh

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: repin@misd.ru
Novosibirsk State Technical University,
pr. K. Marksa 20, Novosibirsk, 630092 Russia

The authors review key approaches to designing small-size air drill hammers. The approach to increasing impact capacity of air drill hammers by means of buildup of blow frequency is substantiated. The experimentally obtained and compared characteristics of air drill hammers equipped with the heads made of steel and titanium prove feasibility of increasing impact capacity by means of using low density materials. The technology of thermal treatment of a titanium-alloy hammer head is described, and its laboratory testing results are reported.

Drilling, air drill hammer, capacity, effective area, thermal treatment, titanium alloys, cementation

DOI: 10.1134/S1062739116061650 

REFERENCES
1. Repin, A.A. and Alekseev, S.E., Air-Percussion Reamer: Practical Experience and Future Prospects, Proc. 21st Word Mining Congress & Expo 2008, Poland, Krakow-Katowice-Sosnowiec, 2008, vol. 29.
2. Eremenko, V.A., Karpov, V.N., Timonin, V.V., Barnov, N.G., and Shakhtorin, I.O., Basic Trends in Development of Drilling Equipment for Ore Mining with Block Caving Method, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1113–1125.
3. Petreev, A.M. and Primychkin, A.Yu., Influence of Air Distribution System on Energy Efficiency of Pneumatic Percussion Unit of Circular Impact Machine, J. Min. Sci., 2015, vol. 51, no. 3, pp. 562–567.
4. Alekseev, S.E., Timonin, V.V., Kokoulin, D.I., Shakhtorin, I.O., and Kubanychbek, B., Development of Small-Size Downhole Air Hammer for Investigation Hole Drilling, J. Fundament. Appl. Min. Sci., 2015, vol. 2, pp. 187–193.
5. Timonin, V.V., Justification of Rock-Breaking Tool and Hydraulic Impact Machine Designs for Medium- and Hard Rock Drilling, Synopsis Cand. Tech. Sci. Thesis, Novosibirsk, 2009.
6. Karpov, V.N. and Timonin, V.V., Estimation Procedure of Downhole Percussive Machine Efficiency in Full-Scale Percussion–Rotary Drilling, Proc. 2nd Int. Academician Trubetskoy’s School Integrated Subsoil Development and Preservation: Problems and Prospects, Moscow: IPKON RAN, 2016, pp. 191–195.
7. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh, A.I., Timonin, V.V., and Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50, no. 5, pp. 929–937.
8. Timonin, V.V., Downhole Air Drill Hammers for Underground Mining, Gorn. Oborud. Elektromekh., 2015, no. 2(111), pp. 13–17.
9. Ivanov, K.I., Glazunov, V.N., and Nadion, M.F., Sovremennye metody bureniya krepkikh porod (Modern Methods of Hard Rock Drilling), Moscow: Gos. Nauch.-Tekh. Izd. Lit. Gorn. Delu, 1963.
10. Lipin, A.A., Timonin, V.V., and Tanaino, A.S., Modern Downhole Percussive Drilling Machines, Katalog-spravochnik Gornaya Tekhnika (Mining Equipment: Catalog–Reference), Saint-Petersburg, 2006, pp. 116–123.
11. Denisova, E.V. and Konurin, A.I., Geomechanical Model of the Pneumatic Borer and Soil Interaction, J. Min. Sci., 2013, vol. 49, no. 5, pp. 724–730.
12. Shadrina, A.V. and Saruev, L.A., Analysis and Scientific Generalization of Test Date on Small-Diameter Percussion–Rotary Drilling in Underground Excavations, Izv. TPU, 2015, vol. 326, no. 8, pp. 120–136.
13. Sudnishnikov, B.V., Esin, N.N., and Tupitsyn, K.K., Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deistviya (Analysis and Design of Pneumatic Impacting Machines), Novosibirsk: Nauka, 1985.
14. Alekseev, S.E., RF patent no. 2090730, Byull. Izobret., 1997, no. 26.
15. Repin, A.A., Alekseev, S.E., and Pyatnin, G.A., RF patent no. 2343266, Byull. Izobret., 2009, no. 1.
16. Repin, A.A., Alekseev, S.E., and Karpov, V.N., RF Useful model no. 121854, Byull. Izobret., 2012, no. 31.
17. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva. Spravochnik (Titanium Alloys. Composition, Structure, Properties. Reference Book), Moscow: VILS-MATI, 2009.
18. Repin, A.A., Alekseev, S.E., Timonin, V.V., and Karpov, V.N., Analysis of the Compressed Air Distribution in Down-the-Hole Percussion Machine, Proc. Int. Symp. Miner’s Week–2015, 2015, pp. 475–482.
19. Esin, N.N., Metodika issledovaniya i dovodki pnevmaticheskikh molotkov (Procedure to Test and Debug Air Drill Hammers), N. A. Chinakal (Ed.), Novosibirsk, 1965.
20. Shakhtorin, I.O. and Timonin, V.V., Debugging Percussive Machines Using Modern Software, Electronic Proc. All-Russian Sci. Current Challenges in Mining and Ground Condition Modeling Methods IN Partnership with Foreign Scientists, Kemerovo, 2015.


IDENTIFICATION OF LOAD TO DOG HEADING SUPPORT DURING. A. ROCKBURST
A. Nierobisz

Central Mining Institute, pl. Gwarkow 1, 40–166 Katowice, Poland
e-mail: anierobisz@gig.eu

This paper presents the methods and test results of the dynamic resistance of chock and rockbolt support used in Poland. By the dynamic resistance of the support is meant the ability to absorb and suppress the fast changing with time load with the value frequently exceeding the working support capacity of the supports. This feature is required when using the support in excavations endangered by rock mass tremors, especially such tremors, which can result in rockbursts. Based on the carried out studies and analyses, numerical values of loads are given that cause the slide of a friction prop, bending the support sections, loss of stability of dog heading support and load-carrying ability of bolts.

Mining industry, heading support, rockbolt support, rockburst, test results

DOI: 10.1134/S1062739116061662 

REFERENCES
1. Bilinski, A., The Maintenance Rules of Working in the Longwalls Endangered with Roof Rockbursts, Archiwum Gornictwa, 1983, vol. 28, zeszyt 2.
2. Chudek, M., Duzy, S., Kleta, H., Kleczek, Z., Stoinski, K., and Zorychta, A., Zasady doboru i projektowana obudowy wyrobisk korytarzowych i ich polaczen w zakladach gorniczych wydobywajacych wegiel kamienny (Rules of Selection and Designing of Dog Heading Supports and Their Connectors in Mining Plants Extracting Hard Coal), Wydawnictwo Politechnika Slaska, 2000.
3. Debkowski, R., Madziarz, M., Sawicki, W., and Osadczuk, T., Testing of Changes in the Load to Expansion Bolts as a Result of Seismic Tremor Activity, Prace Naukowe Instytutu Geotechniki i Hydrotechniki Politechniki Wroclawskiej, 2007, no. 76.
4. Rulka, K., Uproszczone zasady doboru obudowy korytarzowych wyrobisk przygotowawczych (Simplified Selection Rules of Preparatory Dog Heading Supports), Zaklad Technologii Eksploatacji i Obudow Gorniczych GIG, 2000.
5. Kidybinski, A., Basis for Selection of Dog Heading Support for Areas Endangered with Tremors and Rockbursts, Bezpieczenstwo Pracy w Gornictwie, 1988, no. 1.
6. Kidybinski, A., System analizy komputerowej stanu zagrozenia tapaniami w chodnikach weglowych oraz projektowania optymalnych srodkow zabezpieczenia (The Computer Analysis System of Rockburst Threat in Coal Dog Headings and Designing Optimal Security Measures), Glowny Instytut Gornictwa, Seria dodatkowa, 1990.
7. Skrzynski K. Nosnosc dynamiczna stojakow ciernych (Dynamic Load Capacity of Friction Props) Monografia GIG, Badania nad dynamika obciazen obudowy wyrobisk gorniczych, 1999.
8. PN-G-15533, Gornicza obudowa indywidualna. Stojaki cierne. Wymagania i badania (Mining Individual Support. Friction Props. Requirements and Tests), 1997.
9 Skrzynski, K., Analiza odpornosci prostych odcinkow ksztaltownikow V na obciazenia dynamiczne udarem masy, na podstawie wynikow laboratoryjnych badan wytrzymalosciowych (Analysis of Resistance of Straight Segments of V Sections to Dynamic Loads with Impact Weight, Based on the Results of Laboratory Strength Tests), Prace Naukowe GIG, Seria Konferencje, 2000.
10. PN-G-15000/05, Odrzwia lukowe otwarte. Badania stanowiskowe (Open Arch Support. Stand Tests), 1992.
11. Kowalski, E., Wplyw parametrow technicznych odrzwi lukowej obudowy chodnikowej na zdolnosc przejmowania obciazen dynamicznych (The Influence of the Technical Parameters of the Arch Dog Heading Support on the Ability of Withstanding the Dynamic Load), Praca Doktorska, 1997.
12. Butra, J., Mrozek, K., and Osadczuk, T., The Current State of Rockburst Hazards in the Mines of KGHM Polska Miedz S. A., Prace Naukowe Instytutu Geotechniki i Hydrotechniki Politechniki Wroclawskiej, 1983, no. 76.
13. Szczerbinski, J. and Mirek, A., Prawne uregulowania prowadzenia robot gorniczych w warunkach zagrozenia tapaniami (Legal Regulation of Conducting Mining Works in Rock Burst Hazards Conditions), Materialy Miedzynarodowego Sympozjum Naukowo-Technicznego Tapania, Wydawnictwo GIG, 2002.
14. Grzebyk, W., Kosior, A., and Pytel, W., Ocena wplywu wstrzasow sejsmicznych na statecznosc wyrobisk gorniczych na podstawie rzeczywistych wartosci predkosci drgan osrodka. (Assessment of the Seismic Tremor Impact on the Stability of Underground Workings Based on the Actual Values of Medium Vibrations Velocity), Materialy 23 Zimowej Szkoly Mechaniki Gorotworu, 2000.
15. Kidybinski, A., Criteria for Damage or Destruction of Dog Headings and Chamber Workings due to Rockbursts, Bezpieczenstwo Pracy i Ochrona Srodowiska w Gornictwie, 1999, no. 5.
16. Prace Naukowe GIG, Seria Konferencje No 1. Obudowa kotwiowa w warunkach wstrzasow i tapan (Rockbolt Support in Tremors and Rockursts Conditions), 1995.
17. Nierobisz, A., (Underground Tests of the Bumps Influence on the Roof Bolts Behavior in the Hard Coal Mines, Cuprum, 2003, no. 3.
18. Kidybinski, A., Nierobisz, A., and Masny, W., Impact of Close Tremor on Damages in Dog Heading, Bezpieczenstwo Pracy i Ochrona Srodowiska w Gornictwie, 2005, no. 8.
19. Nierobisz, A., The Research Results of Simulated Rock Mass Tremors Impact on the Stability of Dog Heading, Bezpieczenstwo Pracy i Ochrona Srodowiska w Gornictwie, 2005, no. 9.
20. Pytlik, A., Mining String Bolts of High Dynamic Resistance, Maszyny Gornicze, 2005, no. 3.
21. Pytlik, A., Determination and Impact Assessment of Mining Bolts on the Basis of Stand Impact Weight Tests, Sprawozdanie z Realizacji Projektu Badawczego Wlasnego, Project No. 5 T12A 01623, 2006.
22. Nierobisz, A., Analysis of the Impact of Parameters Characterizing the Rock Mass and Mine Support on Dog Heading Damage Resulting from the Rockburst, Przeglad Gorniczy, 2013, no. 12.
23. Mutke, G., Characteristics of Near-Field Ground Motion Resulting from Mining Tremors to Assessing of Rockbursts Hazard, Prace Naukowe Glownego Instytutu Gornictwa, 2007, no. 872.
24. Mutke, G., The Evaluation of the Potential Risks to the Stability of Longwall Workings Subjected to the Rock Mass Tremors, Prace Naukowe Glownego Instytutu Gornictwa, 2011, no. 4/2.
25. Dudzic, T., Korzeniowski, W., and Piechota, S., Badanie wplywu robot strzalowych na zakotwiony strop wyrobiska komorowego (Study into the Impact of Shooting on Bolted Roof of Chamber Excavation), Zeszyty Naukowe AGH, Gornictwo i Geoinzynieria, 2004, z.1.
26. Staniek, A., Badania wplywu wstrzasow gorotworu na ciaglosc wklejania zerdzi kotwiowych. (Investigation of Rock Mass Tremor Effect on the Continuity of Grouting Bolt Rods), Materialy 12 Miedzynarodowej Konferencji Naukowo-Technicznej Gornicze Zagrozenia Naturalne, 2005.
27. Nierobisz, A., The Role of Support in Maintenance of Dog Headings in the Rockburst Hazard Conditions, Prace Naukowe Glownego Instytutu Gornictwa, 2012, no. 887.


MINERAL MINING TECHNOLOGY


DETERMINATION OF OPEN PIT DIAMOND MINE LIMITS WITH REGARD TO STRIPPING TIME DIFFERENCE
V. L. Yakovlev, I. V. Zyryanov, A. N. Akishev, and G. G. Sakantsev

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620075 Russia
e-mail: yakovlev@igduran.ru
Yakutniproalmaz Institute, ALROSA,
ul. Lenina 39, Mirny, 678174 Republic of Sakha (Yakutia), Russia

The analysis of methods to account for stripping time difference at the stage of determination of limits in deep open pit mining reveals advantages and shortcomings of the methods and provides a principled approach to determination of a discount ultimate strip ratio for the most representative geological and geotechnical conditions of diamond-bearing ore bodies in the form of single pipes. Discounting of marginal strip ratios is based on adding the common formula with an average mean discount coefficient represented by a correlation of mining rate decrease, stripping zone height and highwall slope angle. It is shown that target variation of the factors included in the discount marginal strip ratio allows considerable influence on depth and efficiency of open pit mining.

Open pit mine limits, marginal strip ratio, discountiing coefficient, stripping zone height, stripping rate decrease, highwall slope

DOI: 10.1134/S1062739116061674 

REFERENCES
1. Metodicheskie rekomendatsii po otsenke effektivnosti investitsionnykh proektov (Instructional Guidelines on Evaluation of Investment Project Efficiency), Moscow: Ekonomika, 2000.
2. Khokhryakov, V.S., Technical-and-Economical Evaluation Criteria for Open Pit Mining Scenarios, Gorny Zh., 1970, no. 9, pp. 16–19.
3. Khokhryakov, V.S., Otsenka effektivnosti investitsionnykh proektov otkrytykh gornykh razrabotok: ucheb. posob. (Evaluation of Open Pit Mining Investment Efficiency: Educational Aid), Ekaterinburg: UGGA, 1996.
4. Trubetskoy, K.N., Peshkov, A.A., and Matsko, N.A., Methods to Evaluate Mine Investment Efficiency, Gorny Zh., 1993, no. 2, pp. 3–11.
5. Yakovlev, V.L., Sakantsev, M.G., and Sakantsev, G.G., Granitsy kar’erov pri proektirovanii razrabotki slozhnostrukturnykh mestorozhdenii (Open Pit Mine Limits in Planning Development of Complex-Structure Deposits), Ekaterinburg: IGD UrO RAN, 2009.
6. Sakantsev, M.G., Optimizing Open Pit Ming Depth Using the Marginal Strip Ratio Based on the Profit/Cost Time Difference, Gorny Zh., 1973, no. 12, pp. 3–8.
7. Ordin, A.A. and Klishin, V.I., Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Optimization of Mining Technology Based on Lag Modeling), Novosibirsk: Nauka, 2009.
8. Sakantsev, G.G., Express-Method to Determine Open Pit Limits, Considering Factor of Time, Probl. Nedropol’z., 2015, issue 3, pp. 27–34. Available at: trud.igduran.ru.
9. Kolganov, V.F. and Akishev, A.N., Korennye mestorozhdeniya almazov Zapadnoi Yakutii: sprav. posob. (Primary Diamond Deposits in the Western Yakutia: Reference Aid), Novosibirsk: Geo, 2011.
10. Brandon, D.B., Developing Mathematical Models for Computer Control, ISA Journal, 1959, no. 7.
11. Khokhryakov, V.S. and Sakantsev, G.G., Analysis of Accuracy of Technical and Economic Performance Characteristics in Open Pit Mining, Gorny Zh., 1968, no. 5, pp. 5–21.
12. Khokhryakov, V.S., Proektirovanie kar’erov: uchebnik dlya vuzov (Open Pit Ming Planning: University Textbook), Moscow: Nedra, 1992.
13. Edinaya metodika proektirovaniya gornodobyvayushchikh predpriyatii chernoi metallurgii s otkryrym sposobom razrabotki (Unified Procedure for Open Pit Mine Planning in the Iron and Steel Industry), Leningrad: Giproruda, 1963.
14. Istomin, V.V., Open Pit Mining and Its Economic Appraisal, Gornye nauki i promyshlennost’: sb. st. Posvyashchaetsya 70-letiyu so dnya rozhdeniya VV. Rzhevskogo (Mining Sciences and Industry: Collected Papers. Dedicated to V. V. Rzhevsky 70th Anniversary), Moscow: Nedra, 1989.


TECHNOLOGY OF ABANDONED ORE DRAWING USING CANOPIES
V. I. Golik

Geophysical Institute, Vladikavkaz Science Center, Russian Academy of Sciences,
ul. Markova 93a, Vladikavkaz, 362002 Russia
e-mail: v.i.golik@mail.ru

The author characterizes ore production loss depending on time, properties and production technology. Typification of technologies aimed at improvement of ore-drawing quality using canopies is performed. Operating principle of canopies is theoretically generalized, and recommendations on using canopies are made. It is proved that separation of abandoned ore from overlying rocks under canopies during ore-drawing improves mineral production quality.

Subsoil, abandoned ore, rocks, technology, canopy, theoretical generAlization, operating pricniple, application conditions, mineral quality

DOI: 10.1134/S1062739116061686 

REFERENCES
1. Golik,V.I. and Komashchenko, V.I., Prirodookhrannye tekhnologii upravleniya sostoyaniem massiva na geomekhanicheskoi osnove (Environmental Technologies of Rock Mass Control in the Framework of Geomechanics), Moscow: KDU, 2010.
2. Golik, V.I., and Ismailov, T.T., Upravlenie sostoyaniem massiva (Rock Mass Control). Moscow: MGGU, 2005.
3. Golik, V.I., Yakimenko, A.D., and Tsidaev, T.S., Sadon Deposits: History and Problems, Gorny Zh., 2004, no. 10, pp. 24–27.
4. Yakimenko, A.D. and Golik, V.I., Problems Connected with the Ore Quality Provision in the Secondary Mining at Sandon Deposits, 65 let NIS SKGMI: sb. (The 65th Anniversary of the Research Sector at the North Caucasus Institute for Mining and Metallurgy: Collected Papers), Vladikavkaz: Terek, 2004.
5. Shestakov, V.A., Razorenov, Yu.I., Belodedov, A.A. et al., Determination of Basic Indications of Subsoil Use, Razrabotka nauchnykh osnov i sposobov resursosberegayushchei i ekologicheski chistoi tekhnologii dobychi poleznykh iskopaemykh: sb. nauch. tr. YuRGTU–NPI (Development of Theoretical and Practical Framework for the Resource-Saving and Ecology-Friendly Mineral Mining Technology: Platov South-Russian State Polytechnic University (NPI) Transactions), Novocherkassk: NABLA, 2005.
6. Yakimenko, A.D. and Golik, V.I., Improvement of Secondary Mining Technology for Man-Made Mineral Formations, Tsvet. Metallurg., 2004, no. 1, pp. 2–9.
7. Rakishev, B.R., Comprehensive Utilization of Ore by the Nonferrous Metallurgy in Kazakhstan, Gorny Zh., 2013, no. 7, pp. 56–64.
8. Fomenko, A.A., Mine Waste Management and Low-Grade Nonferrous Metal Ore Utilization in the Contexts of the Ecosystem Exploitation Economy, Gorny Zh., 2013, no. 2, pp. 89–95.
9. Rasskazov, I.Yu, and Sekisov, G.V., Design of Scientific-Industrial Mining–Technological Complexes for Innovative Supply of Mining Industry, GIAB, 2014, no. 9, pp. 121–126.
10. Yastrebinsky, M.A., Economic Assessment of the Market Criterion of Discount Cost and Profit, GIAB, 2014, no. 6, pp. 67–74.


OPTIMAL COMBINATION TECHNOLOGY FOR HIGH-GRADE QUARTZ PRODUCTION BASED ON MODELING
I. V. Sokolov, A. A. Smirnov, Yu. G. Antipin, K. V. Baranovsky, and A. A. Rozhkov

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: geotech@igduran.ru

The article describes the applied research findings on selecting a resource-saving technology to ensure drastic reduction in loss of high-grade Kyshtym quartz. The economical–mathematical modeling yields relationships between mine efficiency, ground conditions, mine design and technology factors, and the optimal variant of a combination mining technology is determined using the maximum profit criterion. Full-scale physical simulation of closed-spaced charge blasting effect on reduction in overgrinding of quartz is discussed. Drilling and blasting pattern for experimental breaking of quartz by explosions is determined.

Quartz deposit, underground technology, combination mining method, loss and dilution, drilling and blasting

DOI: 10.1134/S1062739116061698 

REFERENCES
1. Sokolov, I.V., Kornilkov, S.V., Sashurin, A.D., Kuz’min, V.G., and Shemyakin, V.S., Formation of Science and Technology Backup for Introduction of Integrated Technology of Highly Valuable Quartz Mining and Processing, Gorny Zh., 2014, no. 12.
2. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., Baranovsky, K.V., and Rozhkov, A.A., Resource- Saving Technology for Underground Mining of High-Value Quartz in Kyshtym, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1191–1202.
3. Sokolov, I.V., Smirnov, A.A., and Antipin, Yu.G., Science and Technology Framework for Integrated High-Value Quartz Mining and Processing, Combination Geotechnology: Sustainable and Ecologically Balanced Subsoil Management: Proc. Int. Conf., Magnitogorsk: MGTU, 2015, pp. 118–119.
4. Volkov, Yu.V., Sokolov, I.V., and Kamaev, V.D., Vybor sistem podzemnoi razrabotki rudnykh mestorozhdenii Urala (Selection of Underground Mining Methods for Ural Deposits), Ekaterinburg: UrO RAN, 2002.
5. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Sokolov, R.I., Influence of Extraction Indexes of Efficiency of Underground Ore Mining Technology, Izv. Vuzov, Gorny Zh., 2012, no. 3, pp. 41–11.
6. Gorinov, S.A., Efficiency of Plane Systems of Charges in Underground Extraction of Highly Jointed Ore, Izv. Vuzov, Gorny Zh., 1985, no. 7, pp. 68–73.
7. Gorinov, S.A. and Smirnov, A.A., Effect of Explosion of Plane System of Charges in Rock Mass, GIAB, 2001, no. 4, pp. 42–50.
8. Borovikov, V.A. and Vanyagin, I.F., Modelirovanie deistviya vzryva pri razrushenii gornykh porod (Modeling Effect of Explosion in Rock Breakage), Moscow: Nedra, 1990.
9. Baum, F.A., Orlenko, L.P., Stanyukovich, K.P., Chelyshev, V.P., and Shekhter, B.I., Fizika vzryva (Physics of Explosion), Moscow: Nauka, 1975.
10. Belin, V.A. and Kryukov, G. M. Results Development in the Theory of Rock Breakage by Blasting, Vzryv. Delo, 2013, no. 105/62, pp. 23–46.
11. Menzhulin, M.G., Afanas’ev, P.I., and Kaz’mina, A.Yu., Dissipation Energy Calculation Based on Detected Induced Jointing under Travel of Stress Waves, Vzryv. Delo, 2013, no. 109/66, pp. 73–78.
12. Kazakov, N.N., Shlyapin, A.V., and Lapikov, I.N., Model of Cavity and Some Parameters of Quasi-Static Phase of Finite-Length Charge Blasting, Vzryv. Delo, 2013, no. 109/66, pp. 3–17.
13. Shapurin, A.V., and Vasil’chuk, Ya.V., Rock Fragmentation Quality as a Result of Integrated Effect of Various Factors, Vestn. KuzGTU, 2011, no. 29, pp. 13–17.
14. Baron, L.I. and Licheli, G.P., Treshchinovatost’ gornykh porod pri vzryvnoi otboike (Rock Jointing under Blasting), Moscow: Nedra, 1966.
15. Furtney, S. J. K., Sellers, E., and Onederra, I., Simple Models for the Complex Process of Rock Blasting, Rock Fragmentation by Blasting: Fragblast 10, Edited by Pradeep K. Singh, Amalendu Sinha, Leiden, Netherlands: CRC Press, 2013, pp. 275–282.
16. Akande, J.M. and Lawal, A.I., Optimization of Blasting Parameters Using Regression Models in Ratcon and NSCE Granite Quarries, Ibadan, Oyo State, Nigeria, Geomaterials, 2013, vol. 3, no. 1, pp. 28–37.
17. Baron, L.I., Kuskovatost’ i metody ee izmereniya (Lumpiness and Its Measurement Approaches), Moscow: IGD AN SSSR, 1960.
18. Baron, L.I., Gornotekhnologicheskoe porodovedenie. Predmet i sposoby issledovaniya (Geotechnical Science on Rocks. Subject and Research Methods), Moscow: Nauka, 1977.


MINERAL DRESSING


IMPULSE ENERGY INPUTS TO MODIFY SUBSURFACE STRUCTURE AND FUNCTIONS AND PROCESS PROPERTIES OF CALCIUM-BEARING MINERALS
M. V. Ryazantseva, I. Zh. Bunin, and E. V. Koporulina

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: ryazanceva@mail.ru

Using Hammett indicators, X-ray fluorescence spectroscopy and atomic force microscopy, the authors analyze influence of high-voltage nanosecond impulses on structure and chemistry of surface and on process properties of calcium-bearing minerals. As a result of impulse energy inputs for t ≤ 30 s, the change in the structure and functions of mineral surface includes: enhancement of electron–donor capacity and formation of structural defects on the surface of fluorite, and enhancement of acceptor capacity of the surface of calcite and scheelite. Pre-treatment of mono-mineral samples by electrical impulses increases flotation ability of calcium-bearing minerals: increment in froth recovery makes 10–12% for scheelite, 5–6% for fluorite and 7–8% for calcite. Calcite, fluorite, scheelite, high-voltage nanosecond impulses, Hammett acid-base indicators, X-ray fluorescence, microscopy, mono-mineral fraction

DOI: 10.1134/S106273911606170X

REFERENCES
1. Chanturia, V.A., Bunin, I.Zh., and Khabarova, I.A., Influence of Nanosecond Electromagnetic Pulses on Phase Surface Composition , Electrochemical, Sorption, and Flotation Properties of Chalcopyrite and Sphalerite, J. Min. Sci., 2012, vol. 48, no. 4, pp. 732–740.
2. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., X-Ray Photoelectron Spectroscopy-Based Analysis of Change in the Composition and Chemical State of Atoms of Chalcopyrite and Sphalerite Surface before and after the Nanosecond Electromagnetic Pulse Treatment, J. Min. Sci., 2013, vol. 49, no. 3, pp. 489–498.
3. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., Khabarova, I.A., Koporulina, E.V., and Anashkina, N.E., Surface Activation and Induced Change of Physicochemical and Process Properties of Galena by Nanosecond Electromagnetic Pulses, J. Min. Sci., 2014, vol. 50, no. 3, pp. 573–586.
4. Ryazantseva, M.V. and Bunin, I.Zh., Modifying Acid-Base Surface Properties of Calcite, Fluorite, and Scheelite under Electromagnetic Pulse Treatment, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1016–1020.
5. Nechiporenko, A.P., Burenina, T.A., and Kol’tsov, S.I., Indicator Method to Study Surface Acidity of Solids, Zh. Obshchei Khim., 1985, vol. 55, no. 9, pp. 1907–1912.
6. Nechiporenko, A.P., Donor?Acceptor Surface Properties of Solid Oxides and Chalcogenides, Dr. Chem. Sci. Thesis, Saint-Petersburg, 1995.
7. Tanabe, K., Tverdye kisloty i osnovaniya (Solid Acids and Bases), Moscow: Mir, 1973.
8. Lupashko, T.N., Shugina, T.N., Silave, V.I., Tarashchan, A.N., Bagmut, N.N., and Kalinichenko, A.M., Spectroscopic Properties of Fluorite as a Criterion for Metallogenetic Typification of Rare Metal Deposits, Proc. Int. CIS Meeting Alkaline Magmatism of the Earth and Its Ore Content, Kiev, 2007, pp. 153–159.
9. Krasil’shchikova, O.A., Tarashchan, A.N., and Platonov, A.N., Okraska i lyuminestsentsiya prirodnogo fluorita (Color and Luminescence of Natural Fluorite) Kiev: Nauk. Dumka, 1986.
10. Barsky, L.A., Kononov, O.V., and Ratmirova, L.I., Selektivnaya flotatsiya kal’tsiisoderzhashchikh mineralov (Selective Flotation of Calcium?Bearing Minerals), Moscow: Nedra, 1979.
11. Tarashchan, A.N., Lyuminestsentsiya mineralov (Mineral Luminescence), Kiev: Nauk. Dumka, 1978.


COMPOSITION AND PROPERTIES OF BIO-REAGENT TO INTENSIFY LEACHING OF NONFERROUS METALS FROM SULFIDE ORES AND CONCENTRATES
L. N. Krylova and V. A. Ignatkina

National University of Science and Technology—MISIS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: krylov@yandex.ru

New information is obtained on composition and properties of a bio-reagent–oxidizer generated by mesophilic aerobic chemo-tropholytic bacteria Acidithiobaccilus ferrooxidans under oxidation of iron (II) ions in sulfuric acid solution. The composition and properties of the bio-reagent are compared with iron (III) sulfate used to intensify agitation and heap leaching of metals from sulfide ores and concentrates. The research with IR spectroscopy, mass spectrometry, Moessbauer spectrometry and potentiometry has revealed distinctive features of the bio-reagent and explained the experimentally observed increase in its oxidative activity when interacting with minerals.

Bio-reagent, iron-oxidizing bacteria, iron sulfate, molecular composition, iron-crystal structure, phase composition, functional groups, centrifugal separation, oxidative activity, sedimentation

DOI: 10.1134/S1062739116061711 

REFERENCES
1. Pol’kin, S.I., Adamov, E.V., and Panin, V.V., Tekhnologiya bakterial’nogo vyshchelachivaniya tsvetnykh i redkikh metallov (Process for Bacterial Leaching of Nonferrous and Rare Metals), Moscow: Nedra, 1982.
2. Dew, D.W., Lawso, E.N., and Broadhurst, J.L., The BIOX Process for Biooxidation of Gold-Bearing Ores or Concentrates, Biomining: Theory, Microbes and Industrial Processes, Eds. D. E. Rawlings. Berlin: Springer, 1997, pp. 45–80.
3. Grundwell, F.K., Ciminelli, V. S. T., and Garsia, O., How Do Bacteria Interact with Minerals, Biohydrometallurgy: Fundamentals Technology and Sustainable Development, Amsterdam: Elsevier, 2001, pp. 149–157.
4. Fomchenko, N.V. and Murav’ev, M.I., Studies of Chemical Oxidation of Gold?Arsenic Concentrates with Chemical and Biological Ferric Iron, Proc. Int. Congress Biotechnologies: State of the Art and Prospects of Development, Part II, Moscow, 2009, pp. 325–326.
5. Gusakov, M.S. and Krylova, L.N., Bacterial Ferriferrous Sulphates Solutions in Hydrometallurgy, Metallurg., 2012, no. 4, pp. 89–91.
6. Mesa, M.M, Macias, M., and Cantero, D., Biological Iron Oxidation by Acidithiobacillus Ferrooxidants in a Packed-Bed Bioreactor, Chem. Biochem. Engineering Quart., 2002, no. 16, pp. 69?73.
7. Gehrke, T., Telegdi, J., Thierry, D., and Sand, W., Importance of Extracellular Polymeric Substances from Thiobacillus Ferrooxidants for Bioleaching, Appl. Environ. Microbiol., 1998, vol. 64, pp. 2743–2747.
8. Sand, W. and Gehrke, T., Extracellular Polymeric Substances Mediate Bioleaching/Biocorrosion via Interfacial Processes Involving Iron (III) Ions and Acidophilic Bacteria, Res. Microbiol., 2006, vol. 157, pp. 49?56.
9. Yu, R.L., Tan, J.X., Yang, P., Sun, J., Ouyang, X.J., and Dai, Y.J., EPS-Contact-Leaching Mechanisms of Chalcopyrite Concentrates by A. Ferooxidans, Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 1427–1432.
10. Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W., Bioleaching Review Part A: Progress in Bioleaching: Fundamentals and Mechanisms of Bacterial Metal Sulfide Oxidation, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 239–248.
11. Fomchenko, N.V., Muravyov, M.I., and Kondrat’eva, T.F., Two-Stage Bacterial-Chemical Oxidation of Refractory Gold-Bearing Sulfidic Concentrates, Hydrometallurgy, 2010, vol. 101, no. 1–2, pp. 28–34.
12. Menil, F., Systematic Trends of 57Fe Mossbauer Isomer Shifts in (FeOn) and (FeFn) Polyhedra. Evidence of a New Correlation between the Isomer Shift and the Inductive Effect of the Competing Bond T–X(?Fe) (Where X is O or F and T Element with a Formal Positive Charge), J. Phys. and Chem. Solids, 1985, vol. 46, no. 7, pp. 763–789.
13. Botvinko, I.V., Ekzopolisakharidy bakterii (Exopolysaccharides of Bacteria), Moscow: Vyssh. Shk., 1985.


MAGNETIZATION OF MINERALS BY RADIATION AND HEATING AND ITS PROSPECTS IN MINERAL PROCESSING
S. A. Kondrat’ev, V. I. Rostovtsev, and I. I. Baksheeva

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru

The article presents data of experimental studies into magnetic properties of iron-bearing sulfide and nonsulfide minerals under radiation and heating. It is found that bulk magnetic susceptibility has increased more than 100 times in pyrite and 6 times in bauxite ore. Usefulness of radiation-and-heating magnetization in modification and processing of bauxite and tin-bearing minerals is demonstrated.

Mineral raw material, bauxite, tin products, accelerated electron treatment, dry magnetic separation

DOI: 10.1134/S1062739116061723 

REFERENCES
1. Chanturia, V.A., Advanced Processes for Complex and Comprehensive Processing of Natural and Technogenic Mineral Materials, Plaksin’s Lectures?2014 Conf., Almaty, 2014, pp. 5–6.
2. Chanturia, V.A., Contemporary Problems of Mineral Raw Material Beneficiation in Russia, J. Min. Sci., 1999, vol. 35, no. 3, pp. 314–328.
3. Potapov, S.A., Chanturia, V.A., Polyakov, V.A., and Rostovtsev, V.I., Influence of Beam of Fast Electrons on Properties of Ferruginous Quartzites of the Mikhailov Deposit, J. Min. Sci., 1989, vol. 25, no. 3, pp. 288–291.
4. Wang H. and Lu S., Modifying Effect of Electron Beam Irradiation on Magnetic Property of Iron-Bearing Minerals, J. Physiochem. Probl. Miner. Proc., 2014, no. 50(1), pp. 79–86.
5. Kondrat’ev, S.A., Rostovtsev, V.I., Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, K.A., Justification and Development of Innovative Technologies for Integrated Processing of Complex Ore and Mine Wastes, J. Min. Sci., 2014, vol. 50, no. 5, pp. 959–973.
6. Korobeinikov M. V., Bryazgin A. A., Bezuglov V. V., et al. Radiation?Thermal Treatment in Ore Dressing, IOP Conf. Series: Mat. Sci. Eng., 2015, vol. 81, no. 012124, pp. 1–6.
7. Rostovtsev, V.I., Radiation?Thermal Process to Modify Magnetic Properties of Minerals in Mineral Processing; Mineral Resource Development. Mining. Trends and Processes for Exploration and Development of Mineral Deposits. Geoecology, Proc. 11th Int. Sci. Conf. InterExpo GeoSibir?2015, vol. 3, Novosibirsk: Sib. Gos. Univer. Geosistem Tekhn., 2015, pp. 206–210.
8. Bochkarev, G.R., Rostovtsev, V.I., Vobly, P.D., Zubkov, N.I., Kudryavtsev, A.M., Utkin, A.V., and Khavin, N.G., High-Gradient Magnetic Separator for Dressing of Weak?Magnetic Ores, J. Min. Sci., 2004, vol. 40, no. 2, pp. 199–204.
9. Wang, H, Bochkarev, G.R., Rostovtsev, V.I., and Veigel’t, I.Yu., Improvement of Magnetic Properties of Iron-Bearing Minerals During Radiation?Thermal Treatment, J. Min. Sci., 2004, vol. 40, no. 4, pp. 299–408.
10. Kotova, O.B., Razmyslov, I.N., Rostovtsev, V.I., and Silaev, V.I., Radiative?Thermal Modification of Ferruginous Bauxites in the Course of their Processing, Obogashch. Rud, 2016, no. 4, pp. 16–22.


MAGNETIC SEPARATION OF EUDIALYTE ORE UNDER PULP PULSATION
G. P. Andronov, I. B. Zakharova, N. M. Filimonova, V. V. L’vov, and T. N. Aleksandrova

Mining Institute, Kola Science Center, Russian Academy of Sciences,
ul. Fersmana 24, Apatity, 184209 Russia
e-mail: andronov@goi.Kolasc.net.ru
Saint-Petersburg Mining University,
V.O. 21-liniya 2, Saint-Petersburg, 199106 Russia

The article presents data on separation of minerals of eudialyte ore with low magnetic susceptibility using a high-intensity wet magnetic separator and pulp pulsation. The optimal separator variables of the magnetic field inductance, pulp pulsation and matrix filler diameter to ensure maximum efficiency of processing are determined.

Magnetic separation, magnetic inductance, pulp pulsation frequency, matrix rod diameter, eudialyte concentrate, nepheline–feldspar product, aegirine product

DOI: 10.1134/S1062739116061735 

REFERENCES
1. Chipanin, I.V., Investigation into Processing of Some Rare Metal Ores and Alluvials, Issledovaniya po obogashcheniyu poleznykh iskopaemykh (Mineral Processing Studies), Moscow: Gosgeoltekhizdat, 1961, pp. 104–115.
2. Naifonov, T.B. and Zakharova, I.B., Investigation into Floatability of Eudialyte and Main Accompanying Minerals, Izv. Vuzov, Tsv. Metal., 1974, no. 1, pp. 12–16.
3. Shvedova, T.F., Rossovskaya, T.S., and Lomteva, G.P., Influence of Eudialyte Ore Composition Specificities on Optimal Techniques for Their Beneficiation, Obogashchenie redkometall’nykh rud (Rare Metal Ore Processing), Moscow: Inst. Rare Met. Industry, 1990, pp. 45–47.
4. Naifonov, T.B., Beloborodov, V.I., Zakharova, I.B., and Zorina, T.A., Advanced Eudialyte Ore Processing Techniques, Obogashch. Rud, 1991, no. 1, pp. 15–17.
5. Naifonov, T.B., Beloborodov, V.I., Zakharova, I.B., and Zorina, T.A., Flotation of Eudialyte with Phosphoric Acid-Based Agents, Izv. Vuzov, Tsv. Metall., 1991, no. 3, pp. 23–26.
6. Kudrin, V.S. and Chistov, L.B., Present-Day Situation and Development Perspectives with Rare-Earth Metal Resources, Miner. Resurs. Rossii, 1996, no. 5, pp. 6–12.
7. Chistov, L.B., Okhrimenko, V.E., and Yufrakov, V.A., Eudialyte Ores as New Commercial Zirconium and Rare-Earth Elements Resources, Strategiya ispol’zovaniya i razvitiya mineral’no-syr’evoi basy redkikh metallov Rossii v XX Veke (Strategy of Utilization and Development of Rare Metal Resources in XX Century), Moscow: IPKON, 1998, pp. 101–110.
8. Booma de A., Degrez, M., Hubaux, P., and Lucion, C., MSWI Boiler Fly Ashes: Magnetic Separation for Material Recovery, Waste Management, 2011, vol. 31, pp. 1505–1513.
9. Tarakhanov, A.V. and Kurkov, A.V., Perspectives in Development of Rare-Metal and Rare-Earth Eudialyte Ores of the Lovozero Deposit, Gorny Zh., 2012, no. 4, pp. 54–56.
10. Ciesla, A. Use of the Low (LTS) and High (HTS) Temperature Superconductors in Magnetic Separation, Economic Comparison, Przeglad elektrotechniczny (Electrical Review), 2011, vol. 3, pp. 21–24.
11. Zakharova, I.B., Rukhlenko, E.D., Andronov, G.P., and Vitsina, Ya.V., Mineralogical and Processing Specifications of Eudialyte?Lujavrite Ore, Proc. 9th CIS Mineral Processing Congress, vol. I, Moscow: MISiS, 2013, pp. 255–258.
12. Chen, L., Qian, Z., Wen, S., Huang, S., High-Gradient Magnetic Separation of Ultrafine Particles with Rod Matrix, Min. Proc. Extract. Metal. Rev., 2013, vol. 34, pp. 340–347.
13. Azbel, Yu.I., Dmitriev, S.V., L’vov, V.V., and Mezenin, A.O., High-Gradient Magnetic Separation of Rough Ilmenite Concentrates, Obogashch. Rud, 2014, no. 5, pp. 18–21.


GEOINFORMATION SCIENCE


MINING INFORMATION SCIENCE AND BIG DATA CONCEPT FOR INTEGRATED SAFETY MONITORING IN SUBSOIL MANAGEMENT
I. V. Bychkov, D. Ya. Vladimirov, V. N. Oparin, V. P. Potapov, and Yu. I. Shokin

Matrosov Institute for System Dynamics and Control Theory,
Siberian Branch, Russian Academy of Sciences,
ul. Lermontova 134, Irkutsk, 664033 Russia
e-mail: idstu@icc.ru
VIST Group,
Dokuchaev per. 3, Bld. 1, Moscow, 107078 Russia
vladimirov@vistgroup.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.ncs.ru
Kemerovo Division, Institute of Computational Technologies,
Siberian Branch, Russian Academy of Sciences,
ul. Rukavishnikova 21, Kemerovo, 650025 Russia
e-mail: ict@ict.nsc.ru
Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 6, Novosibirsk, 630090 Russia
e-mail: ict@ict.nsc.ru

The discussed challenge and its prospects in mining geoinformation science are connected with Big Data concept—flows of large sets of various data on mining. The authors describe Big Data technology and its general implementation on mini-clusters using Hadoop and MapReduce with case studies presented.

Big Data, intelligent analysis, computational and mini-clusters, raw data sets, geomechanical and geodynamic data flow computing, cloud computing, distributed computing, safe subsoil management

DOI: 10.1134/S1062739116061747 

REFERENCES
1. Oparin, V.N., Rusin, E.P., Tapsiev, A.P., Freidin, A.M., and Badtiev, B.P., Mirovoi opyt avtomatizatsii gornykh rabot na podzemnykh rudnikakh (International Experience in Underground Mine Automation), N. N. Mel’nikov (Ed.), Novosibirsk: SO RAN, 2007.
2. Trubetskoy, K.N., Kuleshov, A.A., Klebanov, A.F., and Vladimirov, D.Ya., Sovremennye sistemy upravleniya gorno-transportnymi kompleksami (State-of-the-Art Systems to Manage Mining and Transportation Systems), K. N. Trubetskoy (Ed.), Saint-Petersburg: Nauka, 2007.
3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, J. Min. Sci., Part I: 2012, vol. 48, no. 2, pp. 203?222; Part II: 1013, vol.49, no. 2, pp. 175?209; Part III: 2014, vol. 50, no. 4, pp. 623?645; Part IV: 2016, vol. 51, no. 1, pp. 1?35.
4. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vol. 50, no. 1, pp. 142–154.
5. Potapov, V.P., Matematicheskoe i informatsionnoe modelirovanie geosistem ugol’nykh predpriyatii (Mathematical and Informational Simulation of Coal Mine Geosystems), Novosibirsk: SO RAN, 1999.
6. Oparin, V.N., Potapov, V.P., Yushkin, V.F., and Kiril’tseva, N.A., An Approach to Development of an Information Geomechanical Structural Model of the Kuznetsk Coal Basin, J. Min. Sci., 2006, vol. 42, no. 3, pp. 224–244.
7. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46, no. 6, pp. 666–671.
8. Potapov, V.P., Oparin, V.N., Logov, A.B., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechanical?Geodynamic Control Geoinformation System with Entropy Analysis of Seismic Events in Terms of Kuzbass, J. Min. Sci., 2013, vol. 49, no. 3, pp. 482–488.
9. Logov, A.B., Oparin, V.N., Potapov, V.P., Schastlivtsev, E.L., and Yukina, N.I., Entropy Analysis of Process Wastewater Composition in Mineral Mining Region, J. Min. Sci., 2015, vol. 51, no.1, pp. 186–196.
10. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Kharlampenkov, I.E., Fractal Analysis of Geodynamic Event Migration Paths in the Kuzbass Area, J. Min. Sci., 2012, vol.48, no. 3, pp. 474–479.
11. Potapov, V.P., Oparin, V.N., Giniyatullina, O.L., and Kharlampenkov, I.E., Services for Cloud Computing and Seismic Data Processing for Geomechanically and Geodynamically Active Coal Mining Areas in Kuzbass, J. Min. Sci., 2015, vol. 51, no. 3, pp. 609–613.
12. Potapov, V.P., Oparin, V.N., Giniyatullina, O.L., and Kharlampenkov, I.E., Cloud Computing in Seismic Data Processing Based on Voronoi Diagrams Using GOOGLE APP ENGINE, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1041–1048.
13. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Schastlivtsev, E.L., Studies into the Process of Mine Waste Dump Filling up by Vegetations Using Remote Sensing Data, J. Min. Sci., 2013, vol. 49, no. 6, pp. 976–982.
14. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Andreeva, N.V., Water Body Pollution Monitoring in Vigorous Coal Extraction Areas Using Remote Sensing Data, J. Min. Sci., 2012, vol. 48, no. 5, 934–940.
15. Oparin, V.N., Potapov, V.P., and Giniyatullina, O.L., Integrated Assessment of the Environmental Condition of the High-Loaded Industrial Areas by the Remote Sensing Data, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1079–1087.
16. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., Andreeva, N.B., Schastlivtsev, E.L., and Bykov, A.A., Evaluation of Dust Pollution of Air in Kuzbass Coal Mining Areas in Winter by Data of Remote Earth Sensing, J. Min. Sci., 2014, vol. 50, no. 3, pp. 549–558.
17. Potapov, V.P., Oparin, V.N., Schastlivtsev, E.L., Giniyatullina, O.L., Kharlampenkov, I.E., and Sidorenko, P.V., An Approach to Multi-Layer Geoinformation System for Environmental Appraisal of Mining Regions Based on Biological Diversity, J. Min. Sci., 2016, vol. 52, no.4, pp. 818–825.
18. Oparin, V.N., Potapov, V.P., Logov, A.B., Schastlivtsev, E.L., and Yukina, N.I., Identification of Pollutant Clusters in Trade Effluents in Kuzbass, J. Min. Sci., 2016, no. 5, pp. 1011–1019.
19. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., Usol’tseva, O.M., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003, J. Min. Sci., Part I: Seismic Regime, 2004, vol. 40, no. 4, pp. 321–338; Part. II: Oktyabrsky Mine, 2004, vol. 40, no. 5, pp. 423–443; Part III: Taimyrsky Mine, 2004, vol. 40, no. 6, pp. 539–555; Part IV: Influence of Undermining of Overlying Rock Masses, 2005, vol.41, no. 1, pp. 1–5.
20. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission in Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.
21. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., Leont’ev, A.V., Nazarov, L.A., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (The Present-Day Geodynamics of Upper Lytosphere Rock Mass: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
22. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoring tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seismo-Deformation Monitoring of Induced Earthquakes and Rockbursts), Novosibirsk: SO RANS, vol. 1, 2009; vol. 2, 2010.
23. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritel’nye pribory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Measurement Instruments for Simulation and In-situ Exploration of Nonlinear Deformation-Wave Processes in Block-Structured Rock Masses), Novosibirsk: SO RAN, 2007.
24. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Crust Destruction and Selforganization under Heavy Industrial Impact), Novosibirsk: SO RAN, 2012.
25. Oparin, V.N., Yushkin, V.F., Akinin, A.A., and Balmashnova, E.G., A New Scale of Hierarchically Structured Representation as a Characteristic for Ranking Entities in a Geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387?401.
26. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonic Representation Scale for Hierarchies in the Science of Rocks), Novosibirsk: Nauka, 2011.
27. Oparin, V.N., Potapov, V.P., and Tanaino, A.S., On Information-Provided Monitoring of Geodynamic Processes in the Kuznetsk Coal Basin in the Conditions of Highly Intensive Subsoil Usage, J. Min. Sci., 2006, vol. 42, no. 5, pp. 445–467.
28. Hrushikesha Mohanty Prachet, Bhuyan Deepak Chenthati, Editors, Big Data, A Primer, Springer, New Delhi: Heidelberg, New York: Dordrecht, London: Springer India, 2015.
29. Warden, P., Big Data Glossary, Sebastopol: O’Reilly Media, Inc., 1005 Gravenstein Highway North, 2011.
30. Schutt, R. and O’Neil, C., Doing DataScience, Sebastopol: O’Reilly Media, Inc., 1005 Gravenstein Highway North, 2014.
31. Andersen, C., Creating a Data-Driven Organization, Sebastopol: O’Reilly Media, Inc., 1005 Gravenstein Highway North, CA 95472, 2015.
32. White, T., Hadoop: the definition guide, Sebastopol: O’Reilly Media, Inc., 1005 Gravenstein Highway North, 2009.
33. Gunarthne, Th., Hadoop MapReduce, vol. 2, Cookbook. Second edition, Birmingham: Packt Publishing, UK, 2015.
34. Kampes, B.M., Radar Interferometry. Persistent Scaterrer Technique, Springer, 2005.
35. Lublinsky, B., Smith, K.T., and Jakubovich, A., Professional Hadoop Solutions, Indianapolis, Indiana: John Wiley&Sons Inc., 2013.
36. Zaki, M.J. and Vagner, M.Jr., Data Mining and Analysis. Fundamental Concepts and Algorithm, New York: Cambridge University Press, 2014.
37. Hoffman, M. and Chisholm, A., Text Mining and Visualization: Case Studies Using Open-Source Tools, London, New York: CRC Press, Taylor&Francis Group. Boca Raton, 2016.
38. Witten, I.H. and Frank, E., Data Mining: Practical Machine Learning and Techniques, Second Edition. Amsterdam, Boston, Heidelberg, London, New York, Paris, San Diego, Sydney, Tokio: Morgan Kaufman Publishers is an Imprint of Elsiver, 2005.
39. Orange software. https://en.wikipedia.org/wiki/Orange_(software).
40. McCormick, K., Abbot, D., Brown, M.S., Khabaza, T., and Mutchler, S.R., IBM SPSS Modeler Cookbook, Birmingham: Mumbai Packt Publishing, 2013.
41. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol.50, no. 2, pp. 191–214.
42. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Tanashev, Yu.Yu., and Bolotov, V.A., Initiation of Underground Fire Sources, J. Min. Sci., 2016, vol. 52, no. 3, pp. 576–592.
43. Bobin, V.A., Sorbtsionnye protsessy v prirodnom ugle i ego struktura (Sorption Processes in Virgin Coal and its Structure), Moscow: IPKON AN SSSR, 1987.
44. Ettinger, I.L. and Shulman, N.V., Raspredelenie metana v porakh iskopaemykh uglei (Methane Distribution in Pores of Virgin Coals), Moscow: Nauka, 1975.
45. Khodot, V.V., Yanovskaya, M.F., Premysler, Yu.S., et al., Fizikokhimiya gazodinamicheskikh yavlenii v shakhtakh (Physicochemical Substantiation of Gas-Dynamic Phenomena in Mines), Moscow: Nauka, 1973.


NEW METHODS AND INSTRUMENTS IN MINING


OPEN-HOLE MULTISTAGE HYDRAULIC FRACTURING SYSTEM
S. V. Serdyukov, N. V. Degtyareva, A. V. Patutin, and T. V. Shilova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The presented system is intended for multistage hydraulic fracturing in long open holes of any orientation to create transversal fractures with a radius to 5 m in soft and medium-hard rocks. The downhole system has an inbuilt transport unit. This fracking equipment uses chemically active fluids generated in the fractured interval by mixture of two components injected in individual high-pressure hoses.

Multistage hydraulic fracturing, open hole, downhole equipment, inbuilt transport unit, anchor system of transversal fracturing, two-component breakdown fluid

DOI: 10.1134/S1062739116061759 

REFERENCES
1. Serdyukov, S.V. and Kurlenya, M.V., Application of Local Hydrofrac for the Intensification of Steam Assisted Gravity Drainage of Reservoir, Proc. InterExpo GEO-Sibir 2016, Novosibirsk, SGGA, 2016, vol. 4, pp. 8–13. .
2. Vorob’ev, A.E., Underground Leaching of Manganese from Hard Ore, GIAB, 2000, no. 5, pp. 36–39.
3. Mills, K., Jeffrey, R., Black, D., et al., Developing Methods for Placing Sand-Propped Hydraulic Fractures for Gas Drainage In the Bulli Seam, Underground Coal Operators’ Conference Proc., Wollongong, Australia, 2006, pp. 190–199.
4. Kurlenya, M.V., Altunina, L.K., Kuvshinov, V.A., Patutin, A.V., and Serdyukov, S.V., Froth Gel for gas-Bearing Coal Bed Hydrofracturing in Mine Conditions, J. Min. Sci., 2012, vol. 48, no. 6, pp. 947–953.
5. Gornaya entsiklopedia. Degazatsiya (Mining Encylopedia. Degassing). Available at: http://www.mining-enc.ru/d/degazaciya/.
6. Konoplev, Yu.P., Pitirimov, V.V., Tabakov, V.P., and Tyun’kin, B.A., Thermal Recovery of Low-Gravity Oil and Native Bitumen (in Terms of Yarega Oil Reservoir), GIAB, 2005, no. 3, pp. 246–253.
7. Gandossi, L. and Von Estorff, U., An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production, Scientific and Technical Research Reports, Publications Office of the European Union: Joint Research Centre of the European Commission, 2015, DOI: 10.2790/379646.
8. Kharakteristiki gornykh porod, opredelennye po shtampu (Classification of Rocks According to Steiner). Available at: http://studopedia.ru/6_76798_harakteristiki-gornih-porod-opredelennie-po-shtampu.html.
9. Murakami, Y. (Ed.), Stress Intensity Factors Handbook, Pergamon Press, 1987.
10. Paris, P.C. and Sih, G.C., Stress Analysis of Cracks, Fracture Toughness Testing and Its Applications, STP 381, ASTM, 1965, pp. 30–83.
11. Kurlenya, M.V., Zvorygin, L.V., and Serdyukov, S.V., Control of Longitudinal Hydraulic Fracturing of Wells, J. Min. Sci., 1999, vol. 35, no. 5, pp. 445–454.
12. Khisamov, R.S., Ramazanov, R.G., Bakirov, I.M., Idiyatullina, Z.S., and Osnos, V.B., RF patent no. 2439298, Byull. Izobret., 2012, no. 1.


METHOD AND MEANS TO ESTIMATE POROSITY DISTRIBUTION ON THE SURFACE OF POLISHED SECTION OF COAL
A. S. Tanaino, B. B. Sivolap, E. A. Maksimovsky, and O. A. Persidskaya

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: tanaino@misd.ru

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 3, Novosibirsk, 630090 Russia

The method is based on transcapillary penetration of fluorescent fluid (EpoDye colorant) in the finest cavities and flaws on the surface of polished sections. Luminophor-filed voids become visible under UV light and optical microscope. The voids are estimated with respect to their kinds, sizes and area. The estimates and the statistical property of void distribution are described.

Coal, planar porosity, fluorescence, microscopic and structural analysis, laboratory experiment

DOI: 10.1134/S1062739116061760 

REFERENCES
1. http://www.patents.su.
2. State Standard GOST 26450. 1–85, Porody gornye. Metod opredeleniya koeffitsienta otkrytoi poristosti zhidkostnym nasyshcheniem (Rocks. Method to Determine Open Porosity Coefficient by Fluid Saturation).
3. Gudok, N.S., Izuchenie fizicheskikh svoistv poristykh sred (Studying Physical Properties of Porous Media), Moscow: Nedra, 1970.
4. Gregg, S.J and Sing, K. S. W., Adsorption, Surface Area, and Porosity, Academic Press, 1982.
5. Ivanov, M.K., Kalmykov, G.A., Belokhin, V.S., Korost, D.V., and Khamidulin, R.A., Petrograficheskie metody issledovaniya kernovogo materiala (Petrography Methods to Study Cores), Book 2, Moscow: MGU, 2008.
6. Mordasov, D.M., Bulgakov, N.A., and Mordasov, M.M., Physical Framework for Pneumo-Dynamic Measurement of Porosity of a Substance, Vestn. Tambov. Univer., 2009, vol. 15, no. 3, pp. 661–666.
7. Radlinsky, A.P., Mastalerz, M., Hinde, A.L., Hainbuchner, M., et al., Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal, Int. J. Coal Geology, 2004, vol. 59, ns 3 and 4.
8. Khodot, V.V., Vnezapnye vybrosy uglya i gaza (Coal and Gas Outbursts), Moscow: GNTI, 1961.
9. Vyacheslavov, A.S. and Efremova, M.A., Opredelenie ploshchadi poverkhnosti i poristosti materialov metodom sorbtsii gazov (Determination of Surface area and Porosity of Materials by the Gas Adsorption Method), Moscow: MGU, 2011.
10. Alekseev, A.D., Fizika uglya i gornykh protsessov (Physics of Coal and Rock Mass Processes), Kiev: Naukova Dumka, 2010.
11. Airuni, A.T., Prognozirovanie i predotvrashchenie gazodinamicheskikh yavlenii v ugol’nykh shakhtakh (Prediction and Preventions of Gas-Dynamic Events in Coal Mines), Moscow: Nauka, 1987.
12. State Standard GOST 17070–87. Mezhgosudarstvennyi standart. Ugli. Terminy i opredeleniya (Interstate Standard. Coal. Terms and Definitions).
13. Ettinger, I.L. and Shul’man, N.V., Raspredelenie metana v porakh iskopaemykh uglei (Methane Distribution in Pores of Fossil Coal), Moscow: Nedra, 1975.
14. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale for Presentation of Hierarchies in Science on Rocks), Novosibirsk: Nauka, 2011.
15. Oparin, V.N. and Tanaino, A.S., A New Method to Test Rock Abrasiveness Based pn Physico-Mechanical and Structural Properties of Rocks, Journal of Rock Mechanics and Geotechnical Engineering, 2015, vol. 7, no. 3, pp. 250–255.
16. Sokolov, V.N., Quantitative Analysis of Rocks Using Their Images and a Focused-Beam Microscope, Soros. Obraz. Zh., 1997, no. 8, pp. 72–78.
17. Lingtao Mao, Peng Shi, Hui Tu, Liqian An, Yang Ju, and Nai Hao, Porosity Analysis Based on CT Images of Coal under Uniaxial Loading, Advances in Computed Tomography, 2012, no. 1, pp. 5–10. http://dx.doi.org/10.4236/act.2012.12002.
18. Viljoen, J., Campbell, Q.P., le Roux, M., and Hoffman, J., The Qualification of Coal Degradation with the Aid of Micro-Focus Computed Tomography, South African Journal of Science, 2015, vol. 11, pp. 9–105.
19. Bulat, A.F. and Dyrda, B.I., Fraktaly v geomekhanike (Fractals in Geomechanics), Kiev: Naukova Dumka, 2005.
20. Alekseev, A.D., Vasilenko, T.A., and Kirillov, A.K., Fractal Analysis of the Hierarchic Structure of Fossil Coal Surface, J. Min. Sci., 2008, vol. 44, no. 3, pp. 235–244.
21. State Standard GOST 18442. 80. Kontrol’ nerazrushayushchii. Kapillyarnye metody. Obshchie trebovaniya (Nondestructive Control. Capillary Methods, Genera Requirements).
22. Bagrintseva, K.I., Treshchinovatost’ osadochnykh porod (Jointing of Sedimentary Rocks), Moscow: Nedra, 1982.
23. State Standard GOST 55663–2013 (ISO 7404–2Zh209). Metody petrograficheskogo analiza uglei (Methods of Petrographic Analysis of Coal).
24. Malyshev, Yu.N., Ttrubetskoy, K.N., and Airuni, A.T., Fundamental’nye i prikladnye metody resheniya problemy metana ugol’nykh plastov (Fundamental and Applied Methods to Solve the Coalbed Methane Problem), Moscow: AGN, 2000.
25. Bobin, V.A., Energy State of the Natural Microporous Coal–Gas System, GIAB, 2002, no. 6, pp. 40–42.
26. SIAMS. Mineral C7òì. User’s Manual, Ekaterinburg: SIAMS, 2012.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå