JMS, Vol. 52, No. 5, 2016
GEOMECHANICS
PROCEDURE AND RESULTS OF SEISMIC INVESTIGATIONS INTO CAUSES OF LANDSLIDES IN PERMAFROST ROCKS
M. V. Kurlenya, G. S. Chernyshov, A. S. Serdyukov, A. A. Duchkov, and A. V. Yablokov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru
Trofimuk Institute of Petroleum Geology and Geophysics,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
The article focuses on seismic monitoring of causes of landslides. Such studies are of great importance in open pit mining in permafrost rocks. Extensive mining-induced impact in combination with natural thawing of permafrost as a consequence of the planet warming may end in catastrophe. The authors describe a procedure for plotting velocity profiles of seismic waves along slopes in the presence of extremely contrast discontinuities conditioned by permafrost rocks. The presented approach enables studying slip surfaces of landslides and detecting potential failure zones where wave velocities are lower due to extensive jointing. The processed field data obtained in the area near Chagan-Uzun settlement in Kosh-Agach district of the Republic of Altai are reported.
Permafrost rock, slope stability, landslides, shallow seismic exploration, P-waves, travel–time field method, tomography, slip surface
DOI: 10.1134/S1062739116041273 REFERENCES
1. Velikin, S.A., Marchenko, Yu.I., and Bazhin, K.I., Geophysical Studies of Geotechnical–Geocryological State of Host Rock Mass of the Eastern Pitwall in Nyurbinsky Open Pit Mine (Western Yakutia), Vestn. KRAUNTs, Series on Geosciences, 2015, no. 3, pp. 35–46.
2. Bulygina, O.N., Korshunova, N.N., and Razuvaev, V.N., Application-Specific Databases on Climatic Resources for Different Economy Sectors, Climatic Resources and Their Representations for Application: Conf. Proc., Saint-Petersburg, 2005, pp. 146–150.
3. Rekomendatsii po inzhenerno-geologicheskim izyskaniyam v raionakh razvitiya opolznei (Guidelines for Engineering–Geological Studies in landslide Areas), Moscow: 1969.
4. Voronkov, O.K., Motorin, G.A., Mikhailovsky, G.V., and Kuntsevich, S.P., Seismo-Geological Classifications of Ground in Permafrost Zone, Kriosfera Zemli, 1997, no. 3, pp. 47–54.
5. Skvortsov, A.G., Sadurtinov, M.R., and Tsarev, A.M., Seismic Criteria to Identify Frozen Rocks, Kriosfera Zemli, 2014, no. 2, pp. 83–90.
6. Gol’din, S.V., Kisileva, L.G., Pashkov, V.G., and Chernyak, V.S., 2D Kinematic Interpretation of Seismograms in Layered Media, Trudy IGiG SO RAN, 1993, issue 808.
7. Kurlenya, M.V., Serdyukov, A.S., Chernyshov, G.S., Yablokov, A.V., Dergach, P.A., and Duchkov, A.A., Procedure and Evidence of Seismic Research into Physical Properties of Cohesive Soil, J. Min. Sci., 2016, vol. 52, no. 3, pp. 417–423.
8. Serdyukov, A.S., Patutin, A.V., and Shilova, T.V., Numerical Evaluation of the Truncated Singular Value Decomposition within the Seismic Traveltimes Tomography Framework, Journal of Siberian Federal University. Mathematics & Physics, 2014, vol. 7, no. 2.
9. Sethian, J.A., Fast Marching Level Set Method for Monotonically Advancing Fronts, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 1591–1595.
10. Crandall, M.G. and Lions, P.L., Viscosity Solutions of Hamilton–Jacobi Equations, Transactions of the American Mathematical Society, 1983, vol. 277, no. 1, pp. 1–42.
APPLICATIONS OF NON-ARCHIMEDEAN ANALYSIS
IN THE BLOCK HIERARCHICAL ROCK MASS MECHANICS
A. F. Revuzhenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: revuzhenko@yandex.ru
he article considers applicability of non-Archimedean analysis to multi-scale rock mass modeling based on the concept of dissipation function. In the capacity of coordinates, the author introduces non-Archimedean lines of infinite hierarchy. Basic definitions of univariate analysis are generalized for a two-dimensional case.
Subsurface, hierarchy, deformation, dissipation function, non-Archimedean value
DOI: 10.1134/S1062739116041285 REFERENCES
1. Bulat, A.F. and Dyrda, V.I., Fraktaly v geomekhanike (Fractals in Geomechanics), Kiev: Naukova
dumka, 2005.
2. Zhuravkov, M.A. and Romanova, N.S., Determination of Mechanical Properties of Geomaterials Based on Nano-Indentation Tests and Fraction Order Models, J. Min. Sci., 2016, vol. 52, no. 2, pp. 207–217.
3. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanism of Deformation of a Granular Material under High Shear, J. Min. Sci., 1974, vol. 10, no. 3, pp. 374–377.
4. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. Akad. Nauk, 1979, vol. 247, no. 4, pp. 829–832.
5. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Dynamics of Deformation of Block Rock Masses), Moscow: Akademkniga, 2003.
6. Osokina, D.N., Hierarchical Properties of Tectonic Stress Field, Polya napryazhenii i deformatsii v zemnoi kore (Fields of Stresses and Strains in the Earth Crust), Yu.D. Bulanzhe (Ed.), Moscow: Nauka, 1987.
7. Rebetsky, Yu.L., Napryazheniya i prochnost’ prirodnykh massivov (Stresses and Strength of the Natural Rock Masses), Moscow: Akademkniga, 2007.
8. Adushkin, V.V. and Spivak, A.A., Fizicheskie polya v pripoverkhnostnoi geofizike (Physical Fields in the Subsurface Geophysics), Moscow: Geos, 2014.
9. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Features of Rock Mass Response to Near-Field Blasting, Dokl. Akad. Nauk, 1987, vol. 293, no. 1, pp. 67–70.
10. Adushkin, V.V., Garnov, V.V., Kurlenya, M.V., Oparin, V.N., and Revuzhenko, A.F., Alternating Response of Rocks to Dynamic Impact, Dokl. Akad. Nauk, 1992, vol. 323, no. 2, pp. 263–269.
11. Revuzhenko, A.F., Mathematical Apparatus for Describing the Structural Levels of Geological Media, J. Min. Sci., 1997, vol. 33, no. 3, pp. 22–36.
12. Revuzhenko, A.F., Matematicheskii analiz funktsii nearkhimedovoi peremennoi (Mathematical Analysis of Functions of the Non-Archimedean Variable), Novosibirsk: Nauka, 2012.
13. Gel’fond, A.O., Ischislenie konechnykh raznostei (Calculation of Finite Differences), Moscow: KomKniga, 2006.
14. Kats, V.G. and Chen, P., Kvantovyi analiz (Quantum Analysis), Moscow: MTsNMO, 2005.
15. Shishkina, O.A., Euler–Maclaurin Formula for the Rational Parallelotope, Izv. IGU, Series: Mathematics, 2015, vol. 13, pp. 56–71.
16. Orlov, A.I., Statistical Evaluation for Grouped Data, Nauch. Zh. KubGAU, 2014, no. 98(04).
17. Bykovtsev, G.I. and Ivlev, D.D., Teoriya plastichnosti (Theory of Plasticity), Vladivostok:
Dalnauka, 1998.
18. Ishlinsky, A.Yu. and Ivlev, D.D., Matematicheskaya teoriya plastichnosti (Mathematical Theory of Plasticity), Moscow: Fizmatlit, 2001.
CALCULATION OF ROCK MASS STRESSES
CONSIDERING ROCK MASS–SUPPORT INTERACTION IN MINES
V. M. Seryakov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: vser@misd.nsc.ru
The article describes a proved method to calculate stress state of support and surrounding rock mass, considering roof and wall rocks displacement until the contact with the support. The method is based on the use of the intact rock mass stiffness matrix formed prior to mining. Modeling of drivage using the method of initial stresses allows splitting the problem into two subproblems: the first subproblem is on mechanical state of rock mass during roof and wall rocks displacement, the second subproblem describes joint deformation of roof rock, walls rocks and support. The cases of stress calculation for rocks and support, considering support installation conditions, are described. The stress behavior depending on the value of roof and wall rocks displacement until the contact with the support is determined. The features of the method application in case of greatly different mechanical characteristics of rocks and support are discussed.
Rocks, underground excavation, support, stress, strain, calculation, stiffness matrix, initial stress method, roof and wall rocks displacement, contact interaction
DOI: 10.1134/S1062739116041297 REFERENCES
1. Seryakov, V.M., Calculating Stresses in Support and Sidewall Rocks in Stagewise Face Drivage in Long Excavations, J. Min. Sci., 2015, vol. 51, no. 4, pp. 673–678.
2. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii v primerakh i zadachakh (Mechanics of Underground Structures in Exercises and Problems), Moscow: Nedra, 1994.
3. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1994.
4. Protosenya, A.G., Dolgy, I.E., and Ogorodnikov, Yu.N., Shakhtnoe i podzemnoe stroitel’stvo v primerakh i zadachakh (Mine and Underground Construction in Exercises and Problems), Saint-Petersburg: Gorn. Inst. Plekhanova, 2003.
5. Bulychev, N.S., Fotieva, N.N., and Strel’tsov, E.V., Proektirovanie i raschet krepi kapital’nykh gornykh vyrabotok (Design of Support for Permanent Underground Workings), Moscow: Nedra, 1986.
6. Baklashov, I.V. and Kartoziya, B.A., Mekhanika podzemnykh soorizhenii i konstruktsii krepei (Mechanics of Underground Structures and Support Designs), Moscow: Nedra, 1992.
7. Nasonov, I.D., Fedyukin, V.A, and Shuplik, M.N., Tekhnologiya stroitel’stva podzemnykh sooruzhenii (Technology of Construction of Underground Structures), Moscow: Nedra, 1992.
8. Kartoziya, B.A., Fedunets, B.I. et al., Shakhtnoe i podzemnoe stroitel’stvo: ucheb. dlya vuzov (Mine and Underground Construction: University Textbook) vol. 2, Moscow: AGN, 2003.
9. Zienkiewicz, O. C. The Finite Element Method in Engineering Science, McGraw Hill, 1971.
10. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennnye geomekhanicheskie polya napryazhenii (Mining-Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
11. Seryakov, V.M., On One Approach to Calculation of the Stress–Strain State of a Rock Mass in the Vicinity of a Goaf, J. Min. Sci., 1993, vol. 33, no. 2, pp. 113–119.
12. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan, E.V., Osnovy mekhaniki gornykh porod (Fundamentals of Rock Mechanics), Leningrad: Nedra, 1989.
PEAK LOADS ON FEEDERS IN GRAVITY RECLAIM STOCKPILES
OF BROKEN ROCKS
A. A. Kramadzhyan, E. P. Rusin, S. B. Stazhevsky, and G. N. Khan
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: gmmlab@misd.nsc.ru
Actual physical models and discrete element method are used to analyze stress-strain state of broken rocks at the moment when an apron feeder starts discharge from floor storage. It is shown that conventional designs of discharge units of floor storages fail to eliminate broken rock dilatancy which is a determinant of the peak load on the feeder at the moment of its actuation. Based on the investigation results, the authors propose an approach to filling floor storages with broken rock and a structural layout for the storage discharge unit. The offered engineering solutions enable preventing from dilatancy-induced impact on stress state of broken rock being processed and, as a result, elimination of peak loads on feeders.
Broken ore, dilatancy, dilatational strengthening, dilatancy “traps,” peak load, gravity reclaim stockpile, discharge unit, apron feeder, convergent channel
DOI: 10.1134/S1062739116041309 REERENCES
1. Kramadzhyan, A.A., Rusin. E.P., Stazhevsky, S.B., and Khan, G.N., Mechanism for Generation of Peak Load on Under-Bin Feeders at Processing Plants, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1077–1084.
2. Roberts, A.W., Ooms, M., and Manjunath, K.S., Feeder Loads and Power Requirements in the Controlled Gravity Flow of Bulk Solids from Mass-Flow Bins, Transactions I. E. Aust., Australian Journal of Mechanical Engineering, 1984, vol. 9, no. l, pp. 49–61.
3. Kramadzhyan, A.A., Mirenkov, V.E., and Stazhevsky, S.B., Load Pressures on Subhopper Feeders with a Traction Motor, J. Min. Sci., 1982, vol. 18, no. 4, pp. 265–274.
4. Issledovanie vliyaniya konfiguratsii bunkera, sposobov ego zagruzki i konstruktsii razgruzochnykh uzlov na ravnomernost’ i polnoty vypuska droblenoi rudy, imeyushchei razlichnye fiziko-mekhanicheskie svoistva (Influence of Bunker Geometry, Filling Method and Discharge Unit Design on the Discharge Uniformity and Completeness in Case of Crushed Ore with Varied Physico-Mechanical Properties), Leningrad: Mkhanobr, 1983.
5. Bobryakov, A.P. and Revuzhenko, A.F, Uniform Displacement of a Granular Material. Dilatancy, J. Min. Sci., 1982, vol. 18, no. 5, pp. 373–379.
6. Zenkov, R.L., Mekhanika nasypnykh gruntov (Bulk Soil Mechanics), Moscow: Mashinostroenie, 1964.
7. Kramadzhyan, A.A. and Rusin, E.P., Method to Analyze Deformation and Structure of Granular Material in Transmitted Light, Interexpo Geo-Sibir 2010 Proc., Novosibirsk: SGGA, 2010, pp. 164–169.
8. Khan. G.N., Non-Symmetrical Failure Behavior of Rock Mass around a Cavity, Fiz. Mezomekh., 2008, vol. 11, no. 1, pp. 109–114.
9. Cundall, P.A. and Strack, O. D. L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29, pp. 47–65.
10. Stazhevsky, S.B., Kolymbas, D., and Herle, I., Sand-Anchors, Theory and Application, Anchors in Theory and Practice, Proc. Int. Symp. Anchors in Theory and Practice, Salzburg: A. A. Balkema, Rotterdam, Brookfield, 1995, pp. 367–371.
11. Stazhevsky, S.B., Origination and Development Mechanics of the Earth’s Morphostructures. Part II: Etiology and Evolution of the Patomsky Crater, J. Min. Sci., 2011, vol. 47, no. 4, pp. 413–426.
12. Dubynin, N.G., Vypusk rudy pri podzemnoi razrabotke (Ore Draw in Underground Mining)., Moscow: Nedra, 1965.
13. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Non-Symmetry of Plastic Flow in Convergent Axisymmetric Channels, Dokl. Akad. Nauk, 1979, vol. 246, no. 3, pp. 572–574.
14. Sharp, J., Wittek, A., and Liddle, G., Feeder Loads Investigation, CEED Seminar Proceedings, Crawley, WA, Australia, 2015. Available at: http://www.ceed.uwa.edu.au/__data/page/189986/ Sharp.pdf (21.06.2016).
WEAK WAVES UNDER PERIODIC LOAD APPLIED TO. A. PACKING
OF GLASS BALLS
A. P. Bobryakov, V. P. Kosykh, and A. F. Revuzhenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bobriakov@ngs.ru
Based on the tests of packings of calibrated glass balls with a diameter of 1 mm, it is shown that multiple point impacts improve waveguide characteristics of the medium—conducting paths composed of force “chains” emerge in the test material. The further quasi-static alternating shears change the packing of particles, break the chains and reduce conduction. If continued onward, the multiple impulsive loading results in recovery of the “chains” and in better conduction of the paths.
Packing of balls, granular material, dynamic loads, stress, force “chains,” shears, amplitude, velocity
DOI: 10.1134/S1062739116041310 REFERENCES
1. Hilbert, D., Izbrannye trudy (Collected Works), A. N. Parshin (Ed.), Moscow: Faktorial, 1998.
2. Kepler, J., On the Six-Cornered Snowflake, Paul Dry Books, 2010.
3. Deresiewicz, H., Mechanics of Granular Medium, Advances in Applied Mechanics, 1958, vol. 5, Academic Press, pp. 233–306.
4. Hilbert, D. and Cohn-Vossen. S., Geometry and Imagination, Amer. Math. Soc. Hill, 1999.
5. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vyssh. Shkola, 1984.
6. Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, Part I, John Wiley&Sons, 1972.
7. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Uniform Displacement of a Granular Material. Dilatancy, J. Min. Sci., 1982, vol. 18, no. 5, pp. 373–379.
8. Allersma, H.G., Photo-Elastic Stress Analysis and Strains in Simple Shear, Deform. and Failure Granular Mater., Rotterdam, 1982, pp. 345–353.
9. Drescher, A. and de Josselin de Jong G., Photoelastic Verification of a Mechanical Model for the Flow of a Granular Material, J. Mech. Phys. Solids, 1972, vol. 20, no. 5, pp. 337–351.
10. Kocharyan, G.G., Markov, V.K., Ostapchuk, A.A., and Pavlov, D.V., Mesomechanics and Shear Resistance of a Fracture with a Fill, Fiz. Mezomekh., 2013, vol. 16, no. 5, pp. 5–15.
11. Kocharyan, G.G. and Ostapchuk, A.A., Acoustic Emission during Different-Type Inter-Block Movements, J. Min. Sci., 2015, vol. 51, no. 1, pp. 1–9.
12. Vilchinska, N.A., Wave of Sand Repacking and Acoustic Emission, Dokl. Akad. Nauk, 1982, vol. 262,
no. 3, pp. 568–572.
13. Vilchinska, N.A., Force Chains in Granular Media and Ultrasound Impulse Propagation in Sand Specimen under Load, Electronic Journal Technical Acoustics, http://www.ejta.org, 2007, 20.
14. Kolesnikov, Yu.I. and Mednykh, D.A., Peculiarities of Acoustic Waves Propagation in Moist Sand, Fiz. Mezomekh., 2004, vol. 7, no. 1, pp. 69–74.
15. Zaitsev, V.Yu., Gurbatov, S.N., and Pronchatov-Rubtsov, N.V., Nelineinye akusticheskie yavleniya v strukturno-neodnorodnykh sredakh (Nonlinear Acoustic Events in Structurally Nonuniform Media), Nizhni Novgorod: IPF RAN, 2009.
16. Kulikov V. A. and Sibiryakov, E.B., Propagation of Strong Waves in Nonuniform Granular Media, Dinamika sploshnoi sredy. Akustika neodnorodnykh sred (Dynamics of Continuum, Acoustics of Nonuniform Media), Novosibirsk: IGiL SO RAN, issue 121, pp. 103–110.
17. Gol’din, S.V., Kolesnikov, S.V., and Polozov, S.V., Propagation of Acoustic Waves in Soil under Varying Shear Stress (to Failure), Fiz. Mezomekh., 1999, vol. 2, no. 6, pp. 105–113.
18. Kolesnikov, S.V., Gol’din, S.V., and Polozov, S.V., Change in Acoustic Properties of Most Soil
under Deformation by Shearing (Lab Test Results), Dinamika sploshnoi sredy. Akustika neodnorodnykh sred (Dynamics of Continuum, Acoustics of Nonuniform Media), Novosibirsk: IGiL SO RAN,
issue 121, pp. 97–102.
19. Kolesnikov, S.V., Gol’din, S.V., and Polozov, S.V., Laboratory Investigation of Acoustic Properties of Soil under Shearing Destructive Deformation, Proc. Sci. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 1999, pp. 195–199.
STRESS DEPENDENCE OF ELASTIC P-WAVE VELOCITY AND AMPLITUDE IN COAL SPECIMENS UNDER VARIED LOADING CONDITIONS
V. L. Shkuratnik, P. V. Nikolenko, and A. E. Koshelev
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: ftkp@mail.ru
Gazprom Geotechnology,
ul. Stroitelei 8, Bld. 1, Moscow, 119311 Russia
Experiments allowed finding regular patterns in propagation of elastic P-waves in specimens of black coal exposed to uniaxial compression and triaxial compression by von Karman. It is shown that in case of uniaxial compression, the largest information content is ensured by translucence in perpendicular to bedding and loading axis of coal specimens. Such translucence exhibits four stages of deformation of a specimen. The information content of translucence under triaxial compression reduces with the increase in the constrained pressure that prevents from disintegration of a coal specimen. Four deformation stages are best identified with the constrained pressure of 2.5 MPa, while only stages of specimen consolidation and failure are traced at the pressure of 10 MPa.
Black coal, elastic waves, specimen, laboratory test, ultrasound, one- and bi-axial loading, Kuznetsk Coal Basin
DOI: 10.1134/S1062739116041322 REFERENCES
1. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission I Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.
2. Azarov, N.Ya. and Yakovlev, D.V., Seismoakusticheskii metod prognoza gorno-geologicheskikh uslovii ekspluatatsii ugol’nykh mestorozhdenii (Acoustics Method to Predict Ground Conditions at Coal Deposits), Moscow: Nedra, 1988.
3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part IV, J. Min. Sci., 2016, vol. 52, no. 1, pp. 1–35.
4. Nazarov, L.A., Determination of Properties of Structure Rock Mass by the Acoustic Method, J. Min. Sci., 1999, vol. 35, no. 3, pp. 240–249.
5. Zakharov, V.N., Seismoakusticheskoe prognozirovanie i kontrol’ sostoyaniya i svoistv gornykh porod pri razrabotke ugol’nykh mestorozhdenii (Acoustic Prediction and Control of State and Properties of Rocks in Coal Mining), Moscow: IGD Skochinskogo, 2002.
6. Feng, Z., Mingjie, X., Zhonggao, M., Liang, C., Zhu, Z., and Juan, L., An Experimental Study on the Correlation between the Elastic Wave Velocity and Microfractures in Coal Rock from the Qingshui Basin, Journal of Geophysics and Engineering, 2012, vol. 9, issue 6, pp. 691–696.
7. Zagorskii, L.S. and Shkuratnik, V.L., Method of Determining the Vertical Seismic Profile of a Rock Massif Using Rayleigh-Type Waves, Acoustical Physics, 2013, vol. 59, issue 2, pp. 197–206.
8. Nikolenko, P.V. and Shkuratnik, V.L., Acoustic Emission in Composites and Applications for Stress Monitoring in Rock masses, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1088–1093.
9. Rzhevsky, V.V. and Yamshchikov, V.S., Akusticheskie metody issledovaniya i kontrolya gornykh porod v massive (Acoustic Method for Rock Mass Investigation and Control), Moscow: Nedra, 1973.
10. Nazarov, L.A., Nazarova, L.A., Romensky, E.I., Cheverda, V.A., and Epov, M.I., Acoustic Method for Determining Stress State of Rocks Based on Solution of Inverse Kinematic Problem of Seismology, Dokl. Akad. Nauk, 2016, vol. 466, no. 6, pp. 718–721.
11. Nazarova, L.A., Nazarov, L.A., and Protasov, M.I., Reconstruction of 3D Stress Field in Coal–Rock Mass by Solving Inverse Problem Using Tomography Data, J. Min. Sci., 2016, vol. 52, no. 4, pp. 623–631.
12. Ivanov, V.I. and Belov, N.I., Influence of Stress Tensor Components on the Assessment of Stress State of Rocks by Elastic Wave Velocities, Geofizicheskie sposoby kontrolya napryazhenii i deformatsii (Geophysical Methods of Stress and Strain Control), Novosibirsk: IGD SO RAN, 1985, pp. 3–6.
13. Fjaer, E., Static and Dynamic Moduli of a Weak Sandstone, Geophysics., 2009,
vol. 74(2), WA103–WA112.
14. Pervukhina, M., Gurevich, B., Dewhurst, D.N., and Siggins, A.F., Applicability of Velocity–Stress Relationships Based on the Dual Porosity Concept to Isotropic Porous Rocks, Geophysical Journal International, 2010, vol. 181, no. 3, pp. 1473–1479.
15. Lokajicek, T., Svitek, T., and Petruzalek, M., Laboratory Approach to the Study of Dynamic and Static Bulk Anisotropy in Rock under High Hydrostatic Pressure by Simultaneous P, S Sounding and Sample Deformation Measurements on Spheres, 48th US Rock Mechanics, Geomechanics Symposium, 2014,
vol. 2, pp. 988–994.
16. Pimienta, L., Fortin, J., and Gueguen, Y., Bulk Modulus Dispersion and Attenuation in Sandstones,
Geophysics, 2015, vol. 80, issue. 2, pp. 111–127.
17. Meng, Z.-P., Zhang, J.-C., and Tiedemann, J., Relationship between Physical and Mechanical Parameters and Acoustic Wave Velocity of Coal Measures Rocks, Chinese Journal of Geophysics, 2006, vol. 49,
issue 5, pp. 1505–1510.
18. Wei, X., Wang, S.-X., Zhao, J.-G., Tang, G.-Y., and Deng, J.-X., Laboratory Study of Velocity Dispersion of the Seismic Wave in Fluid-Saturated Sandstones, Chinese Journal of Geophysics, 2015, vol. 58,
issue 9, pp. 3380–3388.
19. Zheng, Z., Khodaverdian, M., and McLennan, J.D., Static and Dynamic Testing of Coal Specimens, SCA Conference, 1991, pp. 9120.
20. Yao, Q. and Han, D., Acoustic Properties of Coal from Lab Measurement, 80th Annual International Meeting, SEG, Expanded Abstracts, 2008, 27, pp. 1815–1819.
21. Haibo Wu, Shouhua Dong, Donghui Li, Yaping Huang, and Xuemei Qi, Experimental Study on Dynamic Elastic Parameters of Coal Samples, International Journal of Mining Science and Technology, 2015, vol. 25, no. 3, pp. 447–452.
22. Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N., Nonlinear Deformation–Wave Processes in Various Rank Coal Specimens Loaded to failure under Varied Temperature, J. Min. Sci., 2015, vol. 51, no. 4, pp. 641–658.
23. Cai, Y., Liu, D., Mathews, J.P., Pan, Z., Elsworth, D., Yao, Y., Li, J., and Guo, X., Permeability Evolution in Fractured Coal—Combining Triaxial Confinement with X-Ray Computed Tomography, Acoustic Emission and Ultrasonic Techniques, International Journal of Coal Geology, 2014, vol. 45, pp. 91–104.
24. Shea, V.R. and Hanson, D.R., Elastic Wave Velocity and Attenuation as Used to Define Phases of Loading and Failure in Coal, Int. J. Rock Mech. Min. Sci., 1988, vol. 25, issue. 6, pp. 431–437.
25. Yamshchikov, V.S., Shkuratnik, V.L., and Bobrov, A.V., An Evaluation of the Microcrack Density of Rocks by Ultrasonic Velocimetric Method, J. Min. Sci., 1985, vol. 21, no. 4, pp. 363–366.
TENSILE STRENGTH OF ROCKS BY TEST DATA ON DISC-SHAPED SPECIMENS WITH. A. HOLE DRILLED THROUGH THE DISC CENTER
V. P. Efimov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: efimov-pedan@mail.ru
The author reports test data on disc-shaped specimens of rocks and model media with a hole drilled through the center of the specimens loaded along the diameter. The test data processing uses non-local fracture criteria. The calculated destructive forces are compared with the measured destructive loads. Based on the tests of specimens with the central through holes, the tensile strength algorithm is presented.
Failure, strength, tension, Brazilian specimen, non-local strength criterion
DOI: 10.1134/S1062739116041334 REFERENCES
1. Vvedenie v mekhaniku skal’nykh porod (An Introduction to Hard Rock Mechanics), Moscow: Mir, 1983.
2. Mellor, M. and Hawkes, I., Measurement of Tensile Strength by Diametral Compression of Disks and Annuli, Eng. Geol., 1971, vol. 5, pp. 173–225.
3. Novozhilov, V.V., Necessary and Sufficient Criterion of Brittle Strength, Prikl. Matem. Mekhan., 1969, vol. 33, no. 2, pp. 212–222.
4. Novozhilov, V.V., Basic Theory of Equilibrium Fractures, Prikl. Matem. Mekhan., 1969, vol. 33,
no. 5, pp. 797–812.
5. Lajtai, E.Z., Effect of Tensile Stress Gradient on Brittle Fracture Initiation, Int. J. Rock Mech. Min. Sci., 1972, vol. 9, pp. 569–578.
6. Kharlab, V.D. and Minin, V.A., Strength Criterion Accounting for the Stress Gradient, Issledovanie po mekhanike stroitel’nykh konstruktsii i materialov: sb. tr. (Studies into Mechanics of Building Structures and Materials: Collected Papers), Leningrad: LISI, 1989, pp. 53–57.
7. Novopashin, M.D. and Suknev, S.V., Gradient Criterion of Yield of Structural Elements with Stress Raisers, Modelirovanie v mekhanike: sb. tr. (Modeling in Mechanics: Collected Papers), Novosibirsk, 1987, vol. 1(18), no. 3, pp. 131–140.
8. Legan, M.A., Correlation of Local Strength Gradient Criteria in a Stress Concentration Zone with Linear Fracture Mechanics, J. Appl. Mech. Tech. Phys., 1993, vol. 34, no. 4, pp. 585–592.
9. Mikhailov, S.E., A Functional Approach to Non-Local Strength Condition and Fracture Criteria, Eng. Fract. Mech., 1995, vol. 52, no. 4, pp. 731–754.
10. Kornev, V.M., Generalized Sufficient Strength Criterion. Description of the Pre-Fracture Zone, J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 5, pp. 763–769.
11. Efimov, V.P., Gradient Approach to Determination of Tensile Strength of Rocks, J. Min. Sci., 2002, vol. 38, no. 5, pp. 455–459.
12. Suknev, S.V. and Novopashin, M.D., Gradient Approach to Rock Strength Estimation, J. Min. Sci., 1999, vol. 35, no. 4, pp. 381–386.
13. Suknev, S.V., Tensile Fracturing in Gypsum under Uniform and Nonuniform Distributed Compression, J. Min. Sci., 2011, vol. 47, no. 5, pp. 573–579.
14. Legan, M.A., Kolodezev, V.E., and Sheremet, A.S., Analysis of Brittle Fracture of Foam Polystyrene Plates with Holes, J. Appl. Mech. Tech. Phys., 2001, vol. 42, no. 5, pp. 925–927.
15. Van de Stehen, B. and Vervoort, A., Non-Location Approach to Fracture Initiation in Laboratory Experiments with Tensile Stress Gradient, Mechanics of Materials, 2001, vol. 33, pp. 729–740.
16. Brown, W.F. and Srawley, J.E., Plain Strain Crack Toughness Testing of High Strength Metallic Materials, American Society for Testing and Materials, 1966.
17. Efimov, V.P., Rock Tests in Non-Uniform Fields of Tensile Stresses, J. Appl. Mech. Tech. Phys., 2013, vo. 54, no. 5, pp. 857–865.
DETERMINATION OF PLASTICITY ZONE IN ROCK MASS
WITH. A. LONG CYLINDRICAL OPENING BASED ON THE BOUNDARY DISPLACEMENT MEASUREMENTS
A. I. Chanyshev and I. M. Abdulin
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: a.i.chanyshev@gmal.com
Novosibirsk State University of Economics and Management,
ul. Kamenskaya 52, Novosibirsk, 630099 Russia
By the data on measured displacements at the boundary of a cylindrical underground opening (mine shaft), in the model of a perfectly plastic body, the authors assess deformation of rock mass around the opening and find the elastic–plastic boundary and displacements in the plastic deformation zone.
Plasticity, axially symmetric deformation, displacement, elastic–plastic boundary
DOI: 10.1134/S1062739116041346 REFERENCES
1. Gritsko, G.I., Vlasenko, B.V., and Musalimov, V.M., Experimental–Analytical Methods of Determining the Stresses in a Coal Seam, J. Min. Sci., 1971, vol. 7, no. 1, pp. 1–7.
2. Gritsko, G.I., Vlasenko, B.V., and Mirenkov, V.E., Experimental–Analytical Methods of Determining Deformations and Displacements in Solid Rocks, J. Min. Sci., 1970, vol. 6, no. 3, pp. 241–244.
3. Tsytsarkin, V.N. and Gritsko, G.I., Strata Movements at the Edges of Development Workings and the Load on the Support System, J. Min. Sci., 1966, vol. 2, no. 5, pp. 457–459.
4. Nazarov, L.A., Nazarova, L.A., Usol’tseva, O.M., and Kuchai, O.A., Estimation of State and Properties of Various-Scale Geomechanical Objects Using Solutions of Inverse Problems, J. Min. Sci., 2014, vol. 50, no. 5, pp. 831–840.
5. Nazarov, L.A., Nazarova, L.A., Khan, G.N., and Vandamme, M., Estimation of Dimension of Underground Void in Soil by Subsidence Trough Configuration Based on Inverse Problem Solution, J. Min. Sci., 2014, vol. 50, no. 3, pp. 411–416.
6. Galin, L.A., Plane Elastoplastic Problem, Prikl. Matem. Mekh., 1946, vol. 10, no. 3, pp. 367–386.
7. Ivlev, D.D., Determination of Displacements in Galin’s Problem, Prikl. Matem. Mekh., 1957, vol. 21,
no. 5, pp. 716–717.
8. Ostrosablin, N.I., Elastoplastic Stress Distribution around a Circular Tunnel under Exponential Yield Condition, Gornoe davlenie v kapital’nykh i podgotovitel’nykh vyrabotkakh (Rock Pressure in Permanent and Development Drives), Novosibirsk: IGD SO AN, 1973.
9. Perlin, P.I., Approximate Method to Solve Elastoplastic Problems, Inzh. Sb., 1960, vol. 28, pp. 145–150.
10. Sazhin, V.S., Determining the Range of Inelastic Deformations with Allowance for Variation in the Cohesion of a Rock, J. Min. Sci., 1967, vol. 3, no. 6, pp. 619–621.
11. Mirsalimov, V.M., Solution of Some Periodic Elastoplastic Problems, J. Appl. Mech. Tech. Phys., 1975, vol. 16, no. 6, pp. 933–937.
12. Ivlev, D.D. and Ershov, L.V., Metod vozmushchenii v teorii uprugoplasticheskogo tela (Method of Disturbances in the Theory of Elastoplastic Body), Moscow: Nauka, 1978.
13. Annin, B.D. and Cherepanov, G.P., Uprugoplasticheskaya zadacha (Elastoplastic Problem), Novosibirsk: Nauka, 1983.
14. Protosenya, A.G., Karasev, M.A., and Belyakov, N.A., Elastoplastic Problem for Noncircular Openings under Coulomb’s Criterion, J. Min. Sci., 2016, vol. 52, no. 1, pp. 53–61.
15. Imamutdinov, D.I. and Chanyshev, A.I., Elastoplastic Problem of an Extended Cylindrical Working, J. Min. Sci., 1988, vol. 24, no. 3, pp. 199–207.
16. Ishlinsky, A.Yu., Axially Symmetric Problem and the Brinell Sample, Prikl. Matem. Mekh., 1944,
vol. 8, no. 3.
17. Hoffman, O. and Sachs, G. Introduction to the Theory of Plasticity for Engineers, Literary Licensing, LLC, 2012.
18. Tomlenov, A.D., Teoriya plasticheskikh deformatsii metallov (Napryazhennoe sostoyanie pri kovke i shtampovke) (Theory of Plastic Deformation of Metals: Stress State under Hammering and Impact Molding), Moscow: Mashgiz, 1957.
19. Berezantsev, V.G., Raschet osnovanii sooruzhenii (posobie po proektirovaniyu) (Structure Base Design: Design Manual), Leningrad: Stroiizdat, 1970.
20. Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of the Plasticity Theory), Moscow:
Nauka, 1969.
21. Korn, G. and Korn, T., Spravochnik po matematike (dlya nauchnykh sotrudnikov i inzhenerov) (Reference Book on Mathematics: For Researchers and Engineers), Moscow: Nauka, 1977.
PHYSICAL SIMULATION AND THEORETICAL ESTIMATE
OF GRAVITY-INDUCED HORIZONTAL STRESS IN ROCKS
I. L. Pan’kov
Mining Institute, Ural Branch, Russian Academy of Sciences,
ul. Sibirskaya 78a, Perm, 614007 Russia
e-mail: ivpan@mi-perm.ru
Perm National Research Polytechnic University,
pr. Komsomol’skii 29, Perm, 614990 Russia
Gravity-induced horizontal stress in rocks is assessed in the framework of physical simulation using a flexible thin-walled cylinder. Compression of loose geo-materials changes diameter of the cylinder, which allows estimating horizontal stress. The observed dependences with various compacted geo-materials are then theoretically approximated based on characteristics of porosity, rock deformation modulus and Poisson’s ratio. The obtained relations are applicable to estimation of gravity-induced horizontal stress in an intact rock mass.
Horizontal stress, gravity, consolidating rocks, porosity, deformation modulus, Poisson’s ratio
DOI: 10.1134/S1062739116041358 REFERENCES
1. Baklashov, I.V. and Kartoziya, B.A., Mekhanika gornykh porod (Rock Mechanics), Moscow:
Nedra, 1975.
2. Kaspar’yan, E.V., Kozyrev, A.S., Iofis, M.A., and Makarov, A.B., Geomekhanika: ucheb. posob. (Geomechanics: Educational Aid), Moscow: Vyssh. shk., 2006.
3. Borshch-Komponiets, V.I., Prakticheskaya mekhanika gornykh porod (Practical Rock Mechanics), Moscow: Gornaya kniga, 2013.
4. Makarov, A.B., Prakticheskaya mekhanika: posobie dlya gornykh inzhenerov (Practical Mechanics: Guidance for Mining Engineers), Moscow: Gornaya kniga, 2006.
5. Heim, A., Untersuchungen uber den Mechanismus der Gebirgsbildung, 1878, Bd. 1–2, Atlas, Basel.
6. Dinnik, A.N., Rock Pressure and Support Design for Circular Tunnels, Inzh. Rab., 1925, no. 7, pp. 1–12.
7. Kaspar’yan, E.V., Ustoichivost’ gornykh vyrabotok v skal’nykh massivakh (Stability of Mine Workings in Hard Rocks), Leningrad: Nauka, 1985.
8. Vasil’ev, L.M., Mechanism of Normal Horizontal Stresses in Rock, GIAB, 2008, no. 5, pp. 190–195.
9. Olovyanny, A.G., Horizontal Stress in Rocks, Zap. Gorn. Inst., 2010, vol. 185, pp. 141–147.
10. Siidov, V.N. and Pupkov, V.S., Modulus of Deformation and Horizontal Earth Pressure Coefficient in Broken Rocks, Sb. Nauch. Trudov DonGTU, 2011, no. 34, pp. 81–88.
11. Kartashov, Yu.M., Matveev, B.V., Mikheev, G.V., and Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Strength and Deformability of Rocks), Moscow: Nedra, 1979.
12. Popov, A.N., Golovkina, N.N., and Ismakov, R.A., Determination of Horizontal Earth Pressure Coefficient in Rocks by Field Data, Neftegaz. Delo, 2005, no. 2, URL: http://ogbus.ru/authors/Popov/Popov_1.pdf.
13. Pan’kov, I.L. and Novoselova, I.G., Experimental Studies of the Energy of Stick-Slip Effect at Contact of Rock and Metal, Nauch. Issled. Innovats., 2011, vol. 5, no. 1, pp. 153–155.
14. Dibir, A.G., Makarov, O.V., Pekel’ny, N.I., Yudin, G.I., and Grebennikov, M.N., Prakticheskie raschety na prochnost’ konstruktivnykh elementov: ucheb. posob. (Practical Calculations of Strength of Structural Elements: Educational Aid), Kharkov: KhAI, 2007.
15. Timoshenko, S.P. and Voinovsky-Kriger, S. Plastinki i obolochki (Plates and Shells), Moscow:
Nauka, 1966.
ROCK FAILURE
EXPERIMENTAL REGULARITIES IN FORMATION OF SUBMICRON PARTICLES UNDER ROCK FAILURE
S. D. Viktorov and A. N. Kochanov
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: victorov_S@mail.ru
Based on the developed procedure, experimental regularities are obtained for the formation of submicron particles under rock failure. The experiments involved explosion load on rock specimens and their uniaxial compression with the concurrent control over size and amount of particles until failure using laser spectrometry. It is found that most of all particles are formed in the size grade of a few microns irrespective of the kind of loading. Dynamics of the formation of particles depends on structural characteristics of specimens and on the value of the compression stress. The authors emphasize the promising nature of the experimental results usable both in the environmental monitoring and for disaster prediction in the course of mining.
Submicron particles, rocks, failure, experiment, explosion load, uniaxial compression, procedure, laser spectrometry, ecology, prediction
DOI: 10.1134/S1062739116041370 REERENCES
1. Trubetskoy, K.N., Viktorov, S.D., Galchenko, Yu.P., and Odintsev, V.N., Mining-Generated Mineral Particles as a Problem of Subsoil Development, Vestn. RAN, 2006, vol. 76, no. 4, pp. 318–332.
2. Chanturia, V.A., Trubetskoy, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya geomaterialov (Nanoparticles in the Processes of Destruction and Uncovering of Geomaterials), Moscow: IPKON RAN, 2006.
3. Aleksandrov, P.A., Kalechits, VI., Khozyasheva, E.S., Chechuev, P.V., Analysis of Particle Generation under Rupture of Metals, Vopr. Atom. Nauki Tekhn., Seriya: Termoyadern. Sintez, 2003, no. 3, pp. 73–77.
4. Viktorov, S.D., Kochanov, A.N., Aleksandrov, P.A., Kalechits, V.I., and Shakhov, M.N., Microstructure and Disperse Content of Rocks after Intense Dynamic Impact, Inzh. Fiz., 2010, no. 6, pp. 39–44.
5. Kudryashov, V.V., Viktorov, S.D., and Kochanov, A.N., On Particle Size Distribution in Rocks under Failure, J. Min. Sci., 2006, vol. 42, no. 6, pp. 583–586.
6. Urakaev, F.Kh. and Massalimov, I.A., Energy Fluctuations and Emission Phenomena at a Crack Mouth, Fiz. Tverd. Tela, 2005, vol. 47, no. 9, pp. 1614–1618.
7. Kochanov, A.N., Features of Rock Failure and Fine Disperse Particles Generation under Blast, Nauch. Soobshch. IGD Skochinskogo, 2005, issue 331, pp. 77–81.
8. Efremov, E.I., Petrenko, V.D., and Kratkovsky, I.L., Problem of Destruction and Disintegration of Polymineral Rocks under Different Type Loading, Proc. 10th Int. Conf. Rock Mechanics, Moscow: IGD Skochinskogo, 1994.
9. Viktorov, S.D., Kochanov, A.N., Odintsev, V.N., and Osokin, A.A., Emission of Submicron Particles in Rocks under Deformation, Izv. RAN, Ser. Fiz., 2012, vol. 76, no. 3, pp. 339–341.
10. Viktorov, S.D., Kochanov, A.N., and Osokin, A.A., Defining Pre-Failure State in Rocks by Generation of Micro- and Nanosize Particles, GIAB, 2010, vol. 1`, no. 12, pp. 88–93.
11. Viktorov, S.D., Zakalinsky, V.M., and Kochanov, A.M., Generation and Spread of a Dust and Gas
Cloud under Construction of Kambaratinskaya Hydraulic Power Plant 2, Vzryv. Delo, 201,
no. 108/65, pp. 264–272.
12. Kochanov, A.N., Experimental Analysis of Microparticle under Failure of Ferruginous Quartzite by Large-Scale Blast, Proc. 5th Sci. Conf. New Technologies in Geosciences, Nalchik: KBGU, 2015, pp. 45–48.
13. Mokhov, A.V., Integrated Study of Ultradisperse Fraction of Lunar Regolith by Scanning Electron Microscopy and Transmission Electron Microscopy, Proc. 26th Rus. Conf. Electron Microscopy, Zelenograd: 2016, pp. 622–623.
14. Eremenko, A.A., Gaidin, A.P., Vaganova, V.A., and Eremenko, V.A., Rockburst-Hazard Criterion of Rock Mass, J. Min. Sci., 1999, vol. 35, no. 6, pp. 598–601.
15. Bobryakov, A.P., Kramarenko, V.I., Revuzhenko, A.P., and Shemyakin, E.I., Rock Spalling, J. Min. Sci., 1980, vol. 16, no. 5, pp. 381–389.
16. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanism of Deformation of a Granular Material under High Shear, J. Min. Sci., 1974, vol.0, no. 3, pp. 374–377.
17. Shemyakin, E.I., Free Failure of Solids, Dokl. Akad. Nauk SSSR, 1991, vol. 316, no. 6, pp. 1371–1373.
18. Bazant, Z.P., Lin, F.B., and Lippman, H., Fracture Energy Release and Site Effect in Borehole Breakout, Int. J. Numer. Anal. Meth. Geomech., 1993, vol. 17, pp. 1–14.
19. Gol’dshtein, R.V. and Osipenko, N.M., Structures of Failure under Intensive Compression, Problemy mekhaniki deformiruemykh tverdykh tel i gornykh porod: sb. statei k 75-let. E. I. Shemyakina (Problems of Mechanics of Deformable Solids and Rocks: Collected Papers Devoted to E. I. Shemyakin’s 75th Anniversary), D. D. Ivlev and N. F. Morozov (Eds.), Moscow: Fizmatlit, 2006, pp. 152–165.
20. Botvina, L.R., Evolution of Damage at Different Scales, Fiz. Zemli, 2011, no. 10, pp. 5–8.
21. Viktorov, S.D., Generation of Submicron Particles in Mining and a New Method to Estimate Disastrous Events, Vestn. RAN, 2013, vol. 83, no. 4, pp. 300–306.
MECHANICAL PROPERTIES OF COAL MICROCOMPONENTS
UNDER CONTINUOUS INDENTATION
E. L. Kossovich, N. N. Dobryakova, S. A. Epshtein, and D. S. Belov
National University of Science and Technology—MISIS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: apshtein@yandex.ru
The article reports data on continuous indentation of different rank black coal and anthracite. The test specimens are specially prepared, and their faces are differently oriented relative to their bedding planes. Different mechanical behavior of coal and anthracite microcomponents in different planes relative to bedding is identified, and relevant values of elasticity modulus and hardness are determined. The measurements exhibit spatial anisotropy of microlevel mechanical properties of vitrinite and inertinite.
Coal, vitrinite, inertinite, microcomponents, continuous indentation, mechanical properties, elasticity modulus, hardness, anisotropy
DOI: 10.1134/S1062739116041382 REFERENCES
1. Lomtadze, V.D., Fiziko-mekhanicheskie svoistva gornykh porod. Metody laboratornykh issledovanii (Physico-Mechanical Properties of Coal. Laboratory Research Techniques), Leningrad: Nedra, 1990.
2. Gonzatti, C., Zorzi, L., Agostini, I.M., Fiorentini, J.A., Viero, A.P., and Philipp, R.P., In Situ Strength of Coal Bed Based on the Size Effect Study on the Uniaxial Compressive Strength, Int. J. Mining Sci. and Technology, 2014, vol. 24(6), pp. 747–754.
3. West, R.D., Markevicius, G., Malhotra, V.M., and Hofer, S., Variations in the Mechanical Behavior of Illinois Bituminous Coals, Fuel, 2012, vol. 98, pp. 213–217.
4. Zhong, S., Baitalow, F., Nikrityuk, P., Gutte, H., and Meyer, B., The Effect of Particle Size on the Strength Parameters of German Brown Coal and Its Chars, Fuel, 2014, vol. 125, pp. 200–205.
5. Zhang, Z., Zhang, R., Li, G., Li, H., and Liu, J., The Effect of Bedding Structure on Mechanical Property of Coal, Advances in Materials Science and Engineering, 2014, vol. 2014, pp. 1–7.
6. Proskuryakov, N.M., Upravlenie sostoyaniem massiva gornykh porod (Rock Mass State Control), Moscow: Nedra, 1991.
7. Kozusnikova, A., Determination of Microhardness and Elastic Modulus of Coal Components by Using Indentation Method, GeoLines, 2009, vol. 22, pp. 40–43.
8. Manjunath, G.L. and Nair, R.R., Implications of the 3D Micro Scale Coal Characteristics along with Raman Stress Mapping of the Scratch Tracks, Int. J. of Coal Geology, 2015, vol. 141, pp. 13–22.
9. Epshtein, S.A., Borodich, F.M., and Bull, S.J., Evaluation of Elastic Modulus and Hardness of Highly Inhomogeneous Materials by Nanoindentation, Applied Physics A, 2015, vol. 119(1), pp. 325–335.
10. Borodich, F.M., Bull, S.J., and Epshtein, S.A., Nanoindentation in Studying Mechanical Properties of Heterogeneous Materials, J. of Min. Sci., 2016, vol. 51(3), pp. 470–476.
11. Kalei, G.N., Some Test Data on Microhardness Determined by the Indent Depth, Mashinoved., 1968,
no. 3, pp. 105–107.
12. Bulychev, S.I., Alekhin, V.P., Shorshorov, M.Kh., Ternovsky, A.P., and Shnyrev, G.D., Determination of Young’s Modulus Based on the Indentation Diagram, Zavod. Lab., 1975, no. 9, pp. 1137–1140.
13. Oliver, C. and Pharr, M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. of Materials Research, 1992, vol. 7(11), pp. 1564–1583.
14. Cheng, Y.-T. and Cheng, C.-M., Scaling Relationships in Conical Indentation of Elastic-Perfectly Plastic
Solids, Int. J. of Solids and Structures, 1999, vol. 36(8), pp. 1231–1243.
SCIENCE OF MINING MACHINES
EXPERIMENTAL ESTIMATE OF POWER VARIATION RANGE
OF PNEUMATIC HAMMER WITH MECHANICAL LOCKING
OF ELASTIC VALVE
V. V. Chervov and B. N. Smolyanitsky
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: chervov@misd.nsc.ru
Under discussion is the experimental estimate of an actual power variation range of pneumatic hammer with a ring-type elastic valve arranged in exhaust unit of back-drive cell in order to lock mechanically this cell until exhaust stroke at various values of the hammer travel. The variation ranges of the valve channel cross-section are found to ensure sustained operation of the pneumatic hammer and the minimized air flow rate irrespective of the hammer weight and position (vertical or horizontal) and the ratio of the hammer power-stroke to the hammer power-stroke cell diameter.
Pneumatic hammer, elastic valve, air flow rate, blow frequency, valve channel, hammer stroke
DOI: 10.1134/S1062739116041394 REFERENCES
1. Smolyanitsky, B.N., Repin, A.A., Danilov, B.B., et al., Enhancing Efficiency and Endurance of Pulse-Generating Machines for Long Drilling in Rocks, Integr. Proekty SO RAN, 2013, issue 43.
2. Smolyanitsky, B.N,., Tishchenko, I.V., Chervov, V.V. et al., Sources for Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, J. Min. Sci., 2008, vol. 44, no. 5, pp. 490–496.
3. Chervov, V.V., Tishchenko, I.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on the Vibro-Percussion Pipe Penetration Rate in Soil, J. Min. Sci., 2011, vol. 47, no. 1, pp. 85–92.
4. Smolyanitsky, B.N. and Chervov, V.V., Enhancement of Energy Carrier Performance in Air Hammers in Underground Construction, J. Min. Sci., 2014, vol. 50, no. 5, pp. 918–928.
5. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh, A.I., Timonin, V.V.,
and Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014,
vol. 50, no. 5, pp. 929–937.
6. Sudnishnikov, B.V., Esin, N.N., and Tupitsyn, K.K., Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deistviya (Analysis and Design of Pneumatic Percussive Machines), Novosibirsk: Nauka, 1985.
7. Chervov, V.V., Control of Air Feed to Back-Strike Chamber of the Pneumatic Impact Device, J. Min. Sci., 2003, vol. 39, no. 1, pp. 64–71.
8. Boshnyak, L.L. and Byzov, L.N., Takhometricheskie raskhodometry (Tachiometric Flow Meters), Leningrad: Mashinostroenie, 1968.
9. Kremlevsky, P. P. Raskhodometry i schetchiki kolichestva veshchestva (Flow Meters and Counters of Amount of Substance), Saint-Petersburg: Politekhnika, 2002.
10. Chervov, V.V., Tishchenko, I.V., and Chervov, A.V., Influence of the Air Distribution Elements
in the Pneumatic Hammer with an Elastic Valve on the Energy Carrier Rate, J. Min. Sci., 2009, vol. 45,
no. 1, pp. 32–37.
REMOTE MONITORING SYSTEMS FOR HIGH-VOLTAGE SUBSTATIONS AND MINING MACHINES AT OPEN PIT COAL MINES
I. V. Breido, A. V. Sichkarenko, and E. S. Kotov
Karaganda State Technical University,
Blv. Mira 56, Karaganda, 1000027, Kazakhstan
e-mail: jbreido@mail.ru
The article presents the remote monitoring systems for operation of high-voltage substations and shovels, designed at the Karaganda State Technical University and introduced at Shubarkol-Komir open pit coal mine. The systems measure power consumption parameters and controls power consumers and electrical protection. The high-voltage substation monitoring systems transmit data via rf modem, the shovel operation monitoring systems use GPRS modems to transmit data via Internet to a central operator office. In the course of trial operation of the remote monitoring systems, it was succeeded to save power owing to elimination of idle operation of heavy-duty mining machines; moreover, the scope of the continuous control covered power consumption and electric protection at substations and on shovels.
Remote monitoring systems, operation modes, high-voltage substations, shovels, rf modems, GPRS modems, Internet, power saving, power consumption standards
DOI: 10.1134/S1062739116041406 REFERENCES
1. Fedorov, A.A., Elektrosnabzhenie promyshlennykh predpriyatii (Power Supply of Industrial Plants), Moscow: Gosenergozdat, 1961.
2. Andreeva, L.V., Osika, L.K., Tubinis, V.V., Kommercheskii uchet elektroenergii na optovom
i roznichnom rynkakh (Business Recording of Energy on the Wholesale and Retail Markets), Moscow: AVOK-PRESS, 2010.
3. Breido, I.V., Sichkarenko, A.V., Kotov, E.S., and Koval’sky, A.A., System of Automatic Control of Substations at Open Pit Coal Mines, Innovation, Ecology and Resource-Saving Technologies: Proc. 10th Int. Sci. Forum, Rostov-on-Don, 2012, pp. 385–393.
4. Breido, I.V., Sichkarenko, A.V., Kotov, E.S., and Koval’sky, A.A., System of Automatic Control of Substations at Open Pit Coal Mines, Information and Telecommunication Technologies: Education, Science, Practice: Proc. Int. Sci. Conf., Almaty: KazNTU Satpaeva, 2012, pp. 63–66.
5. Breido, I.V., Sichkarenko, A.V., and Kotov, E.S., Information Systems for Automatic Control of Substations at Open Pit Coal Mines, Inforino-2014: Proc. Int. Conf., Moscow, 2014, pp. 197–198.
6. Novikov, V.V., Smart Measurements to Serve Energy Saving, Energoekspert, 2011, no. 3, pp. 68–70.
7. Ledin, S.S., SmartGrid—Future of the Russian Power Engineering, Avtomatiz. IT Energetike, 2010,
no. 11(16), pp. 4–8.
8. Gisin, B.S., Zhak, A.V., Merkur’ev, G.V., and Okin, A.A., Automation of Decision-Making on On-Line Dispatch Control over Energy Networks in Case of Emergency, Energetika Transport, 1989, no. 6.
9. Andreev, E.B., Kutsevich, N.A., ad Sinenko, O.V., Sistemy SCADA: vzglyad iznutri (SCADA Systems: An Outward Glance), Moscow: RTSoft, 2004.
10. Nazarov, A.V., Kozyrev, G.I., Shitov, I.V. et al., Sovremennaya telemetriya v teorii i praktike (Modern Telemetry: Theory and Practice), Saint-Petersburg: Nauka Tekhnika, 2007.
11. Roshan, P. and Leary, J., Wireless LAN Fundamentals, Cisco Press, 2003.
12. Urel’, Zh.L., Le Gur’ellek, L., Bruef, Zh., and Perueiro, M., Universal Wideband Access: Beginning of Wireless and Mobile Technologies, Tekhnol. Sredstv Svyazi, 2005, no. 5, pp. 64–70.
13. Rabion, N.D., Ermolaev, A.O., Panfilov, D.I., and Sokolov, M.A., Implementation of GSM/GPRS Channels in Wireless Systems of Data Collection and Transfer, Seti Sistemy Svyazi, 2006, no. 6, pp. 86–91.
14. Tipovaya instruktsiya po uchetu elektroenergii pri ee proizvodstve, peredache i raspredelenii (Standard Guidelines on Energy Recording in Energy Generation, Transmission and Distribution, Approved by the Committee on Atomic and Energy Supervision and Control, Ministry of Energy of the Republic of Kazakhstan, Order no. 106-P dated 19 November 2012.
15. Kazakov, A.P., Belov, A.N., and Pervushin, I.A., Experience of Introduction of Energy Saving Management ARM in Mining and Processing Industry, High Technologies for Mineral Mining and Use: Proc. Int. Sci. Conf., Novokuznetsk: SIU, 2010, pp. 36–42.
DOUBLE-ACTION COMPRESSION/VACUUM–IMPACT MACHINE
V. V. Timonin, A. K. Tkachuk, and V. N. Karpov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: timonin@misd.ru
The authors present the schematic circuit of the new-generation compression/vacuum–impact machine (CVIM) and its operation using an adjustable magnetic lock, which allows varying the machine power performance and extends the machine capacities in mining, construction and seismic exploration. The operational cycle of CVIM is tested. The authors determine technical parameters of the machine and mechanisms of interaction between the lock, striking unit, air reserve tank and compressed air source. CVIM unit blow energy is estimated at different space positions of the machine. The field trial has assisted in denoting ways of further improvement of the machine.
Compression/vacuum–impact machine, striking unit, housing, velocity, pressure, magnetic lock, control panel, seismic exploration, pulsed source
DOI: 10.1134/S1062739116041418 REFERENCES
1. Detkov, V.A., Excitation of Seismic Waves by Nonexplosive Impulse-Generating Sources, Zh. SFU. Matem. Fizika, 2009, no. 2(3), pp. 298–304.
2. Shneerson, M.B., Teoriya i praktika nazemnoi nevzryvnoi seismorazvedki (Theory and Practice of the Nonexplosive Ground Seismic Exploration), Moscow: Nedra, 1998.
3. Hill, I.A., Field Techniques and Instrumentation in Shallow Seismic Reflection, Quarterly Journal Engineering Geology, 1992, no. 25, pp. 183–190.
4. Palagin, V.V., Popov, A.Ya., and Dik, P.I., Seismorazvedka malykh glubin (Shallow Seismic Exploration), Moscow: Nedra, 1989.
5. Sheriff, R.E. and Geldart, L.P., Exploration Seismology, New York: Cambridge University Press, 1995.
6. Repin, A.A., Tkachuk, A.K., Karpov, V.N., Beloborodov, V.N., Yaroslavtsev, A.G., and Zhikin, A.A., Engineering and Analysis of Independent Movable Compression–Vacuum Percussion Source of P-Waves in Seismic Survey, J. Min. Sci., 2016, vol. 52, no. 1, pp. 146–152.
7. Repin, A.A., Timonin, V.V., Beloborodov, V.N., Tkachuk, A.K., Karpov, V.N., Vasil’ev, G.G.,
and Zabolotskayay, N.N., RF patent no. 156306, Byull. Izobret., 2015, no. 31.
8. Beloborodov, V.N. and Tkachuk, A.K., RF patent no. 127472, Byull. Izobret., 2013, no. 12.
9. Tkachuk, A.K., Zabolotskaya, N.N., and Karpov, V.N., RF patent no. 163465, Byull. Izobret.,
2016, no. 20.
10. Beloborodov, V.N., Repin, A.A., Tkachuk, A.K., and Karpov, V.N., Air-Driven Device with Elastic Shell, Fundament. Appl. Min. Sci., 2014, vol. 2, no. 1, pp. 51–53.
11. Tkachuk, A.K. and Karpov, V.N., Features and Growth Prospects of Compression/Vacuum–Impact Machines, InterExpo Geo-Sibir, 2016, vol. 2, no. 4, pp. 37–42.
12. Repin, A.A., Timonin, V.V., Tkachuk, A.K., Karpov, V.N., and Stepanov, D.V., Designing Universal Compression/Vacuum–Impact Machines, Mashinoved., 2016, vol. 3, no. 1, pp. 89–94.
MINERAL MINING TECHNOLOGY
GEOMECHANICAL ASSESSMENT OF COMPOUND MINING TECHNOLOGY WITH BACKFILLING AND CAVING FOR THICK FLAT ORE BODIES
A. M. Freidin, A. A. Neverov, and S. A. Neverov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: nnn.aa@mail.ru
The authors develop a version of a compound technology with consolidating backfilling and caving for thick flat body of polymetals. Numerical evaluation shows that the technology with the cover caving above consolidating backfill ensures higher safety of mining.
Compound mining technolgy, great depth, rock mass, stress–strain state, underground excavation, backfill, room, pillar, roof, safety
DOI: 10.1134/S106273911604143X
REFERENCES
1. Bronnikov, D.N., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinkah (Deep-Level Ore Mining), Moscow: Nedra, 1982.
2. Slavikovsky, O.V., Podzemnaya razrabotka mestorozhdenii rud tsvetnykh metallov na bol’shikh glubinakh (Deep-Level Mining of Nonferrous Metal Ore), Moscow: TsNIIEITsM, 1983.
3. Freidin, A.M., Shalaurov, V.A., Eremenko, A.A., et al., Povyshenie effektivnosti podzemnoi razrabotki rudnykh mestorozhdenii Sibiri i Dal’nego Vostoka (Improvement of Underground Mining Efficiency in Siberia and Far East of Russia), Novosibirsk: Nauka, 1992.
4. Oparin, V.N., Tapsiev, A.P., and Freidin, A.M., Classification of Methods for Ore Mining at a Large Depth, J. Min. Sci., 2008, vol. 44, no. 6, pp. 569–577.
5. Neverov, A.A., Neverov, S.A., Nikol’sky, A.M., and Alimseitova, Z.K., Geomechanical Assessment of Geotechnical Situation in the Transition from Compound Mining with Backfilling and Caving to Block Caving, Vestn. KuzGTU, 2015, no. 2, pp. 35–40.
6. Neverov, À., Freidin, A., and Vasichev, S., Assessment of the Combined Ore Mining with Caving and Backfilling, Proc. Int. Conf. Theory and Practice of Geomechanics for Effectiveness the Mining Production and the Construction, Bulgaria, 2010, pp. 461–469.
7. Freidin, A.M., Kakoilo, V.N., Shalaurov, V.A., et al., USSR Author’s Certificate no. 1606667, Byull. Izobret., 1990, no. 42.
8. Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw Hill, 1971.
9. Nazarova, L.A., Nazarov, L.A., and Miroshnichenko, N.A., Determining Deformation and Strength
of a Filling Mass during Stoping by the Inverse Problem Solving, J. Min. Sci., 2012, vol.48,
no. 4, pp. 616–621.
10. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Mining-Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
11. Kurlenya, M.V., Seryakov, V.M., Korotkikh, V.I., and Tapsiev, A.P., Geomechanical
Substantiation of Pillar-and-Room Sequences of Mining the Protective Layer, J. Min. Sci., 1991, vol. 27, no. 4, pp. 269–275.
12. Neverov, A.A., Geomechanical Substantiation of Modified Room-Work in Flat Thick Deposits with Ore Drawing under Overhang, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1016–1024.
NEW TECHNOLOGY AND EQUIPMENT FOR NON-EXPLOSIVE FORMATION
OF FREE FACE IN DEEP OPEN PIT MINES
S. Ya. Levenson, M. A. Lantsevich, L. I. Gendlina, and A. N. Akishev
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: lev@nsc.ru
Yakutniproalmaz Institute, ALROSA,
ul. Lenina 39, Mirny, 678175 Republic of Sakha (Yakutia), Russia
The described technology and equipment enable eliminating drilling-and-blasting in open pit mining. The authors also discuss usability of transfer bins with vibrating discharge in combination with intermodal transport and adaptability of vibratory machines to dump truck-aided stockpiling.
Deep open pit mine, swing hammer type plough, intermodal transport, load/unload station, bin, vibrating feeders, dump truck-aided stockpiling, safety, spreader, dump surface compactor
DOI: 10.1134/S1062739116041441 REFERENCES
1. Rzhevsky, V.V. and Trubetskoy, K.N., Objectives of Geoscience in the Field of Open Pit Mineral Mining, Gornyi Zh., 1988, no. 1, pp. 21–23.
2. Akishev, A.N., Zyryanov, I.V., Zarovnyaev, B.N., et al., Formirovanie rabochei zony glubokikh kimberlitovykh kar’erov (Formation of Work Zone in a Deep Open Pit Mine), Novosibirsk: Nauka, 2015.
3. Fedulov, A.I. and Labutin, V.N., Impact Fracturing of Frozen Grounds and Rocks, J. Min. Sci., 1995, vol. 31, no. 5, pp. 366–369.
4. Mattis, A.R., Kuznetsov, V.I., Vasil’ev, V.I., et al., Ekskavatory s kovshom aktivnogo deistviya. Opyt sozdaniya, perspektivy primeneniya (Dynamic Bucket Shovels. Design Experience, Application Prospects), Novosibirsk: Nauka, 1996.
5. Kuznetsov, V.I., Mattis, A.R., Tashkinov, A.S., et al., Efficiency of Excavation of Overburden Rock at Quarries with the Use of Blast-Free Technology, J. Min. Sci., 1997, vol. 33, no. 5, pp. 471–477.
6. Mattis, A.R. and Zaitsev, G.D., Design of Excavator of Great Unit Power for Rock Mining without Blasting, J. Min. Sci., 2000, vol. 36, no. 6, pp. 562–566.
7. Mattis, A.R., Cheskidov, V.I., Yakovlev, V.L., et al., Bezvzryvnye tekhnologii otkrytoi dobychi tverdykh poleznykh iskopaemykh (Non-Explosive Technologies for Hard Mineral Mining), Novosibirsk: SO
RAN, 2007.
8. Mattis, A.R., Labutin, V.N., and Cheskidov, V.I., Active Rotor for a Surface Miner, J. Min. Sci., 2008, vol. 44, no. 2, pp. 198–205.
9. Tishkov, A.Ya., Gendlina, L.I., Eremenko, Yu.I., and Levenson, S.Ya., Vibrating Action on Flowing Medium during Its Discharge from a Reservoir, J. Min. Sci., 2000, vol. 36, no. 1, pp. 46–51.
10. Gendlina, L.I., Eremenko, Yu.I., Kulikova, E.G., and Levenson, S.Ya., Improvement of Vibration Discharge of Granular Material from a Reservoir, Gorn. Oborud. Elektromekh., 2006, no. 7, pp. 42–45.
11. Levenson, S.Ya., Gendlina, L.I., Glotova, T.G., Alesik, M.Yu., and Morozov, A.V., Energy-Saving Vibrating Devices to Discharge Coherent Materials from Reservoirs in Mines, Gorn. Oborud. Elektromekh., 2010, no. 10, pp. 8–12.
12. Bondarenko, G.I., Landsliding Control at Dumps in the Permafrost Zone, Proc. Int. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2005, pp. 483–487.
13. Levenson, S.Ya., Gendlina, L.I., Morozov, A.V., and Usol’tsev, V.M., Dump Truck-Assisted Dumping in Open Pit Mining, GIAB, 2014, no. 7, pp. 50–54.
14. Levenson, S.Ya. and Gendlina, L.I., Safe Dumping Equipment, J. Min. Sci., 2014, vol. 50,
no. 5, pp. 938–942.
15. Kramadzhyan, A.A., Rusin, E.P., Stazhevsky, S.B., and Khan, G.N., Stability of Dumping Using Dump Truck and Spreader, Proc. 9th Int. Conf. Subsoil Use. Mining. New Trends and Technologies in Mineral Prospecting, Exploration and Extraction, Novosibirsk: SGGA, 2013, pp. 87–92.
16. Levenson, S.Ya., Gendlina, L.I., Usol’tsev, V.M., Morozov, A.V., Goldobin, V.A., and Lantsevich, M.A., RF patent no. 143141, Byull. Izobret., 2014, no. 20.
ROCKBOLTING IMPROVEMENT IN COAL MINES
IN PERMAFROST REGIONS
E. A. Razumov, V. I. Klishin, G. Yu. Opruk, and P. V. Grechishkin
RANK 2,
Sovetskii pr. 7, Kemerovo, 650000 Russia
e-mail: kom.info@rank42.ru
Institute of Coal, Siberian Branch, Russian Academy of Sciences,
Leningradskii pr. 10, Kemerovo, 650065 Russia
e-mail: klishinvi@icc.kemsc.ru
The authors give basic design procedures for two-level rock bolt support in underground mining in permafrost regions. The use of rockbolting in combination with heat insulation on a test site in Dzhebariki-Khaya Coal Mine is studied.
Rock bolt support, underground excavation, permafrost region, thawing envelope, rock mass heat consuctivity, thermal insulator
DOI: 10.1134/S1062739116041453 REFERENCES
1. Skuba, V.N., Sovershenstvovanie razrabotki ugol’nykh mestorozhdenii oblasti mnogoletnei merzloty (Improvement of Coal Mining in Permafrost Zone), Yakutsk: Knizh. Izd., 1974.
2. Klishin, V.I., Grechishkin, P.V., Serov, A.A., and Razumov, E.A., Modern Technologies of Rockbolting: Experience and Prospects, Rudn. Budushch., 2012, no. 3(11), pp. 89–96.
3. Louchnikov, V.N., Eremenko, V.A., and Sandy, M.P., Ground Support Liners for Underground Mines: Energy Absorption Capacities and Costs, Eurasian Mining, 2014, no. 1(21), pp. 54–62.
4. Vasil’ev, S.D., Evaluation and Development of Design Procedure for Polymer-Coated Rockbolting in Mines under Permafrost, Candidate of Engineering Sciences. Tech. Sci. Thesis, Moscow, 2013.
5. Lykov, A.V., Teoriya teploprovodnosti (Thermal Conduction Theory), Moscow: Vyssh. shk., 1967.
6. Avksent’ev, I.V. and Skuba, V.N., Issledovanie ustoichivosti i teploizolyatsii gornykh vyrabotok v usloviyakh mnogoletnei merzloty (Analysis of Stability and Thermal Insulation of Mines under Permafrost), Moscow: TsNIEIugol’, 1975.
7. Stankus, V.M., Muratov, V.A., Man’kov, V.N., and Kostel’tsev, B.G., Mekhanika gornykh porod i ustoichivost’ vyrabotok shakht Kuzbassa (Rock Mechanics and Mine Stability in Kuzbass),
V. G. Kozhevin (Ed.), Kemerovo: Knizh. Izd., 1973.
8. Instruktsiya po raschetu i primeneniyu ankernoi krepi na ugol’nykh shakhtakh Rossii (Guidelines on Rockbolting Design and Installation in Coal Mines in Russia), Saint-Petersburg, 2000.
9. Shirokov, A.P. and Pislyakov, B.G., Raschet i vybor krepi sopryazhenii gornykh vyrabotok (Design and Selection of Juncture Support in Mines), Moscow: Nedra, 1978.
10. Metodika rascheta i vybora parametrov krepi na sopryazheniyakh gornykh vyrabotok pri odinarnoi i parnoi podgotovke vyemochnykh stolbov (Design and Selection Procedure of Juncture Support Parameters in Mining in Single and Double Extraction Panels), Saint-Petersburg, 2004.
11. Razumov, E.A., Eremenko, V.A., Zayatdinov, D.F., Matveeva, A.S., Grechishkin, P.V.,
Calculation of Rockbolting Parameters for Mine Roadways in Permafrost Rocks, GIAB, 2013,
no. 9, pp. 39–47.
12. Metodika shakhtnykh ispytanii. Instruktsiya po raschetu i primeneniyu ankernoi krepi na ugol’nykh shakhtakh Kuzbassa (Mine Testing Procedure. Guidelines on Rockbolting Design and Use in Coal Mines in Kuzbass), Saint-Petersburg: VNIMI, 2010.
MINERAL DRESSING
DETERMINATION OF ACTIVITY/SELECTIVITY RATIO
IN PHYSICAL AND CHEMICAL ADSORPTION OF. A. REAGENT
S. A. Kondrat’ev, N. P. Moshkin, and E. A. Burdakova
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru
Lavrentiev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 15, Novosibirsk, 630090 Russia
Under discussion is the particle and bubble interaction in froth flotation. Water flow from an interlayer between a particle and a gas bubble under effect of hydrophobic component of wedging pressure is studied. It is assumed for a mineral to be extracted, that electrostatic interaction slightly influences the particle and bubble contingence and the liquid interlayer thinning. For this reason, particular attention is given to the effect exerted by mineral particle surface hydrophobicity on water flow rate from the interlayer. It is found that water flow rate under influence of hydrophobic component of wedging pressure is less than water flow rate under physical adsorption of a reagent. The authors hypothesize that hydrophobization creates areas on the mineral particle surface, where the reagent species active relative to gas–water interface attach in accordance with the polarity equalizing rule. Physically adsorbed reagent species pull out water from the interlayer after the interlayer rupture and, thus, remove the kinetic constraint of the particle–bubble attachment.
Flotation, hydrophobicity, mineral particles, physical and chemical adsorption, wedging pressure, selectivity, liquid interlayer
DOI: 10.1134/S1062739116041477 REFERENCES
1. Frumkin, A. and Gorodetskaya, A., On Wetting and Adhesion of Bubbles, Part II, Mechanism for Bubble Adhesion to Mercury Surface, Zh. Fiz. Khim., 1938, vol. 12, nos. 5–6, pp. 511–520.
2. Chanturia, V.A., Role of Electrochemical and Semiconductive Properties of Minerals in Flotation, Fiziko-khimicheskie osnovy teorii flotatsii (Physicochemical Fundamentals of Flotation), Moscow: Nauka, 1983.
3. Ahmed, S.M., Electrochemical Studies of Sulphides, I. The Electrocatalytic Activity of Galena, Pyrite and Cobalt Sulphide for Oxygen Reduction in Relation to Xanthate Adsorption and Flotation, Int. J. Miner. Process., 1998, vol. 5, pp. 163–174.
4. Kirjavainen, V., Schreithofer, N., and Heiskanen, K., Effect of Some Process Variable on Floatability of Sulfide Nickel Ores, Int. J. Miner. Process., 2002, vol. 65, pp. 59–72.
5. Abramov, A.A., Requirements for Selection and Design of Selective Collecting Agents, Part II: Requirements for Physical?Chemical Properties of a Collecting Agent, Tsv. Metal., 2012, no. 5, pp. 14–17.
6. Kondrat’ev, S.A. and Moshkin, N.P., Estimate of Collecting Force of Flotation Agent, J. Min. Sci., 2015,
vol. 51, no. 1, pp. 150–156.
7. Rao, H.K. and Forssberg, K. S. E., Mechanism of Fatty Acid Adsorption in Salt-Type Mineral Flotation, Miner. Engin., 1991, vol. 4, nos. 7–11, pp. 879–890.
8. Fuerstenau, D.W., A Century of Developments in the Chemistry of Flotation Processing, Centenary of Flotation Symposium, Brisbane, Australia: 2005.
9. Free, M.L. and Miller, J.D., The Significance of Collector Colloid Adsorption Phenomena in the Fluorite/Oleate Flotation System as Revealed by FTIR/IRS and Solution Chemistry Analysis, Int. J. Miner. Process., 1996, vol. 48, pp. 197–216.
10. Takeda, S. and Usui, S., Adsorption of Dodecylammonium Ion on Quartz in Relation to its Flotation, Colloids and Surfaces, 1987, vol. 23, issues 1?2, pp. 15–28.
11. Kondrat’ev, S.A., Moshkin, N.P., and Burdakova, E.A., Optimized Activity Ratio for Different Types of Reagent Attachment at Sulfide Minerals, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1021–1028.
12. Churaev, N.V., Hydrophobic Attraction Forces in Wetting Films of Aqueous Solutions, Kolloid. Zh., 1992, vol. 54, no. 5, pp. 169–173.
13. Churaev, N.V., Surface Forces and Surface Physicochemistry, Uspekhi Khimii, 2004, vol. 73, no. 1
14. Crozier R. D. Sulphide Collector Mineral Bonding and the Mechanism of Flotation, Miner. Engin., 1991, vol. 4, nos. 7–11, pp. 839–858.
15. Deryagin, B.V., Theory of Capillary Condensation and Other Capillary Phenomena with Allowance for Wedging Effect of Polymolecular Liquid Films, Zh. Fiz. Khim., 1940, vol. 14, no. 2, pp. 137–147.
16. Starov, V.M. and Churaev N. V., Kinetics of Variations in Wetting Films, Kolloid. Zh., 1975, vol. 37, no. 4.
17. Radoev, B.P., Dimitrov, D.S., and Ivanov, I.B., Hydrodynamics of Thin Liquid Films Effect of the Surfactant on the Rate of Thinning, Colloid and Polymer Sci., 1974, vol. 252, issue 1, pp. 50–55.
18. Dimitrov, D.S. and Ivanov, I.B., Hydrodynamics of Thin Liquid Films. On the Rate of Thinning of Microscopic Films with Deformable Interface, J. Ñolloid and Interface Sci., 1978, vol. 64, no. 1, pp. 97–106.
19. Pugh, R. and Stenius, P., Solution Chemistry Studies and Flotation Behavior of Apatite, Calcite and Fluorite Minerals with Sodium Oleate Collector, Int. J. Miner. Process., 1985, vol. 15, pp. 193–218.
20. Wang, X-H., Forssberg, K. S. E., Mechanisms of Pyrite Flotation with Xanthates, Int. J. Miner. Process., 1991, vol. 33, pp. 275–290.
MINERALOGICAL TEST AND PRODUCTION RESEARCH
OF GOLD MINE WASTE
M. A. Gurman, L. I. Shcherbak, R. V. Bogomyakov, and E. V. Vylegzhanina
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: mgurman@yandex.ru
Placer gold mining wastes may be assumed an important source to replenish mineral and raw materials supply of the gold mining industry in Russia’s Far East. The tests are carried out on samples of placer gold mine waste of gravel size and fines. The article gives mineralogical and petrographical characteristics of the samples. Admixtures of platinum, silver, titanium and iron are traced in the sample composition. Results of the gravity concentration with the preliminary magnetic separation of the samples are reported. The yield of magnetic fraction makes 39.77%, and it is found that magnetite contains titanium. Gold recovery in the gravity concentrate is 91.6% with 0.06 g/t content of platinum and 57.7 g/t content of silver.
Mine waste, gold, platinum, recovery, gravity concentration, magnetic separation
DOI: 10.1134/S1062739116041489 REFERENCES
1. Chanturia V. A., Development of Physical and Chemical Fundamentals and Innovative Techniques for High-Level Processing of Mineral Wastes, Gornyi Zh., 2014, no. 7, pp. 79–84.
2. Bykhovsky, L.Z. and Sporykhina, L.V., Mineral Wastes as a Raw Mineral Reserve: State of Things and Development Problems, Min. Resur. Ross. Ekonom., Menedzh., 2011, no. 4, pp. 15–20.
3. Kavchik, B.K., Geological Structure of Technogenic Placers and its Effect on Selection of Processing Method, Zolotodobycha, 2010, no. 135, pp. 14–19.
4. Chemezov, V.V. and Tal’gamer, B.L., Tekhnogennye rossypi (obrazovanie, otsenka i ekspluatatsiya) (Technogenic Placer Foundations: Origin, Assessment, and Exploitation), Irkutsk: IGTU, 2013.
5. Shilo, N.A., Uchenie o rossypyakh. Teoriya rossypeobrazuyushchikh rudnykh formatsii i rossypei (Placer Science. Theory of Placer-Forming Ore and Placer Formations), Vladivostok: Dal’nauka, 2002.
6. Mamaev, Yu.A., Tekhnogennye rossypi blagorodnykh metallov Dal’nevostochnogo regiona Rossii i ikh ratsional’noe osvoenie (Technogenic Noble Metal Placers in Russian Far East Region and Their Rational Exploitation), Moscow: Gornaya Kniga, 2010.
7. Van-Van-E, A. P. Resursnaya baza prirodno-tekhnogennykh zolotorossypnykh mestorozhdenii (Natural?Technogenic Gold Placer Resources), Moscow: Gornaya Kniga, 2010.
8. Litvintsev, V.S., Rational Development of Noble Metal Placer Mining Wastes in the East of Russia, J. Min. Sci., 2015, vol. 51, no. 1, pp. 118?123.
9. Mirzekhanov, G.S., Criteria to Assess Technogenic Gold Placer Formations in Russian Far East, Vestn. KRAUNTs Nauki o Zemle, 2014, no. 1, pp. 139–150.
10. Gurman, M.A., Shcherbak, L.I., and Rasskazova, A.V., Gold and Arsenic Recovery from Calcinates of Rebellious Pyrite?Arsenopyrite Concentrates, J. Min. Sci., 2015, vol. 51, no. 3, pp. 586?590.
11. Rasskazov, I.Yu., Gurman, M.A., and Litvinova, N.M., Innovation Technologies to Process Noble Metal Containing Mineral Materials of the Far East Origin, Nedropol’zovanie v 20 veke, 2014, no. 2, pp. 38–43.
12. Rasskazov, I.Yu., Gurman, M.A., Aleksandrova, T.N., and Shcherbak, L.I., Mineralogical and Technological Peculiarities and Perspectives of Uchaminsky Gold?Arsenic Ore Processing, Tikhookean. Geolog., 2014, no. 4, pp. 75–83.
13. Aleksandrova, T.N., Gurman, M.A., and Kondrat’ev, S.A., Some Approaches to Gold Extraction from Rebellious Ores on the South of Russia’s Far East, J. Min. Sci., 2011, vol. 47, no. 5, pp. 684?694.
COMPOSITION AND PROPERTIES OF HIGHLY DISPERSED PARTICLES GENERATED UNDER SULFIDE ORE MILLING
Yu. L. Mikhlin, S. A. Vorob’ev, S. V. Karasev, A. S. Romanchenko,
A. A. Karacharov, E. S. Kamensky, and E. A. Burdakova
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
Akademgorodok 50, Bld. 24, Krasnoyarsk, 660036 Russia
e-mail: yumikh@icct.ru
Siberian Federal University,
Svobodnyi pr. 79, Krasnoyarsk, 660036 Russia
Laser diffraction analysis and dynamic light scattering method are used to study highly dispersed particles generated during milling of lead–zinc ore (Gorevsky deposit), rich sulfide and impregnated copper–nickel ore (Norilsk and Kingash deposits), as well as Gorevsky Pb concentrate and Sorsky deposit Cu and Mo concentrates. Zeta-potentials of particles are measured in clarified (colloid) solution above precipitation; surface composition of ores and their fine sizes is analyzed using X-ray photoelectron spectroscopy. The highest yield of particles under 5 ?m size grade (to 3 total percent) was observed in case of Kingash ore; moreover, zeta-potential of these particles was positive at pH 9.5 and surface compositions of precipitation and colloid particles were nearly the same. Comparatively high content of ultra dispersed fractions was observed in case of Gorevsky ore and Pb concentrate. Clarified solutions contained mostly aggregates of nano-size particles, first of all, Si and Mg minerals, with the hydrodynamic diameter of 500–1200 nm, which shows little changes with time. Sulfide component of hydrosols contains many nano-size particles of minerals that better resist oxidation (sphalerite, molybdenite, pentlandite, chalcopyrite) and, in particular, can transfer metals within the ambient medium.
Nonferrous metal ores, highly dispersed particles, colloid particles, grain-size composition analysis, laser diffraction, dynamic light scattering, zeta-potential, X-ray photoelectron spectroscopy
DOI: 10.1134/S1062739116041490 REFERENCES
1. Trahar, W.J., A Rational Interpretation of the Role of Particle Size in Flotation, Int. J. Miner. Process, 1981, vol. 8, pp. 289–327.
2. Feng, D. and Aldrich, C., Effect of Particle Size on Flotation Performance of Complex Sulphide Ores, Miner. Eng., 1999, vol. 12, pp. 721–731.
3. Johnson, N.W., Liberated 0–10 ?m Particles from Sulphide Ores, their Production and Separation—Recent Developments and Future Needs, Miner. Eng., 2006, vol. 19, pp. 666–674.
4. Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation Processes), Moscow: Gorn. Kniga, 2008.
5. Kalinnikov, V.T., Makarov, V.N., Mazukhina, S.I., Makarov, D.V., and Masloboev, V.A., Investigation into Hypergenic Processes in Tailings of Sulfide Copper?Nickel Ore Processing, Khim. Int. Ustoich. Razv., 2005, vol. 13, pp. 515–519.
6. Wang, C., Harbottle, D., Liu, Q., and Xu, Z., Current State of Fine Mineral Tailings Treatment: A Critical Review on Theory and Practice, Miner. Eng., 2014, vol. 58, pp. 113–131.
7. Bandini, P., Prestidge, C.A., and Ralston, J., Colloidal Iron Oxide Slime Coatings and Galena Particle Flotation, Miner. Eng., 2001, vol. 14, pp. 487–497.
8. Peng, Y. and Grano, S., Dissolution of Fine and Intermediate Sized Galena Particles and their Interactions with Iron Hydroxide Colloids, J. Colloid Interf. Sci., 2010, vol. 347, pp. 127–131.
9. Hudson-Edwards, K.A., Sources, Mineralogy, Chemistry and Fate of Heavy Metal-Bearing Particles in Mining-Affected Rivers Systems, Mineral. Mag., 2003, vol. 67, pp. 205–217.
10. Hochella, M. F. Jr., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., and Twining, B. S. Nanominerals, Mineral Nanoparticles, and Earth Systems, Science, 2008, vol. 319, pp. 1631–1635.
11. Plathe, K.L., von der Kammer, F., Hassellov, M., Moore, J.N., et al., The Role of Nanominerals and Mineral Nanoparticles in the Transport of Toxic Trace Metals: Field Flow Fractionation and Analytical TEM Analyses after Nanoparticle Isolation and Density Separation, Geochim. Cosmochim. Acta, 2013, vol. 102 (DOI: 10.1016/j.gca., 2012, 10.029).
12. Weber, F.-A., Voegelin, A., Kaegi, R., and Kretzschmar, R., Contaminant Mobilization by Metallic Copper and Metal Sulphide Colloids in Flooded Soil, Nature Geosci., 2009, vol. 2, pp. 267–271.
13. Wang, Y., Nanogeochemistry: Nanostructures, Emergent Properties and their Control on Geochemical Reactions and Mass Transfers, Chem. Geol., 2014, vol. 378–379, pp. 1–23.
14. Garner, K.L. and Keller, A.A., Emerging Patterns for Engineered Nanomaterials in the Environment: A Review of Fate and Toxicity Studies, J. Nanopart. Res., 2014, vol. 16, pp. 2503–2526.
15. Zirkler, D., Lang, F., and Kaupenjohann, M., “Lost in Filtration”—The Separation of Soil Colloids from Larger Particles, Colloids Surf. A, 2012, vol. 399, pp. 35–40.
16. Mikhlin, Yu., Vorob’ev, S., Romanchenko, A., Karasev, S., Karacharov, A., and Zharkov, S., Ultrafine Particles Derived from Mineral Processing: a Case Study of the Pb–Zn Sulfide Ore with Emphasis on Lead-Bearing Colloids, Chemosphere, 2016, vol. 147, pp. 60–66.
EFFECTS OF SURFACE STRUCTURE CHANGES ON REACTIVITY
OF SCHEELITE AFTER MECHANICAL ACTIVATION
E. V. Bogatyreva and A. G. Ermilov
National Research University of Science and Technology—MISIS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: Helen_Bogatureva@mail.ru
The article illustrates feasibility to predict changes in energy content and reactivity of scheelite concentrate after mechanical activation based on X-ray diffraction analysis data under onward low-temperature (under 100?Ñ) sodium leaching. The complex nature of changes in the energy content and reactivity of mechanically activated scheelite under influence of structural changes in mineral particles is determined. It is confirmed that energy accumulated in the form of surface energy and micro-deformations during mechanical activation affects further leaching performance. The procedure and criteria developed to estimate efficiency of mechanical activation of scheelite make a technical background for energy-saving technology of scheelite concentrate treatment directly at mining and processing plants.
Wolfram, scheelite concentrate, preliminary mechanical activation, sodium leaching, X-ray diffraction analysis, energy saving
DOI: 10.1134/S1062739116041502 REFERENCES
1. Strategy of Metallurgical Industry Development in Russia for the Period up to 2020. URL: http://old.minpromtorg.gov.ru/ministry/programm/2 (Reference date: June 23, 2014).
2. Zelikman, A.N., Metallurgiya tugoplavkikh redkikh metallov (Metallurgy of Refractory Rare Metals), Moscow: Metallurgiya, 1986.
3. Medvedev, A.S., Vyshchelachivanie i sposoby ego intensifikatsii (Leaching and its Intensification Techniques), Moscow: MISiS, 2005.
4. Van Buren, H.G., Imperfections in Crystals, New York: Interscience Publishers, 1960.
5. Rid V. T., Dislokatsiya v kristallakh (Dislocation in Crystals), Moscow: Metallurgizdat, 1957.
6. Kitel, Ch., Vvedenie v fiziku tverdogo tela (Introduction to Solid State Physics), Moscow: Nauka, 1978.
7. Novikov, I.I., Defekty kristallicheskogo stroeniya metallov (Defects in Crystalline Structure of Metals), Moscow: Metallurgiya, 1983.
8. Poluboyarov, V.A., Pauli, I.A., Boldyrev, V.V., and Tarantseva, M.I., Evaluating Performance of Chemical Reactor for Mechanical Activation of Solid Phase Interaction, Report 1, Khim. Int. Ust. Razv. 1994,
issue 2, pp. 635–645.
9. Bogatyreva, E.V. and Ermilov, A.G., Specific Features of Mechanical Activation of Rare Metal Concentrate Phases, Proc. Int. Sci. Conf. New Materials and Techniques for Comprehensive Mineral Processing as the Basis of Innovative Economic Development of Russia, Moscow: Vseros. Nauch.-Issled Inst. Aviats. Mater., 2012.
10. Bogatyreva, E.V., Ermilov, A.G., and Podshibyakina, K.V., Investigation Influence of Structure Parameters Variation on Wolframite Reactivity during Mechanical Activation, Proc. 3rd Int. Conf. Fundamental Bases of Mechanochemical Technologies, Novosibirsk, 2009.
11. Ermilov, A.G., Safonov, V.V., Doroshko, L.F., et al., X-Ray Diffraction Evaluation of Energy Increment Generated in Preliminary Mechanical Activation, Izv. vuzov, Tsv. Metal., 2002, no. 3, pp. 48–53.
12. Shelekhov, E.V. and Sviridova, T.A., X-Ray Polycrystal Analysis Softwares, MiTOM, 2000, no. 8.
13. Zuev, V.V., Aksenova, G.A., Mochalov, N.A., et al., Investigation into Specific Energy of Crystalline Lattices of Minerals and Inorganic Crystals with a View to Assessing Their Properties, Obogashch. Rud., 1999, nos. 1, 2, pp. 48–53.
14. Vol’dman, G.M. and Zelikman, A.N., Teoriya gidrometallurgicheskikh protsessov (Theory of Hydrometallurgical Processes), Moscow: Metallurgiya, 1993.
15. Bogatyreva, E.V. and Ermilov, A.G., X-Ray Diffraction Prediction of Preliminary Mechanical Activation Efficiency for Scheelite Concentrate, Tsv. Met., 2013, no. 3, pp. 60–64.
16. Bogatyreva, E.V., Ermilov, A.G., RF patent no. 2496896, Byull. Izobret., 2013, no. 30.
ALTERATION OF WATER-RESISTANCE PROPERTIES OF OVERBURDEN UNDER THE INFLUENCE OF SULFURIC ACID
M. B. Nosyrev, A. I. Semyachkov, L. P. Parfenova, and V. V. Kuchin
Ural State Mining University,
ul. Kuibysheva 30, Ekaterinburg, 220030 Russia
e-mail: Semyachkov.A@ursmu.ru
Integrated development of Volkov copper–iron–vanadium deposit is impossible without heap leaching of copper from old oxidized and complex ore stock pile. The current condition of the stock pile imposes risks of pollution on the Laya River water and on the topmost aquifer groundwater. The natural protection barrier between the groundwater and the old oxidized and mixed ore stock pile is rather good. Permeability of the upper layer of the stock pile, determined by the standard procedure in accordance with the construction norms and regulations, is classified with ambiguousness. For final decision-making after geological engineering survey, permeability characteristics of the upper layer were analyzed using different?concentration sulfuric acid solutions to simulate heap leaching conditions.
Deposit, stock pile, oxidized ore, heap leaching
DOI: 10.1134/S1062739116041514 REFERENCES
1. O kompleksnoi strategii po obrashcheniyu s otkhodami proizvodstva na territorii Sverdlovskoi oblasti do 2030 goda (Sverdlovsk Regional Government Decree “Integrated Strategy in Industrial Wastes Utilization in the Sverdlovsk Region Territory for the Period up to 2030”), dated October 21, 2013, no. 1259?PP.
2. Pyzh’yanov, Yu.B., Copper Mining and Environmental Safety in the Sverdlovsk Region, 2011, URL: http://elar.usfeu.ru.
3. Van Pham Hoa, Drebenstedt, C., and Ortuta, J., Advanced Technologies in Monitoring Blast Results in Surface Mines, Resource and Environmental Technologies: Chances of German Vietnamese Cooperation, Breitkreuz C., Bongaerts J. (Eds.), Freiberg: Freiberger Forschungsheft, 2009, pp. 70–77.
4. Khalezov, B.D., Vatolin, N.A., Nezhivykh, V.A., and Tveryakov, A.Yu., Heap Copper Leaching at Kounrad Mine, GIAB, 2002, no. 7, pp. 209–217.
5. Emlin E. F., Tekhnogenez kolchedannykh mestorozhdenii Urala (Technogenesis of Ural Pyrite Ore Deposits), Sverdlovsk: Ural Univer., 1991.
6. Novokshanova, V.N., Lebed, A.B., Vasiliev, V.A., and Naboichenko, S.S., Investigation into Heap Copper Leaching from Volkov Ore, Tsv. Met., 2013, no. 8, pp. 28–31.
7. Semyachkov, A., Drebenstedt, K., and Vorob’ev, A.E., Geoekologiya (Geoecology), Ekaterinburg: Ural Gos. Gorn. Univer., 2012.
8. Goldberg, V.M. and Gazda, S., Gidrogeologicheskie osnovy okhrany podzemnykh vod ot zagryazneniya (Hydrogeological Basics of Underground Water Protection against Pollution), Moscow: Nedra, 1984.
9. GOST 25584?90, as of Sept. 01, 1990.
10. Goldberg, V.M., Metodicheskie rekomendatsii po gidrogeologicheskim issledovaniyam i prognozam dlya kontrolya za okhranoi podzemnykh vod (Methodological Procedure for Hydrogeological Exploration and Prediction in Protective Monitoring of Underground Waters), Moscow: Vseros. Nauch. Issled. Ins. Gidrogeol Inzh. Geol., 1980.
11. Lomtadze, V.D., Fiziko-mekhanicheskie svoistva gornykh porod. Metody laboratornykh issledovanii (Physico-Mechanical Properties of Rocks. Laboratory Investigation Methods), Textbook, Leningrad: Nedra, Edition II, 1990.
MINING ECOLOGY
IDENTIFICATION OF POLLUTANT CLUSTERS IN TRADE EFFLUENTS
IN KUZBASS
V. N. Oparin, V. P. Potapov, A. B. Logov, E. L. Schastlivtsev,
and N. I. Yukina
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.nsc.ru
Institute of Computational Technologies (Kemerovo Division), SB, Russian Academy of Sciences,
ul. Rukavishnikova 21, Kemerovo, 650025 Russia
The entropy analysis is used to study composition of trade effluents in the Kemerovo Region. Clusters of pollutants: aniline, fats, oils, oil products, phenols, synthetic surfactants, silicon, fluorine, chromium, cyanides, aluminium, vanadium, iron, magnesium, copper, nickel, lead, zinc, nitrates, nitrites, ammonia nitrogen are detected in organic and metal-bearing water solutions. The evolution of population of the pollutants in surface water bodies in 2008–2013 is illustrated. It is found that water quality of most water bodies in the discussed mining region is beyond standard.
Entropy analysis, pollution, ingredients, water bodies, trade effluent, coal mines, Kuzbass, clusters
DOI: 10.1134/S1062739116041538 REFERENCES
1. Doklady o sostoyanii i okhrane okruzhayushchei sredy Kemerovskoi oblasti v 2008–2013 godakh (Reports on State and Protection of Environment in the Kemerovo Region in 2008?2013), Kemerovo, 2009–2014.
2. Popova, N.B., Ekolograficheskie usloviya prirodopol’zovaniya v zone vliyaniya Transsibirskoi magistrali (Ecology?Geographic Ecosystem Exploitation Conditions in the Zone of Trans-Siberian Railway Line Influence (West Siberia), Novosibirsk: Siberian Transport University, 2001.
3. Spitsina, T.P., Stepen, R.A., and Khokhlova, A.I., Disaggregation of Anthropogenic Component for Rivers in Urbanized Territories, Proc. Int. Conf. Measurements, Simulation, and Information Systems to Study Environment ENVIRONMIS-2006, vol. 2, Tomsk, 2006, pp. 94–103.
4. Savichev, O.G., Evaluation of Trade Water Release Effect on Mineralization and Total Organic Content in Tom Water, Izv. Tomsk. Politekh. Univer. (Natural Sciences), 2005, vol. 308, no. 1, pp. 44–47.
5. Znamensky, V.A., Model of Anthropogenic Load on a River and Water Quality in Particular, Program Systems: Theory and Applications, 2010, no. 2(2), pp. 15–38.
6. Mikheev, N.N., Yakovlev, S.V., Nechaev, A.P., Nabrodov, B.S., Myasnikova, E.V., Maksimov, A.V.,
and Shashkov, S.N., Critical Ecological Loads on Water Bodies and Principles to Optimize Aquatic Protection Activities, Eng. Ecology, 1997, no. 2, pp. 19–28.
7. Schastlivtsev, E.L., Coal Mining Impact on Environment in Terms of Kuzbass, Doc. Eng. Sci. Thesis, Barnaul, 2006.
8. Potapov, V.P., Mazikin, V.P., Schastlivtsev, E.L., and Vashlaeva, N.Yu., Geoekologiya ugledobyvayushchikh raionov Kuzbassa (Geoecology of Kuzbass Coal Mining Region), Novosibirsk: Nauka, 2005.
9. Schastlivtsev, E.L., Pushkin, S.G., and Yukina, N.I., Up?Dating of Trade and Natural Effluent Monitoring Systems, Proc. 8th Siberian Workshop on Climate and Ecology Monitoring, M. V. Kabanova (Ed.), Tomsk: Agraf-Press, 2009, pp. 279–281.
10. Schastlivtsev, E.L., Pushkin, S.G., and Yukina, N.I., Challenges in Modern Surface Water State Evaluation in Coal Mining Regions and Feasibility to Update the Systems Designed to Monitor Trade and Natural Effluents, Proc. 1st Int. Sci.-Pract. Conf. Ecological and Biological Challenges in Siberia and Neighboring Territories, Nizhnevartovsk: Nizhnevart. Guman. Univer., 2009, pp. 163–169.
11. Metodicheskie rekomendatsii po formalizovannoi kompleksnoi otsenke kachestva poverkhnostnykh i morskikh vod po gidrokhimicheskim pokazatelyam (Methodical Recommendations on Formalized Integrated Evaluation of Surface and Sea Water Quality by Hydrochemical Indices), Moscow, 1986.
12. RD 52.24.643–2002, Roshydromet, dated Dec. 03. 2002.
13. Logov, A.B., Oparin, V.N., Potapov, V.P., Schastlivtsev, E.L., and Yukina, N.I., Entropy Analysis
of Process Wastewater Composition in Mineral Mining Region, J. Min. Sci., 2015, vol. 51,
no. 1, pp. 186?196.
14. Logov, A.B., Zamaraev, R.Yu., and Logov, A.A., Analysis of Unique Body State, Vychisl. Tekhnologii, 2005, vol. 10, no. 5, pp. 49–53.
ENVIRONMENTAL MINERALOGY IN MINERAL MINING
V. A. Chanturia, E. G. Ozhogina, and I. V. Shadrunova
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow 11102 Russia
e-mail: shadrunova_@mail.ru
The scope of the discussion embraces main definitions of a constituent of the geoecology—environmental mineralogy. The main research areas, objectives and subjects of the environmental mineralogy are specified. It is highlighted that yet no regulating documents are available for mineralogical analyses during environmental appraisal of mineral mining objects.
Geoecology, environmental mineralogy, element occurrence, mining waste
DOI: 10.1134/S106273911604154X
REFERENCES
1. Trubetskoy, K.N., Kaplunov, D.R., and Chaplygin, N.N., Modern Mining Sciences: Content and New Objectives, Gornyi Zh., 1994, no. 6, pp. 3–7.
2. Trubetskoy, K.N. (Ed.), Osvoenie i sokhranenie nedr (Development and Conservation of the Subsoil), Moscow: AGN, 1997.
3. Trubetskoy, K.N. and Galchenko, Yu.P., Geoekologiya osvoeniya nedr i ekogeotekhnologii razrabotki mestorozhdenii (Geoecology of the Subsoil Development and Ecogeotechnologies of Mineral Mining), Moscow: Nauchtekhlitizdat, 2015.
4. Kaplunov, D.R., Ryl’nikova, M.V., Radchenko, D.N., and Korneev, Yu.V., Mobile Backfilling Plants in Underground Mineral Mining with Backfill, Gornyi Zh., 2013, no. 2, pp. 101–104.
5. Chanturia, V.A., Kozlov, A.P., Shadrunova, I.V., and Ozhogina, E.G., Lines of the Prior Development on the Exploratory and Applied Research in the Field of Industrial-Scale Use of Mineral Mining and Processing Waste, Gorn. Prom., 2014, no. 1(113).
6. Shadrunova, I.V., Ozhogina, E.G., Kolodezhnaya, E.V., and Gorlova, O.E., Slag Disintegration Selectivity, J. Min. Sci., 2013, vol. 49, no. 5, pp. 831–838.
7. Gorbatova, E.A. and Ozhogina, E.G., Tekhnologicheskaya mineralogiya tekushchikh khvostov Yuzhnogo Ural (Technical Mineralogy of the Current Tailings in the South Ural), Magnitogorsk: MGTU, 2015.
8. Ozhogina, E.G., Predictive Evaluation of Quality of Mineral Raw Materials, Razved. Okhrana Nedr, 2013, no. 4, pp. 68–70.
9. Rossman, G.I., Petrova, N.V., and Samsonov, B.G., Ecological Appraisal of Mineral Deposits (Methodical Recommendations), Mineral’n. Syr’e, 2000, no. 9.
10. Mineral–Geochemical Investigation of Occurrence of Toxic Substances in Natural and Induced Anomalies for Their Environmental Hazard Assessment, Metodicheskie rekomendatsii 117 NSOMMI (NSOMMI Recommendations no. 117), Moscow: VIMS, 1997.
11. Ozhogina, E.G. and Bulkin, A.A., Mineralogy of Dust, Mineralog. Zh., 1992, no. 3, pp. 86–90.
NEW METHODS AND INSTRUMENTS IN MINING
DOWN-THE-HOLE UNBALANCE VIBRATION EXCITER FOR SEISMIC TREATMENT OF BOTTOM-HOLE ZONE
S. V. Serdyukov, L. A. Rybalkin, P. A. Dergach, A. S. Serdyukov,
and A. V. Azarov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru
The down-the-hole unbalance vibration exciter with the pneumatic drive is designed to treat face zone in the seismic frequency range. The modular-type source consists of a vibration generator with the automated stepped static moment variation, a hold-down unit and an in-built pneumatic percussive device to advance the facility in uncased holes. The article gives pilot test data on R&D model of the vibration exciter, and amplitude–frequency characteristic and spectral content of the excited signal.
Down-the-hole seismic source, vibrational impact, rock mass, seismic vibration, spectral content
DOI: 10.1134/S1062739116041551 REFERENCES
1. Westermark, R. and Brett, J.F., Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County. Final Report DOE Contract Number DE-FG26–00BC1519, Oklahoma: Oil & Gas Consultants International, Inc., 2003.
2. Kurlenya, M.V. and Serdyukov, S.V., Determination of the Region of Vibroseismic Action on an Oil Deposit from the Daylight Surface, J. Min. Sci., 1999, vol. 35, no. 4, pp. 333–340.
3. Skazka, V.V., Serdyukov, S.V., and Kurlenya, M.V., Downhole Unbalance Vibration Exciter near-Field Analysis, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1026–1032.
4. Skazka, V.V., Serdyukov, S.V., Erokhin, G.N., and Serdyukov, A.S., Near-Field Range of the Direct-Impact Seismic Source, J. Min. Sci., 2013, vol. 49, no. 1, pp. 60–67.
5. Timonin, V.V. and Kondratenko, A.S., Process and Measurement Equipment Transport in Uncased Boreholes, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1056–1061.
6. Chichinin, I.S., Vibrtatsionnoe izluchenie seismicheskikh voln (Vibration-Induced Emission of Seismic Waves), Moscow: Nedra, 1984.
7. Borzov, V.M. and Ivlev, V.I., Improvement of Operation of Plate Pneumatic Motor Using Structural Materials with Better Properties, Vestn. Nauch.-Tekh. Razv., 2009, no. 9(25), pp. 2–6.
8. Chukhareva, N.V., Raschet prostykh i slozhnykh gazoprovodov (Design of Simple and Complex Gas Pipelines), Tomsk: TPU, 2010.
9. Mills, K., Jeffrey, R., Black, D., et al., Developing Methods for Placing Sand-Propped Hydraulic Fractures for Gas Drainage in the Bulli Seam, Underground Coal Operators’ Conference, Wollongong, Australia, 2006, pp. 190–199.
10. Serdyukov, S.V., Kurlenya, M.V., Patutin, A.V., Rybalkin, L.A., and Shilova, T.V., Experimental Test of Directional Hydraulic Fracturing Technique, J. Min. Sci., 2016, vol. 52, no. 4, pp. 615–622.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|