Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2016 ãîä » JMS, Vol. 52, No. 4, 2016

JMS, Vol. 52, No. 4, 2016


GEOMECHANICS


EXPERIMENTAL TEST OF DIRECTIONAL HYDRAULIC FRACTURING TECHNIQUE
S. V. Serdyukov, M. V. Kurlenya, A. V. Patutin, L. A. Rybalkin, and T. V. Shilova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The article reports the data of a lab test of directional hydraulic fracturing carried out on a block made of organic glass. A fracture across a hole is created by means of additional shearing stress applied to the hole walls within the interval of the fracture. It is found that seismic emission under hydraulic fracturing appears after the fracture completion.

Rock mass, borehole, directional hydraulic fracturing, transverse fracture, seismic emission

DOI: 10.1134/S1062739116040998 

REFERENCES
1. Lekontsev, Yu.M. and Sazhin, P.V., Directional Hydraulic Fracturing In Difficult Caving Roof Control and Coal Degassing, J. Min. Sci., 2014, vol. 50, no. 5, pp. 914–917.
2. Serdyukov, S.V., Patutin, A.V., Serdyukov, A.S., and Shilova, T.V., RF patent no. 2522677, Byull. Izobret., 2014, no. 20.
3. Shilova, T.V. and Serdyukov, S.V., Protection of Operating Degassing Holes form Air Inflow from Underground Excavations, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1049–1055.
4. Yaskevich, S.V., Grechka, V.Yu., and Duchkov, A.A., Processing Microseismic Monitoring Data, Considering Seismic Anisotropy of Rocks, J. Min. Sci., 2015, vol. 51, no. 3, pp. 477–486.
5. Loginov, G.N., Yaskevich, S.V., Duchkov, A.A., and Serdyukov, A.S., Joint Processing of Surface and Underground Microseismic Monitoring Data in Hard Mineral Mining, J. Min. Sci., 2015, vol. 51, no. 5, pp. 944–950.
6. Azarov, A.V., Kurlenya, M.V., Patutin, A.V., and Serdyukov, S.V., Mathematical Modeling of Stress State of Surrounding Rocks around the Well Subjected to Shearing and Normal Load in Hydraulic Fracturing Zone, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1063–1069.
7. Gurvich, I.I. and Ponomarev, V.P. (Eds.), Seismorazvedka. Spravochnik geofizika (Seismic Exploration. Geophysicist’s Manual), Moscow: Nedra, 1981.
8. Atroshenko, S.A., Krivosheev, S.I., and Petrov, Yu.A., Crack Growth under Dynamic Destruction of Polymethyl Methacrylate, Zh. Tekh. Fiz., 2002, vol. 72, no. 1, pp. 52–58.


RECONSTRUCTION OF 3D STRESS FIELD IN COAL–ROCK MASS BY SOLVING INVERSE PROBLEM USING TOMOGRAPHY DATA
L. A. Nazarova, L. A. Nazarov, and M. I. Protasov

Institute of Integrated Mineral Development–IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: lanazarova@ngs.ru

The theoretically evaluated multi-disciplinary approach enables determination of stress state of a coal–rock mass in the area of coal cutting using a package of geomechanical and geophysical information. The approach is based on successive solutions of two inverse problems in the framework of a geomechanical model: coal-bed tomography and assessment of horizontal components of external stress field. The numerical experiments demonstrate resolvability of the inverse problems given appropriate monitoring system ensures sufficient seismic coverage of a coal-bed in the domain of steep spatial gradients of elastic waves and the presence of regular composition in the frequency range of the order of hundreds of hertz in the sounding signal generated by a cutter–loader and/or other coal-face work machinery.

Coal–rock mass, 3D geomechanical model, stress field, tomography, inverse problem, objective function, finite element method

DOI: 10.1134/S1062739116041010 

REFERENCES
1. Zhenbi, L. and Baiting, Zh., Microseism Monitoring System for Coal and Gas Outburst, International Journal of Computer Science Issues, 2012, vol. 9, issue 5, no. 1, pp. 24–28.
2. Urbancic, T.I. and Trifu, C.-I., Recent Advances in Seismic Monitoring Technology at Canadian Mines, Journal of Applied Geophysics, 2000, vol. 45, pp. 225–237.
3. Zakharov, V.N., Seismoakusticheskoe prognozirovanie i kontrol’ sostoyaniya i svoistv gornykh porod pri razrabotke ugol’nykh mestorozhdenii (Seismo-Acoustic Prediction and Control of State and Property of Rocks Mass in Coal Mining), Moscow: IGD Skochinskogo, 2002.
4. Kuksenko, V.S., Diagnostics and Prediction of Failure of Large-Scale Objects, Fiz. Tverd. Tela, 2005, vol. 47, no. 5.
5. Gor, A.Yu. Kuksenko, V.S., Tomilin, N.G., and Frolov, D.I., Concentration Threshold for Failure and Prediction of Rock Bursts, J. Min. Sci., 1989, vol. 25, no. 3, pp. 237–242.
6. McGarr, A., Simpson, D., and Seeber, L., Case Histories of Induced and Triggered Seismicity, International Handbook of Earthquake and Engineering Seismology, 2002, vol. 81A, pp. 647–661.
7. Li, T.B. and Xiao, X.P., Comprehensive Integrated Methods of Rockburst Prediction in Underground Engineering, Advance in Earth Science, 2008, vol. 23(5), pp. 533–540.
8. Lomnitz, C., Fundamentals of Earthquake Prediction, John Wiley and Sons, New York, 1994.
9. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime, J. Min. Sci., 2004, vol. 40, no. 4, pp. 321–338.
10. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Oktyabrsky Mine, J. Min. Sci., 2004, vol. 40, no. 5, pp. 423–443.
11. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Taimyrsky Mine, J. Min. Sci., 2004, vol. 40, no. 6, pp. 539–555.
12. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F. et al., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J. Min. Sci., 2011, vol. 47, pp. 707–713.
13. Al Heib, M., Numerical and Geophysical Tools Applied for the Prediction of Mine Induced Seismicity in French Coalmines, Int. J. of Geosciences, 2012, vol. 3, no. 4A, pp. 834–846.
14. Besedina, A.N., Kishkina, S.B., and Kocharyan, G.G., Effect of Deformation Properties of Discontinuities on Sources of Mining-Induced Seismicity in Rocks. Part I: In Situ Observations, J. Min. Sci., 2015, vol. 51, no. 4, pp. 707–717.
15. Budkov, A.M., Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., Effect of Deformation Properties of Discontinuities on Sources of Mining-Induced Seismicity in Rocks. Part II: Laboratory and Numerical Experiments, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1085–1090.
16. Luxbacher, K.D., Westman, E.C., Swanson, P L., and Karafakis, M., Three-Dimensional Time-Lapse Velocity Tomography of an Underground Longwall Panel, Int. J. Rock Mech. Min. Sci., 2008, vol. 45(4), pp. 478–485.
17. Korol’, V.I. and Skobenko, A.V., Akusticheskii sposob prognoza gazodinamicheskikh yavlenii v ugol’nykh shakhtakh (Acoustic Method to Predict Gas-Dynamic Events in Coal Mines), Dnepropetrovsk: NGU, 2013.
18. Kurlenya, M.V., Serdyukov, A.S., Duchkov, A.A., and Serdyukov, S.V., Wave Tomography of Methane Pockets in Coal Bed, J. Min. Sci., 2014, vol. 50, no. 4, pp. 617–622.
19. Lyakhovitsky, F.M., Khmelevskoi, V.K., and Yashchenko, Z.G., Inzhenernaya geofizika (Engineering Geophysics), Moscow: Nedra, 1989.
20. Shkuratnik, V.L. and Nikolenko, P.V., Metody opredeleniya napryazhenno-deformirovannogo sostoyaniya massiva gornykh porod (Methods to Determine Stress State of Rocks), Moscow: Gornaya Kniga, 2012.
21. Takahashi, T., Takeuchi, T., and Sassa, K., ISRM Suggested Methods for Borehole Geophysics in Rock Engineering, International Journal of Rock Mechanics and Mining Sciences, 2006, vol. 43, no. 3, pp. 337–368.
22. Pervukhina, M., Gurevich, B., Dewhurst, D.N., and Siggins, A.F., Applicability of Velocity–Stress Relationships Based on the Dual Porosity Concept to Isotropic Porous Rocks, Geophysical Journal International, 2010, vol. 181, no. 3, pp. 1473–1479.
23. Fjaer, E.S., Static and Dynamic Moduli of a Weak Sandstone, Geophysics, 2009, 74(2), WA103–WA112.
24. Siggins, A.F. and Dewhurst, D.N., Saturation, Pore Pressure and Effective Stress from Sandstone Acoustic Properties, Geophysical Research Letters, 2003, vol. 30, no. 2, DOI: 10.1029/2002GL016143.
25. Nazarov, L.A., Nazarova, L.A., Romensky, E.I., et al., Acoustic Method to Determine Stresses in Rock Mass by Solving an Inverse Problem, Dokl. Akad. Nauk, 2016, vol. 466, no. 6, pp. 718–721.
26. Pawlowski, Z., Acoustic Characteristics of Porous Materials in Simple and Complex States of Stresses, Nondestructive Characterization of Materials, Springer, 1989, pp. 413–420.
27. Zheng, Z., Khodaverdian, M., and McLennan, J.D., Static and Dynamic Testing of Coal Specimens, SCA Conference, 1991, Paper 9120.
28. Morcote, A., Mavko, G., and Prasad, M., Dynamic Elastic Properties of Coal, Geophysics, 2010, vol. 75, no. 6, pp. E227–E234.
29. Bronnikov, D.M., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep Ore Mining), Moscow: Nedra, 1982.
30. Nazarova, L.A., Modeling 3D Stress Fields in Fault Zones in the Earth’s Crust, Dokl. Akad. Nauk, 1995, vol. 342, no. 6, pp. 804–808.
31. Dyad’kov, P.G., Nazarov, L.A., Nazarova, L.A., et al., Activation of Seismics and Tectonics in the Baikal Region in 1989–1995: Experimental Observations and Numerical Modeling of Change in Stress–Strain State, Geolog. Geofiz., 1999, vol. 40, no. 3, pp. 373–386.
32. Zienkiewicz, O.C., The Finite Element Method in Engineering Science, McGraw Hill, London, 1971.
33. Saites, F., Wang, G., Guo, R., Mannhardt, K., and Kantzas, A., Coalbed Characterization Studies with X-Ray Computerized Tomography (CT) and Micro CT Techniques, Petroleum Society of Canada, 2006, January, DOI:10.2118/2006–027.
34. http://www.landtechsa.com.
35. Hamdani, A.H., X-Ray Computed Tomography Analysis of Sajau Coal, Berau Basin, Indonesia: 3D Imaging of Cleat and Microcleat Characteristics, International Journal of Geophysics, vol. 2015, ID 415769, 2015. DOI:10.1155/2015/415769.
36. Mees, F., Swennen, R., van Geet, M., and Jacobs, P., Applications of X-Ray Computed Tomography in the Geosciences, vol. 215, Geological Society of London, 2003.
37. Natterer, F., The Mathematics of Computerized Tomography, Universitat Munster, Munster, Germany, 2001.
38. Gol’din, S.V., Theory of X-Ray Seismic Tomography. Part I: Radon Transform in a Band and Its Converse, Geolog. Geofiz., 1996, no. 5, pp. 3–18.
39. Kabanik, A.V., Orlov, Yu.A., and Cheverda, V.A., Computational Solution of a Problem in Linear Seismic Tomography on Transmitted Waves: Incomplete Data case, Sibir. Zh. Industr. Matem., 2004, vol. 7, no. 2.
40. Woodward, M.J., Nichols, D., Zdraveva, O., et al., A Decade of Tomography, Geophysics, 2008, vol. 73(5), pp. VE5–VE11.
41. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Panov, A.V., Assessment of Stresses and Strains in Rocks by Solving an Inverse Problem Based on Measured Displacements at Free Boundaries, Sibir. Zh. Industr. Matem., 2012, vol. 15, no. 4.


NUMERICAL MODELING OF ELASTIC ENERGY ACCUMULATION AND RELEASE IN STRUCTURALLY HETEROGENEOUS GEOMATERIALS
S. V. Lavrikov and A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: lvk64@mail.ru

The approach to numerical modeling of specimen loading considered by the authors using the discrete element method enables describing ability of rocks to accumulate and release elastic energy. The model specimen is a package of particles characterized by viscoelastic interaction with dry friction. The outer layer particles are connected by elastic springs. On the whole, the model specimen is an element of a medium capable of accumulating a part of energy of deformation in the form of internal self-balanced stresses. Numerical modeling of the specimen compression is performed, and the accumulated energy is assessed. It is shown that clusters form in the medium, and sliding along the boundaries of these clusters causes discontinuities in deformation curve. Also, the discontinuities are possible under stress relaxation after unitary dynamic effect on the specimen. There is a good agreement between the numerical and experimental results.

Geomaterial, self-balanced stresses, elastic energy accumulation and release, numerical modeling, discrete elements

DOI: 10.1134/S1062739116041022 

REFERENCES
1. Sadovsky, M.A., Natural lumpiness of rocks, Dokl. Akad. Nauk, 1979, vol. 247, no. 4, pp. 82–833.
2. Mel’nikov, N.N. (Ed.), Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Earth Crust Destruction and Self-Organization in the Areas of Heavy Induced Impact), Novosibirsk: SO RAN, 2012.
3. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Forerunners), Moscow: Nauka, 2003.
4. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Dynamics of Deformation of Block Structure Rock Masses), Moscow: Akademkniga, 2003.
5. Ponomarev, V.S., Issues of Studying Energy-Active Geological Medium, Geotektionika, 2011, no. 2.
6. Stavrogin, A.N. and Shirkes, O.A., Aftereffect in Rocks Caused by Preexisting Irreversible Deformations, J. Min. Sci., 1986, vol. 22, no. 4, pp. 235–244.
7. Fyfe, W.S., Price, N.J., and Thompson, A.B., Fluids in the Earth’s Crust: Their Significance, in Metamorphic, Tectonic and Chemical Transport, Amsterdam: Elsevier, 1978.
8. Vlokh, N.P., Lipin, Ya.I., and Sashurin, A.D., Residual Stresses in Hard Rocks, Sovremennye problemy mekhaniki gornykh porod (Modern Problems in Rock Mechanics), Leningrad: Nauka, 1972.
9. Goryainov, P.M. and Davidenko, I.V., Decompression Events in Rock Masses and Orebodies—A Critical Phenomenon in Geodynamics, Dokl. Akad. Nauk, 1979, vol. 247, no. 5, pp. 1212–1215.
10. Kurlenya, M.V., Adushkin, V.V., Garnov, V.V., Oparin, V.N., Revuzhenko, A.F., and Spivak, A.A., Modern Response of Rocks to Dynamic Impact, Dokl. Akad. Nauk, 1992, vol. 323, no. 2, pp. 263–265.
11. Revuzhenko, A.F., Rock as a Medium with Internal Energy Sources and Sinks: Paper I, J. Min. Sci., 1990, vol. 26, no. 4, pp. 301–308.
12. Lavrikov, S.V. and Revuzhenko, A.F., One Experimental Rock Model, J, Min. Sci., 1991, vol. 27, no. 4, pp. 288–293.
13. Johnson, K.L., Contact Mechanics, Cambridge University Press, 1985.
14. Mindlin, R.D., Compliance of Elastic Bodies in Contact, J. Appl. Mech., 1949, vol. 16, pp. 259–268.
15. Mindlin, R.D. and Deresiewicz, H., Elastic Spheres in Contact under Varying Oblique Forces, J. Appl. Mech., Trans. ASME, 1953, vol. 20, pp. 327–344.
16. Klishin, S.V., Mikenina, O.A., and Revuzhenko, A.F., Deformation of Granular Material around a Rigid Inclusion, J. Min. Sci., 2014, vol. 50, no. 2, pp. 229–234.
17. Revuzhenko, A.F. and Klishin, S.V., Numerical Method for Constructing a Continual Deformation Model Equivalent to a Specified Discrete Element Model, Physical Mesomechanics, 2013, vol. 16, no. 2, pp. 152–161.
18. Lavrikov, S.V. and Revuzhenko, A.F., DEM Code-Based Modeling of Energy Accumulation and Release in Structurally Heterogeneous Rock Masses, AIP Conference Proceedings 1683, 020121 (2015); DOI: 10.1063/1.4932811.


NANORANGE MECHANICAL AND FRACTAL PROPERTIES OF ROCK SALT CRYSTAL SURFACE AND THEIR EFFECT ON FRACTURE TOUGHNESS AND WETTABILITY
V. N. Aptukov and V. Yu. Mitin

Perm State University,
ul. Bukireva 15, Perm, 614990 Russia
e-mail: aptukov@psu.ru
Ural Research and Development Institute of Halurgy,
ul. Sibirskaya 94, Perm, 614002 Russia

The scope of the studies embraces statistical and mechanical properties of surface of different kind crystals of salt rocks. Fractal dimension, hardness and elasticity moduli of such crystals are determined. The article gives estimates of fracture toughness and wettability of salt rock crystals as function of fractal dimension of the crystal surface microrelief.

Salt rock crystals, fractal dimension, nanoindentation, hardness, elasticity modulus, fracture toughness, wettability

DOI: 10.1134/S1062739116041034 

REFERENCES
1. Kuznetsov, P.V., Petrakova, I.V., and Shraiber, Yu., Fractal Dimension as a Fatigue Characteristic of Metal Polycrystals, Fiz. Mezomekh., 2004, vol. 7, Special issue 1, pp. 389–392.
2. Korolenko, P.V., Maganova, M.S., and Mesnyankin, A.V., Novatsionnye metody analiza stokhasticheskikh protsessov i struktur v optike (Innovation Analyses of Stochastic Processes and Structures in Optics), Moscow: NIIYaF MGU, 2004.
3. Aptukov, V.N., Mitin, V.Yu, and Skachkov, A.P., Analysis of Surface Microrelief of Sylvine using the Hurst Method, Vestn. Perm. Univer., 2010, issue 4(4), pp. 30–33.
4. Aptukov, V.N., Konstantinova, S.A., and Skachkov, A.P., Microchemical Characteristics of Carnallite, Sylvinite and Rock Salt at Upper Kama Deposit, J. Min. Sci., 2012, vol. 46, no. 4, pp. 352–358.
5. Aptukov, V.N. and Skachkov, A.P., Assessment of Microchemical Characteristics of Rock Salt, Sylvinite and Carnallite on NanoTest-600 Machine, Vestn. Nizhegorod. Univer., 2011, no. 4 (2), pp. 372–374.
6. Aptukov, V.N., Konstantinova, S.A., Mitin, V.Yu., and Skachkov, A.P., Nano- and Micro-Range Mechanical Characteristics of Sylvite Grain, J. Min. Sci., 2012, vol. 48, no. 429–435.
7. Aptukov, V.N. and Mitin, V.Yu., Comparative Charañterization of Surface Roughness of Sylvite, Spathic Salt and Carnallite Grains in Nanorange, J. Min. Sci., 2013, vol. 49, no. 1, pp. 44–51.
8. Aptukov, V.N., Mitin, V.Yu., Moloshtanova, N.E., and Morozov, I.A., Nano-Range Mechanical Characteristics of Carnallite, Spathic Salt and Sylvite, J. Min. Sci., 2013, vol. 49, no. 3, pp. 382–387.
9. Aptukov, V.N., Mitin, V.Yu., and Morozov, I.A., Fractal and Mechanical Properties of Simple Salt Crystals in Nanorange, Vestn. Perm. Univer., 2014, no. 4(27), pp. 16–21.
10. Aptukov, V.N., Mitin, V.Yu., and Skachkov, A.P., Surface Roughness of Sparry Halite Crystals on Micro- and Nano-Scale, Vestn. Perm. Univer., 2014, no. 1(24), pp. 25–30.
11. Viktorov, S.D., Golovin, Yu.I., Kochanov, A.I., et al., Micro- and Nano-Indentation Approach to Strength and Deformation Characteristics of Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 652–659.
12. Borodich, F.M., Bull, S.J., and Epshtein, S.A., Nanoindentation in Studying Mechanical Properties of heterogeneous Materials, J. Min. Sci., 2015, vol. 51, no. 3, pp. 470–476.
13. Zhuravkov, M.A. and Romanova, N.S., Determination of Mechanical Properties of Geomaterials Based on Nano-Indentation Tests and Fraction Order Models, J. Min. Sci., 2016, vol. 52, no. 2, pp. 207–217.
14. Dubovikov, M.M., Kryanev, A.V., and Starchenko, N.V., Dimension of Minimum Coverage and Local Analysis of Fractal Time Series, Vestn. RUDN, 2004, vol. 3, no. 1, pp. 81–95.
15. GOST 2789–73. Sherokhovatost’ poverkhnosti (Surface Roughness), Moscow: Izd. standartov, 1973.
16. Mosolov, A.B., Griffith’s Fractal Crack, Zh. Tekh. Fiz., 1991, vol. 61, no. 7, pp. 57–60.
17. Bulat, A.F. and Dyrda, V.I., Fraktaly v geomekhanike (Fractals in Geomechanics), Kiev: Naukova Dumka, 2005.
18. Teterina, N.N., Sabirov, R.Kh., Skvirsky, L.Ya., and Kirichenko, L.N., Tekhnologiya flotatsionnogo obogashcheniya kaliinykh rud (Technology of Potassium Ore Flotation), Perm: Solikamsk. Tipogr., 2002.
19. Boinovich, L.B. and Emel’yanenko, A.M., Hydrophobic Materials and Coatings: Principles of Engineering, Properties and Application, Uspekhi Khim., 2008, no. 77(7), pp. 619–638.


ROCK FAILURE


MODELING FRACTURE GROWTH UNDER MULTIPLE HYDRAULIC FRACTURING USING VISCOUS FLUID
I. V. Kolykhalov, P. A. Martynyuk, and E. N. Sher

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ikolykhalov@mail.ru

Under computational investigation is the process of sequential growth of hydrofractures under conditions of plane strain. The working fluid is perfect and viscous. The authors analyze influence exerted on parameters and trajectories of growing fractures by spacing of the fractures, external compression field, fluid flow rate, fluid viscosity and leakage flow rate.

Multiple-interval hydraulic fracturing, hydrofracture, rock pressure, fluid viscosity, leakage flow rate

DOI: 10.1134/S1062739116041058 

REFERENCES
1. Grigor’ev, G.A. and Afanas’eva, T.A., Prospects for Commercial-Scale Development of Nonconventional Gas Resources in Russia, Neftegaz. Geolog. Teor. Prakt. 2012, vol. 7, no. 2. Available at: http://www.ngtp.ru/rub/9/29_2012.pdf.
2. Salimov, O.V., Nasybullin, A.V., and Salimov, V.G., Influence of the Multiple Fractures in the Far-Field Zone on the Hydraulic Fracturing Efficiency, Neftepromysl. Delo, 2010, no. 10, pp. 24–27.
3. Ushakov, A.S. and Samoilov, A.S., Analysis of Hydrofracturing Results in Horizontal Reservoirs of Surgutneftegaz Deposits, Proceedings of Academician Usov International Symposium, Toms, 2010.
4. Kresse, O., Weng, X., et al., Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations, Rock Mechanics and Rock Engineering, 2013, vol. 46, issue 3, pp. 555–568.
5. Rahman, M.M., Hossain, M.M., et al., Analytical, Numerical and Experimental Investigations of Transverse Fracture Propagation from Horizontal Wells, J. of Petroleum Science & Engineering, 2002, vol. 35, pp. 127–150.
6. Zheltov, Yu.P. and Khristianovich, S.A., Hydraulic Fracturing of an Oil Reservoir, Izv. AN SSSR, OTN, 1955, no. 5, pp. 3–41.
7. Alekseenko, O.P. and Vaisman, A.M., Exact Solution of One Classical Problem on Hydraulic Fracturing, J. Min. Sci., 2001, vol. 37, no. 5, pp. 493–503.
8. Linkov, A.M., Numerical Modeling of Fluid Flow and a Hydraulically Induced Fracture Propagation, J. Min. Sci., 2008, no. 44, no. 1, pp. 24–42.
9. Crouch, S.L. and Starfield, A.M., Boundary Element Methods in Solid Mechanics, London: Allen and Unwin, 1983.
10. Sher, E.N. and Kolykhalov, I.V., Propagation of Closely Spaced Hydraulic Fractures, J. Min. Sci., 2011, vol. 47, no. 6, pp. 741–750.
11. Savruk, M.P., Dvumernye zadachi uprugosti dlya tel s treshchinami (2D Elasticity Problems for Bodies with Fractures), Kiev: Naukova Dumka, 1981.
12. Martynyuk, P.A., Features of Hydraulic Fracture Growth in the Compression Field, J. Min. Sci., 2008, vol. 44, no. 6, pp. 544–553.
13. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow: Nauka, 1974.
14. Sher, E.N. and Kolykhalov, I.V., Determination of Hydrofracture Geometry in a production Reservoir, J. Min. Sci., 2015, vol. vol. 51, no. 1, pp. 81–87.


GEOPHYSICAL CRITERION OF PRE-OUTBURST CRACK PROPAGATION IN COAL BEDS
A. V. Shadrin

Kemerovo State University,
ul. Krasnaya 6, Kemerovo, 650043, Russia
e-mail: ashadr1951@mail.ru

The process of crack propagation in the coal face area is considered as an informative sign of coal and gas outburst hazard. In the known condition of crack growth at a certain distance from a coal face, it is suggested to replace mechanical parameters by geophysical data through application of different evaluation approaches: actual stresses—by spectral–acoustic method relative to amplitudes of high-frequency and low-frequency components of acoustic signal generated by mining machines in coal face area; pore pressure—by analysis of methane concentration in mine air in coal face area; strength of the most folded coal bed—by measuring strength based on penetration depth of a steel cone. The author analyzes the influence of acoustic, strength and permeability and porosity properties of coal face area on limit value of geophysical pre-outburst crack propagation criterion.

Outburst hazard index, crack propagation criterion, spectral–acoustic method, air-and-gas control equipment, stress state, coal strength characteristics, pore pressure, methane concentration

DOI: 10.1134/S106273911604107X

REFERENCES
1. Knurenko, V.A., Rudakov, V.A., Egorov, P.V., and Surkov, A.V., Regional’nyi prognoz vybrosoopasnosti ugol’nykh plastov Kuzbassa (Regional Outburst Hazard Prediction for Coal Beds in Kuzbass), Kemerovo: Akad. Gorn. Nauk, 1997.
2. Zykov, V.S., Egorov, P.V., Potapov, P.V., et al., Prognoz i predotvrashchenie vnezapnykh vybrosov uglya i gaza v ochistnykh zaboyakh ugol’nykh shakht (Prediction and Prevention Coal and Gas Outburst at Production Headings in Coal Mines), Kemerovo: Kuzbassvuzizdat, 2003.
3. Chernov, O.I. and Puzyrev, V.N., Prognoz vnezapnykh vybrosov uglya i gaza (Prediction of Coal and Gas Outbursts), Moscow: Nedra, 1979.
4. Preduprezhdenie gazodinamicheskikh yavlenii v ugol’nykh shakhtakh: sb. dokumentov (Prevention of Gas-Dynamic Events in Coal Mines: Source-Book), Moscow: Nauch.-Tekh. Tsentr Issled. Probl. Promyshl. Bezop., 2011.
5. Mirer, S.V., Khmara, O.I., and Shadrin, A.V., Spektral’no-akusticheskii prognoz vybrosoopasnosti ugol’nykh plastov (Spectral–Acoustic Prediction of Outburst Hazard in Coal Beds), Kemerovo: Kuzassvuzizdat, 1999.
6. Shkuratnik, V.L., Filimonov, Yu.L., and Kuchurin, S.V., Experimental Investigation into Acoustic Emission in Coal Samples under Uniaxail Loading, J. Min Sci., 2004, vol. 40, no. 5 pp. 458–464.
7. Federal’nye normy i pravila v oblasti promyshlennoi bezopasnosti: Instruktsiya po prognozu dinamicheskikh yavlenii v ugol’nykh shakhtakh i monitoringu massiva gornykh porod pri otrabotke ugol’nykh mestorozhdenii: proekt (Federal Standards and Regulations on Industrial Safety: Guidelines on Prediction of Dynamic Events in Coal Mines and Monitoring of Rock Mass in Coal Mining: Project), Moscow: IPKON RAN, 2015.
8. Shadrin, A.V. and Zykov, V.S., Akusticheskaya emissiya vybrosoopasnykh plastov: obzornaya informatsiya (Acoustic Emission in Outburst-Hazardous Seams: Review), Moscow: TsNIEIugo’, 1991.
9. Greshnikov, V.A. and Drobot, Yu.V., Akusticheskaya emissiya. Primenenie dlya ispytanii materialov i izdelii (Acoustic Emission. Application to Test Materials and Products), Moscow: Izd. Standartov, 1976.
10. Ammosov, I.I. and Eremin, I.V., Treshchinovatost’ uglei (Jointing of Coal), Moscow: AN SSSR, 1960.
11. Petukhov, I.M. and Linkov, A.M., Mekhanika gornykh udarov i vyrbosov (Rockburst and Outburst Mechanics), Moscow: Nedra, 1983.
12. Moskalev, A.N., Vasil’ev, L.M., and Mlodetsky, V.R., Limiting Equilibrium of Cracks in a Coal Seam into Which Liquid is Injected, J. Min. Sci., 1979, vol. 15, no. 5, pp. 504–508.
13. Shtumf, G.G., Egorov, P.V., Petrov, A.I., et al., Gornoe davlenie v podgotovitel’nykh vyrabotkakh ugol’nykh shakht (Rock Pressure in development Roadways in Coal Mines), Moscow: Nedra, 1996.
14. Shadrin, A.V., Egorov, P.V., and Trusov, S.E., Outburst Hazard Criteria Developed and Used in Coal Mines in Kuzbass, Vestn. KuzGTU, 2003, no. 4, pp. 14–20.
15. Instruktsiya po bezopasnomu vedeniyu gornykh rabot na plastakh, opasnykh po vnezapnym vybrosam uglya, porody i gaza (RD 05–350–00). Preduprezhdenie gazodinamicheskikh yavlenii v ugol’nykh shakhtakh: sb. dokumentov (Guidelines on Safe Mining in Rock, Cola and Gas Outburst-Hazardous Beds. Prevention of Gas-Dynamic Events in Coal Mines: Source-Book), Moscow: NTTs Bezopas. Prom. Gosgortekhnadzor Rossii, 2000.
16. Rzhevsky, V.V. and Novik, G.Ya., Osnovy fiziki gornykh porod (Principles of Physics of Rocks), Moscow: Nedra, 1978.
17. Zykov, V.S., Lebedev, A.V., and Surkov, A.V., Preduprezhdenie gazodinamicheskikh yavlenii pri provedenii vyrabotok po ugol’nym plastam (Prevention of Gas-Dynamic Events in In-Seam Driving), Kemerovo: KRO AGN, 1997.
18. Shadrin, A.V. and Degtyareva, M.V., Factors That Govern Crack Growth in Coal Beds, Vestn. Nauch. Tsentra Bezop. Rabot v Ugol’n. Prom., 2013, no. 11, pp. 127–132.
19. Feit, G.N., Prochnostnye svoistva i ustoichivost’ vybrosoopasnykh ugol’nykh plastov (Strength Characteristics and Stability of Outburst-Hazardous Coal Beds), Moscow: Nauka, 1966.
20. Slesarev, V.D., Mekhanika gornykh porod i rudnichnoe kreplenie (Rock Mechanics and Mine Support), Moscow: Ugletekhizdat, 1948.
21. Klein, G.K., Stroitel’naya mekhania sypuchikh tel (Construction Mechanics of Granular Bodies), Moscow: Stroiizdat, 1977.
22. Shadrin, A.V. and Konovalenko, V.A., Principles of Automatic Continuous Monitoring of Gas-Dynamic Events in Coal Mines, in Kuzbass, Vestn. KuzGTU, 2001, no. 3, pp. 28–31.
23. Khodot, V.V., Vnezapnye vybrosy uglya i gaza (Coal and Gas Outbursts), Moscow: Gos. Nauch.-Tekh. Izd. Lit. po Gorn. Delu, 1961.


VARIATIONS OF TEMPERATURE IN SPECIMENS OF ROCKS AND GEOMATERIALS UNDER FAILURE
V. V. Seredin and A. S. Khrulev

Perm State University,
ul. Bukireva 15, Perm, 614990 Russia
e-mail: nedra@nedra.perm.ru

Loading causes stress concentration around defects in rocks, which induces initiation and propagation of cracks. Physically, external loading shows itself in rocks as acoustic and electromagnetic emission, included infrared radiation. Experimentally, it is found that in specimens of geomaterials under uniaxial tension, temperature is minimum; under uniaxial compression, temperature grows; under triaxial stress, temperature is maximum. It has been succeeded to derive equations for temperature prediction in a material in the zone of main crack as function of failure load. The method to estimate stress state based on the data on infrared radiation in materials is developed.

Soil stress, critical crack, temperature, uniaxial compression and tension

DOI: 10.1134/S1062739116041081 

REFERENCES
1. Seredin, V.V., Leibovich, L.O., Pushkareva, M.V., Kopylov, I.S., and Khrulev, A.S., Evolution of Fracture Surface Morphology in Rocks, J. Min. Sci., 2013, vol. 49, no. 3, pp. 409–412.
2. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
3. Bobryakov, A.P., Stick–Slip Mechanism in a Granular Medium, J. Min. Sci., 2010, vol. 46, no. 6, pp. 600–605.
4. Chikov, B.M., Kargapolov, S.A., and Ushakov, G.D., Experimental Stress–Transformation of Perknit, Geolog. Geofiz., 1989, no. 6, pp. 75–79.
5. Voznesensky, A.S., Ustinov, K.B., and Shkuratnik, V.L., Theoretical Model of Acoustic Emission under Mechanical Loading of Rocks in the Zone of Maximum Compaction, Prikl. Mekh. Tekhn. Fiz., 2006, vol. 47, no. 4, pp. 145–152.
6. Voznesensky, A.S., Kutkin, Ya.O., Krasilov, M.N., Interrelation of the Acoustic Q-Factor and Strength in Limestone, J. Min. Sci., 2015, vol. 51, no. 1, pp. 23–30.
7. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., and Krivetsky, A.V., Mechanical–Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
8. Seredin, V.V., Analyses of Temperature in Rocks in a Fracture Zone, Fund. Issled., 2014, nos. 9–12.
9. Sheinin, V.I., Levin, B.V., Motovilov, E.F., Morozov, A.A., and Favorov, A.V., Diagnostic Infrared Radiometry of Quick Periodic Changes of Stresses in Rocks, Fiz. Zemli, 2001, no. 4, pp. 24–30.
10. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, 191–214.
11. Seredin, V.V., Strength Ratings of Rocks, J. Min. Sci., 1985, no. 2.
12. Seredin, V.V. and Laptev, B.V., USSR Author’s Certificate no. 1173244, Byull. Izobret., 1985, no. 30.
13. Molchanov, V.I., Selezneva, O.G., and Osipov, S.L., Mechanical Activation of a Mineral Substance as a Precondition of Stress-Transformations in Lineament Zones, Struktura lineamentnykh zon stress-metaformizma (Structure of Lineament Zones under Stress-Metamorphism), Novosibirsk: Nauka, 1990.
14. Kuksenko, V.S., Makhmudov, Kh.V., Mansurov, V.A., Sultanov, U., and Rustamova, M.Z., J. Min. Sci., 2009, 45: 355. DOI: 10.1007/s10913–009–0044–3.


ESTIMATION OF MAIN FRACTURE INITIATION ENERGY IN SEPARATING STONE BLOCKS FROM ROCK MASS BY IMPACT ON PLASTIC MATERIAL IN DRILLHOLE
P. N. Tambovtsev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: tambovskiyp@mail.ru
Novosibirsk State University of Architecture and Construction–SIBSTRIN,
ul. Leningradskaya 113, Novosibirsk, 630008 Russia

Based on the experimental data on separation of stone blocks from rock mass, the author has developed an approximate analytical model to find energy input required to initiate main crack depending on mechanical properties of rocks, geometry of bench, diameter of drillholes and meterage drilled.

Rock mass, line of drillholes, plastic substance, tool, shock, crack, separation

DOI: 10.1134/S1062739116041093 

REFERENCES
.1. Alekseenko, O.P., Designs of Hard Roof Fracturing with Plastic Fluid, Vzaimodeistvie mekhanizirovannykh krepei s bokovymi porodami (Powered Support and Sidewall Interaction, Novosibirsk: IGD SO RAN, 1987.
2. Chernov, O.I. and Kyu, N.G., Rupture of Natural Rocks by Fluids, J. Min. Sci., 1988, vol. 24, no. 6, pp. 560–569.
3. Chernov, O.I. and Kyu, N.G., Oriented Rupture of Solids by Highly Viscous Fluid, J. Min. Sci., 1996, vol. 32, no. 5, pp. 362–367.
4. Kyu, N.G. and Chernov, O.I., RF patent no. 2131032, Byull. Izobret., 1999, no. 15.
5. Kyu, N.G., Freidin, A.M., and Chernov, O.I., Dimension Stone Production Using Hydraulic Fracturing, Gornyi Zh., 2001, no. 3, pp. 71–75.
6. Tambovtsev, P.N., Experimental Investigation into the Impact Fluid Fracturing of Rock Blocks, J. Min. Sci., 2004, vol. 40, no. 3, pp. 265–272.
7. Petreev, A.M. and Tambovtsev, P.N., Impact Loading of a Hard Rock via Plastic Substance in a Drill Hole, J. Min. Sci., 2006, vol. 42, no. 6, pp. 592–599.
8. Kyu, N.G., Particular Issues Associated with Fluid Fracturing of Rocks by Plastic Materials, J. Min. Sci., 2011, vol. 47, no. 4, pp. 450–459.
9. Tambovtsev, P.N., Physical Simulation of Stone Block Cutting under Impact Action on Plastic Substance in Drill Hole, J. Min. Sci., 2015, vol. 51, no. 1, pp. 73–80.
10. Belyaev, N.M., Soprotivlenie materialov (Material Strength), Moscow: Nauka, 1965.
11. Karkashadze, G.G., Mekhanicheskoe razrushenie gornykh porod (Rock Disintegration), Moscow: MGGU, 2004.
12. Karasev, Yu.G. and Baka, N.T., Prirodnyi kamen’, dobycha blochnogo i stenovogo kamnya: ucheb. posobie (Natural Stone, Dimension Stone and Masonry Block Production: Educational Aid), Saint-Petersburg: SPbGGU, 1997.


SCIENCE OF MINING MACHINES


DETERMINATION OF LENGTH OF HORIZONTAL PNEUMATIC TRANSPORT LINE IN DRILLING MACHINE FOR MUD REMOVAL BY NEGATIVE PRESSURE
B. B. Danilov and B. N. Smolyanitsky

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bsmol@misd.ru

Under discussion is soil transport by negative pressure generated in horizontal rotating pipeline. Based on the relations between soil batch velocity, soil batch mass and diameter of the pipeline, the authors have developed procedure to determine the limit pipeline length. The rotary velocity of the pipeline is related with its diameter. Reliability of the proposed procedure results is experimentally proved.

Drilling, drillhole, pipeline, transport, soil batch, pressure differential

DOI: 10.1134/S1062739116041105 

REFERENCES
1. Trubetskoy, K.N. (Ed.), Gornye nauki. Osvoenie i sokhranenie nedr Zemli (Mining Sciences. Development and Preservation of the Earth’s Mineral Resources), Moscow: AGN, 1997.
2. Smolyanitsky, B.N., Repin, A.A., Danilov, B.B., et al., Enhancing Efficiency and Useful Life of Pulse-Generating Machines for Hole Drilling in Rocks, Integratsionnye proekty SO RAN (Integration Projects of the Siberian Branch of the Russian Academy of Sciences), Issue 43, Novosibirsk, SO RAN, 2013.
3. Malevich, I.P. and Matveev, A.I., Pnevmaticheskii transport sypuchikh stroitel’nykh materialov (Air Conveying of Granular Construction Materials), Moscow: Stroiizdat, 1979.
4. Danilov, B.B. and Smolyanitsky, B.N., New Long Hole Horizontal Drilling Machine with Broken Soil Removal under Compressed Air, Stroit. Dorozh. Mash., 2013, no. 7, pp. 17–22.
5. Danilov, B.B. and Smolyanitsky, B.N., RF patent 2344241, Byull. Izobret., 2009, no. 2.
6. Danilov, B.B. and Smolyanitsky, B.N., Concerted Operation of Pneumatic Percussion Tool and Air-Aided Chips Removal Line in Horizontal Hole Drilling Machines, J. Min. Sci., 2013, vol. 49, no. 3, pp. 459–464.
7. Danilov, B.B. , Smolyanitsky, B.N., and Sher, E.N., Determination of Conditions for Compressed Air-Assisted Removal of Plastic Soil in Horizontal Pipeline in Drilling, J. Min. Sci., 2014, vol. 50, no. 3, pp. 484–490.
8. http://www.220-volt.ru/
9. http://www.erstvak.com/


MINERAL MINING TECHNOLOGY


SINGLE-PHASE LOCAL OPTIMIZATION MODEL FOR LIMESTONE SUPPLY FROM OPEN PIT MINES TO HEAT POWER PLANTS IN SERBIA
M. Radosavljević, S. Vujića, T. Boshevski, J. Prashtalo, and B. Jovanović

Mining Institute of Belgrade,
Batajnicki put 2, Zemun, 11080 Serbia
e-mail: slobodan.vujic@ribeograd.ac.rs
Rudproekt, Aleksandar Makedonski 9, Skopje, 1000 R. Macedonia

Coordination of heating energy sector performance and legal regulations and standards in the area of air protection from toxic substances involves opportunity analysis of limestone supply as limestone is used as deoxidant in the process of sulfur removal from smoke fuses. The problem of supplying heat power plants with limestone reduces to location identification, i.e. selection of an open pit mine offering the lowest cost of transportation. The authors present a single-phase local model for evaluation of decision-making in management of limestone supply to heat energy sector plants in Serbia.

Single-phase local model, supply management, limestone, heat power plant, open pit mine

DOI: 10.1134/S1062739116041117 

REFERENCES
1. Ahmet Yucekaya and Kadir Has, Cost Minimizing Coal Logistics for Power Plants Considering Transportation Constraints, Journal of Traffic and Logistics Engineering, 2013, vol. 1, no. 2, pp. 122–127.
2. Bodon, P., Fricke, C, Sandeman, T., and Stanford, C., Modeling the Mining Supply Chain from Mine to Port. A Combined Optimization and Stimulation Approach, J. Min. Sci., 2011, vol. 47, no. 2, pp. 202–211.
3. Reay-Chen Wanga and Tien-Fu Liangb, Applying Possibilistic Linear Programming to Aggregate production Planning, Int. J. Production Economics, 2005, pp. 328–341.
4. Stanojević, R., Optimization Macro-Economy Models, Velatra, Belgrade, 2001.
5. Case Study on the Possibility of Limestone Supplies for the Purpose of Smoke Gases Desulfurization at the Thermal Power Plant Kostolac, Thermal Power Plant Nikola Tesla And New Thermo-Energetic Facilities, Mining Institute And Tekon, Belgrade, 2014.
6. Vujić, S., Optimization Methods—Application of Linear Programming in Open Pit Mining, Faculty of Mining and Geology, Belgrade, 1977.
7. Vujić, S., Miljanović, I., Kuzmanović, M., et al., The Deterministic and Fuzzy Linear Approach in Planning the Production of Mine System with Several Open Pits, Archives of Mining Sciences, 2011, vol. 56, no. 3, 2011, pp. 489–497.
8. Vujić, S., Benović, T., Miljanović, et al., Fuzzy Linear Model of Production Optimization of Mining Systems with Multiple Entities, International Journal of Minerals, Metallurgy and Materials, 2011, vol. 18, no. 6, pp. 633–637.


METHOD AND ESTIMATION OF EFFICIENT DIFFERENTIATION OF COAL RESERVES BASED ON WASHABILITY
E. V. Freidina, A. A. Botvinnik, and A. N. Dvornikova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: albyna@misd.ru
Novosibirsk State University of Economics and Management,
ul. Kamenskaya 52, Novosibirsk, 630091 Russia

The presented geological and technical factors make it possible to differentiate coal reserves in South Yakutia based on their property of washability. The authors have constructed algorithm for processing of data of float-and-sink analysis and evaluated coal reserves differentiation criteria. The article describes model of optimization of concentrate yield and quality management and proposes matrix of composition of end products based on the market requirements.

Reserves differentiation, density composition model, washability category, concentrate, end product quality management

DOI: 10.1134/S1062739116041129 

REFERENCES
1. USSR State Standard GOST 10100–84, Ugli kamennye i antratsit. Metod opredeleniya obogatimosti (Bituminous Coal and Anthracite. Washability Determination), Moscow: Izd. standartov, 1984.
2. Sokolov, V.G., Krivye obogatimosti uglei (Coal Washability Curves), Moscow: Gosgortekhizdat, 1962.
3. Zemlyakov, B.A., Prognozirovanie kharakteristik obogatimosti uglei (Predicting Washability Characteristics of Coal), Moscow: Nedra, 1978.
4. USSR State Standard GOST 4790–80, Ugli burye, kamennye, antratsit i goryuchie slantsy. Metod fraktsionnogo analiza (Lignite, Bituminous Coal, Anthracite and Oil Shale. Float-and-Sink Analysis) Moscow: Izd. standartov, 1980.
5. Freidina, E.V., Dvornikova, A.N., and Tret’yakov, S.A., Structure and Models of the Computer-Aided Current Planning of Mining with Optimizing Batch Mixture Composition and Calculating Yield of Washed Product of Baking Coal, Voprosy sovershenstvovaniya gornykh rabot na shakhtakh i kar’erakh Sibiri (Improvement of Open Pit and Underground Mining in Siberia), Novosibirsk: IGD SO AN SSSR, 1990, pp. 121–138.
6. Dvornikova, A.N. and Tret’yakov, S.A., Methodical Basis for Estimation of Coal Washability for Formulating a Batch Mixture in Open Pit Mines, Osvoenie toplivno-energeticheskikh kompleksov vostochnykh raionov strany (Development of the Fuel-and-Energy Industry in the East of the Country), Novosibirsk: IGD SO AN SSSR, 1989, pp. 147–159.
7. Freidina, E.V., Dvornikova, A.N., and Tret’yakov, S.A., Evaluating the Utilization of Coking-Coal Reserves, J. Min. Sci., 1997, vol. 33, no. 5, pp. 463–470.
8. Antipenko, L.A., Modern Technologies of Coal Preparation and Washing, Ugol’, 2015, no. 12, pp. 68–72.
9. Kotkin, A.M., Yampol’sky, M.N., and Gerashchenko, K.D., Otsenka obogatimosti uglya i effektivnosti protsessov obogashcheniya (Evaluating Coal Washability and Washing Efficiency), Moscow: Nedra, 1982.
10. Kozlov, V.A., The Variation of the Concentration Ratio Output for Different Grain Size Classes of the Metallurgical Coal at Elginskoe Deposit, GIAB, 2011, no. 5.
11. Freidina, E.N., Botvinnik, A.A., and Dvornikova, A.N., Coal Quality Control in the Context of International Standards ISO 9000–2000, J. Min. Sci., 2008, vol. 44, no. 6, pp. 589–599.


STRIPPING WITH DIRECT DUMPING IN KUZBASS OPEN PIT MINES: THE CURRENT STATE AND PROSPECTS
V. I. Cheskidov and V. K. Norri

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru

The analytical results are given for application of stripping with direct dumping in open pit mines in Kuzbass. It is emphasized that this most productive and the least power-consuming technology loses its weight in the overall content of overburden stripping. The authors propose a method to determine rational boundaries for application area of stripping with direct dumping using slice re-excavation coefficient. The scope of the discussion comprises potential trends of the technology and use of draglines towards enhancement of open pit mining efficiency.

Open pit mine, stripping with direct dumping, dragline, application area

DOI: 10.1134/S1062739116041130 

REFERENCES
1. Tarazanov, I.G., Coal Industry Performance in RF in 2015, Ugol’, 2016, no. 3.
2. Repin, N.Ya. and Fazalov, G.T., Introduction of overburden dumping by blasting to mined-out area in mining with direct dumping in Kuzbass, Ugol’, 1971, no. 5.
3. Trubetskoy, K.N., Krasnyansky, G.L., and Khronin, V.V., Proektirovanie kar’erov (Open Pit Mine Design), Moscow: AGN, 2001.
4. Cheskidov, V.I. and Norri, V.K., Enhancing Efficiency of Combination Mining Systems for Horizontal and Gently Dipping Bedded Deposits, GIAB, 2005, no. 1.
5. Official web site of Kuzbass razrezugol Coal Company, www.kru.ru/about/indices/.
6. Vasil’ev, E.I. and Cheskidov, V.I., Substantiation of Application of Overburden Rehandling in Flat Dipping Deposits, J. Min. Sci., 2003, vol. 39, no. 6, pp. 586–590.
7. Gvozdkova, T.N., Mining with Direct Dumping in a Series of Three Flat Dipping Beds with the Overall Thickness of Partings of 80 m in Sibirginsky Open Pit Mine, Vestn. KuzGTU, 2004, no. 3.
8. Nazarov, I.V., Numerical Modeling of Overburden Rehandling by Draglines, Vestn. BFU, 2013, no. 4.
9. Men’shonok, P.P. and Cheskidov, V.I., Selection of a Mining Scheme for Gently Dipping Deposits at the Maximum Internal Dumping in Mined-Out Area, Proc. 2nd Int. Conf. on Open Pit Mining, Moscow, 1996.
10. Selyukov, V.O., Technological Significance of Internal Dumping in Open Pit Coal Mining in the Kemerovo Region, J. Min. Sci., 2015, vol. 51, no. 5, pp. 879–887.
11. Kirillov, M.A., Improvement of Efficiency of Overburden Dumping by Blasting to Mined-Out-Area in Open Pit Coal Mining with Direct Dumping Technology, Cand. Tech. Sci. Dissertation, Irkutsk, 1999.
12. Ivanovsky, D.S., Removal of Different Strength Overburden to Mined-Out Area of an Open Pit Mine by Blasthole Blasting, Ratsional. Osvoen. Nedr, 2011, no. 2, pp. 54–57.


MINE AEROGASDYNAMICS


EVALUATION OF VENTILATION FLOW CHARTS FOR DOUBLE-LINE SUBWAY TUNNELS WITHOUT AIR CHAMBERS
A. M. Krasyuk, I. V. Lugin, E. L. Alferova, and L. A. Kiyanitsa

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: krasuk@cn.ru

The authors inspect operation of ventilation system in a double-line subway tunnel. It is found that air flow rates required for tunnels and passenger stations differ greatly. For routine operation modes in subway tunnels, the authors evaluate longitudinal ventilation flow chart without station-to-station air chambers, which considerably decreases construction cost of subway ventilation infrastructure. Static pressure fluctuations on outside faces of trains that move in a tunnel in opposite directions are determined. For emergency operation modes of subway tunnel ventilation, under train fire in a tunnel, the authors evaluate a fore-and-aft chart of smoke removal. Toxic emission concentration due to smoke fumes on the way of a breakdown train evacuation is determined. It is proposed to install longitudinal screens in tunnels to ensure safe concentrations of carbon monoxide and carbon dioxide on either way from a breakdown train to a station.

Subway, tunnel ventilation, double-line tunnel, emergency operation mode, carbon dioxide concentration, longitudinal screen

DOI: 10.1134/S1062739116041154 

REFERENCES
1. Starkov, A.Yu., Construction Technology of the Double-Line Running Tunnel in the Saint-Petersburg Metro, Metro Tonneli, 2011, no. 2, pp. 8–9.
2. Frolov, Yu.S., Experience and Prospects of the Transport Infrastructure in Spain, Metro Tonneli, 2012, no. 3, pp. 1–9.
3. Krasyuk, A.M., Lugin, I.V., and Pavlov, S.A., Circulatory Air Rings and Their Influence on Air Distribution in Shallow Subways, J. Min. Sci., 2010, vol. 46, no. 4, pp. 431–437.
4. Krasyuk, A.M., Lugin, I.V., Pavlov, S.A., Romanov, V.I., and Mel’nik, G.A., RF patent no. 2556558, Byull. Izobret., 2015, no. 19.
5. RF Construction Code SP 120.13330.2012. Subways, Moscow: Minregion Rossii, 2013.
6. Krasyuk, A.M., Tonnel’naya ventilyatsiya metropolitenov (Tunnel Ventilation in Subways), Novosibirsk: Nauka, 2006.
7. Loitsyansky, L.G., Mekhanika zhidkosti i gaza: ucheb. dlya vuzov (Mechanics of Liquid and Gas: University Textbook), Moscow: Nauka, 1987.
8. ANSYS Fluent User’s Help, Version 14.57.
9. Baturin, O.V., Naturin, N.V., and Matveev, N.V., Raschet techenii zhidkostei i gazov s pomoshch’yu universal’nogo programmnogo kompleksa Fluent: ucheb. posob. (Calculating Flows of Liquids and Gases in Universal Software Fluent: Educational Ai), Samara: SGAU, 2009.
10. Weather Factors to Affect Health: Atmospheric Pressure. Available at: http://meteopathy.ru/ meteofaktory/pogodnye-faktory-vo-vliyanii-na-zdorove-cheloveka-atmosfernoe-davlenie. Last visited: January 15, 2015.
11. Belov, S.V., Il’nitskaya, A.V., Koz’yakov, A.F., et al., Bezopasnost’ zhiznedeyatel’nosti: ucheb. dlya vuzov (Safety of Life: University Textbook), Moscow: Vyssh. shkola, 2007.
12. RF State Standard GOST 12.1.004–91. Fire Safety. General Provisions, Moscow: Izd. standartov, 1992.
13. Krasnikov, A.V., Kulev, D.Kh., Fedorov, A.I., and Gitsovich, A.V., Composition of Burning Products of Basic Materials Used to Manufacture Subway Cars, Protivopozharnaya zashchita podzemnykh sooruzhenii metropolitenov (Fire Protection of Underground Infrastructure in Subways), Moscow: VNIIPO, 1986.
14. Huggett, C., Estimation of the Rate of Heat Release by Means of Oxygen Consumption, Journal of Fire and Flammability, 1980, no. 12, pp. 61–65.
15. Ingason, H., Gustavsson, S., and Dahlberg, M., Heat Release Measurements in Tunnel Fires, Brandforsk Project 723–924, SP Swedish National Testing and Research Institute, 1994.
16. RF State Standard GOST R 50850–96. Subway Cars, General Specifications, Moscow: Izd. standartov, 1996 
17. RF Fire Code NPB 109–96. Subway Cars. Fire Safety Standards, E-Fund of Legal and Normative and Technical Documentation. Available at: http://docs.cntd.ru/document/gost-r-50850–96.
18. Il’in, V.V., Time Required for Evacuation, Bor’ba s pozharami v metropolitenakh (Fire Combating in Subways), Moscow: VNIIPO MVD RF, 1992.
19. Glizmanenko, D.L., Kislorod i ego poluchenie (Oxygen and Its Production), Moscow: Gos. nauch.-tekh. izd. khim. lit., 1951.
20. RF Construction Code SP 60.13330.2012. Heating, Ventilation and Air Conditioning. Fund of Legal and Normative and Technical Documentation. Available at: http://docs.cntd.ru/ document/1200095527.
21. Alferova, E.L. and Lugin, I.V., Linear Screen to Abate Effect of Fire Hazards under Burning of Train in the Double-Line Subway Tunnel, Proc. 4th Int. Conf. Actual Problems of Mechanics and Machine Engineering, Almaty, 2014.
22. Lazarev, N.V. and Gadaskina, I.D., Vrednye veshchestva v promyshlennosti: spravochnik dlya khimikov, inzhenerov i vrachei (Toxic Agents in Industry: Handbook for Chemists, Engineers and Physicians), Leningrad: Khimiya, 1977.


CYCLICAL BEHAVIOR OF METHANE EMISSIONS IN. A. LONGWALL
A. A. Ordin, A. M. Timoshenko, A. A. Metel’kov, and S. A. Kolenchuk

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.ru
VostNII Science Center,
ul. Institutskaya 3, Kemerovo, 650002 Russia
Giprougol Institute,
ul. Trikotazhnaya 41a, Novosibirsk, 630015 Russia

The authors have revealed analytical dependences for the length of a longwall and the background methane emission from a coal bed, mined-out void and wall rocks during a maintenance shift. The actual values of methane release in Kotinskaya Mine and methane concentration in a breakage heading of Kostromovskaya Mine, Belon, measured using air-and-gas control equipment are presented. The authors evaluate theoretical relationships for the cyclical behavior of methane release during a work shift in a production heading of a coal mine.

Mine, production heading, longwall length, methane emission, methane concentration, cyclical behavior

DOI: 10.1134/S1062739116041166 

REFERENCES
1. Trubetskoy, K.N., Ruban, A.D., and Zaburdyaev, V.S., Characteristics of Methane Release in Highly Productive Coal Mines, J. Min. Sci., 2011, vol. 47, no. 4, pp. 467–475.
2. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht. Proekt (Guidelines on Ventilation Design for Coal Mines. Project), Moscow, 2010.
3. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Guidelines on Ventilation Design for Coal Mines), Kiev, 1994.
4. Ushakov, K.Z. (Ed.), Rudnichnaya ventilyatsiya: spravochnik (Mine Ventilation: Reference Book), Moscow: Nedra, 1988.
5. Instruktsiya po primeneniyu skhem provetrivaniya vyemochnykh uchastkov shakht s izolirovannym otvodom metana iz vyrabotannogo prostranstva s pomoshch’yu gazootsasyvayushchikh ustanovok (Guidelines on Ventilation Flow Charts for Extraction Panels with Isolated Methane Removal by Gas-Suction Plants), Federal Environmental, Industrial and Nuclear Supervision Service of the Russian Federation, 2011.
6. Ordin, A.A., Timoshenko, A.M., and Kolenchuk, S.A., Ultimate Length and Capacity of Production Heading with Regard to gas Content, Considering Nonuniform Airflow, J. Min. Sci., 2015, vol. 51, no. 4, pp. 771–778.
7. Ordin, A.A. and Timoshenko, A.M., Reduction of Coal Bed Methane Release under High-Rate Advance of Production Face, J. Min. Sci., 2015, vol. 51, no. 4, pp. 779–784.
8. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully-Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
9. Ordin, A.A., Nikol’sky, A.M., and Metel’kov, A.A., Modeling and Optimization of Preparatory Work and Stoping in a Coal Mine Panel, J. Min. Sci., 2013, vol. 49, no. 6, pp. 941–949.
10. Timoshenko, A.M., Baranova, M.N., Nikiforov, D.V. et al., Some Aspects of Application of regulatory Documents in Highly Productive Extraction Panel Design in Coal Mines, Vestn. NTs VostNII, 2010, no. 1.
11. Vengerov, I.R., Teplofizika shakht i rudnikov. Matematicheskie modeli (Thermophysics of Coal and Metal Mines. Mathematical Models), Donetsk: Nord-Press, 2008, vol. 1.
12. Zaburdyaev, V.S., Novikova, I.A., and Smetanin, V.S., Coalbed 52 Methane Emission in Highly Productive Kotinskaya Mine, SUEK-Kuzbass, GIAB, 2011, no. 1, pp. 18–23.
13. Pravila bezopasnosti v ugol’nykh shakhtakh (Safety Code for Coal Mines), Moscow: 2013.
14. Kondrashin, Yu.A., Koloyarov, V.K., Yastremsky, S.I., et al., Rudnichnyi transport i mekhanizatsiya vspomogatel’nykh rabot: catalog-spravochnik (Mine Transport and Mechanization of Auxiliary Operations: Catalog–Manual), Moscow: Gornaya kniga, 2010.


MINERAL DRESSING


EFFECT OF ACID AND ELECTROCHEMICAL TREATMENT ON PHYSICOCHEMICAL AND ELECTRICAL PROPERTIES OF TANTALITE, COLUMBITE, ZIRCON AND FELDSPAR
V. A. Chanturia, E. L. Chanturia, I. Zh. Bunin, M. V. Ryazantseva, E. V. Koporulina, A. L. Samusev, and N. E. Anashkina

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: vchan@mail.ru

The article gives a report on integrated experimental research into targeted change of chemical and phase composition of surface and increase in contrast of physicochemical, electrical and electrochemical properties of tantalite, columbite and zircon under treatment by acid product of water electrolysis—anolyte (pH < 5) and by muriatic solution (HCl, pH 3–3.5). The X-ray photoelectron spectroscopy, high resolution spectroscopy and chemical and electrophysical techniques reveal the mechanism of structural–chemical surface transformation of tantalite, columbite, zircon and feldspar under leaching in acid solutions; this surface transformation mechanism consists in activation of dissolving of iron- and silicate-containing surface films and high-rate oxidation of iron atoms in surface layer of tantalite and columbite, with transition of Fe(II) to Fe(III) and surface destruction of zircon, with formation of oxygen-vacant defects of and type under influence of anolyte.

Tantalite, columbite, zircon, feldspar, quartz, X-ray photoelectron spectroscopy, microscopy, physicochemical and electric properties, anolyte and HCl solution treatment of minerals

DOI: 10.1134/S1062739116041190 

REFERENCES
1. Solodov, N.A., Usova, T.Yu., Osokin, E.D., et al., Netraditsionnye tipy redkometall’nogo mineral’nogo syr’ya (Alternative Raw Rare Metal Mineral Materials), Moscow: Nedra, 1990.
2. Maslov, A.A., Ostvald, R.V., Shagalov, V.V., et al., Khimicheskaya tekhnologiya niobiya i tantala (Chemical Niobium and Tantalum Technology), Tomsk: TPU, 2010.
3. Bogdanov, O.S., Gol’man, A.M., Kakovsky, I.A., et al., Fiziko-khimicheskie osnovy teorii flotatsii (Physicochemical Fundamentals of Flotation Theory), Moscow: Nauka, 1983.
4. Chanturia, V.A., Konev, S.A., Ishchenko, V.V., et al., Investigation into Processes on Tantalite–Columbite Surface under Polarization, Kompleks. Isp. Min. Syr’ya, 1985, no. 12, pp. 16–20.
5. Betekhtin, A.G., Kurs mineralogii (Mineralogy: Textbook), Moscow: Knizh. Dom Univer., 2010.
6. Chanturia, V.A. and Shafeev, R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Surface Chemistry in Flotation), Moscow: Nedra, 1977.
7. Plaksin, I.N., Shafeev, R.Sh., and Chanturia, V.A., Energy Structure–Flotation Properties Interaction in Mineral Crystals, in Plaksin I. N., Izbrannye trudy. Obogashchenie poleznykh iskopaemykh (Selectas. Mineral Processing), Moscow: Nauka, 1970, pp. 136–147.
8. Plaksin, I.N. and Shrader, E.A., O vzaimodeistvii flotatsionnykh reagentov s nekotorymi nesul’fidnymi mineralami redkikh metallov (Interaction of Flotation Agents with Non-Sulfide Rare Metal Minerals), Moscow: Nauka, 1967.
9. Briggs, D. and Seah M. P., Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Chichester, New York: John Wiley and Sons Ltd, 1983.
10. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., Khabarova, I.A., X-Ray Photoelectron Spectroscopy-Based Analysis of Change in the Composition and Chemical State of Atoms of Chalcopyrite and Sphalerite Surface before and after the Nanosecond Electromagnetic Pulse Treatment, J. Min. Sci., 2013, vol. 49, no. 3, pp. 489–498.
11. Chanturia, V.A. and Vigdergauz,V.E., Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii (Sulfide Electrochemistry. Theory and Practice of Flotation), Moscow: Ruda Metally, 2008.
12. Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Scanning Probe Microscopy Fundamentals), Moscow: Tekhnosfera, 2005.
13. Melitz, W., Shena, J., Kummel, A.C., and Lee, S., Kelvin Probe Force Microscopy and its Application, Surface Science Reports, 2011, vol. 66, no. 1, pp. 1–27.
14. Nazarchuk, Yu.N., Novikov, V.A., and Torkhov, N.A., Investigation into Influence of Local n-GaAs Surface Metallization Size on Surface Potential Distribution Pattern Obtained by Atomic Force Microscopy, Izv. Vuzov. Physics, 2011, no. 3, pp. 32–35.
15. Rudinsky, M.E., Gutkin, A.A., and Brunkov, P.N., Electrostatic Potential of Epitaxial InN Layer Surface and its Variation under Anode Oxidation, Poverkh. Rentg. Sinkhrotr. Neitr. Issled., 2012, no. 5, pp. 48–52.
16. Bunin, I.Zh., Chanturia, V.A., Anashkina, N.E., and Ryazantseva, M.V., Experimental Validation of Mechanism for Pulsed Energy Effect on Structure, Chemical Properties and Microhardness of Rock-Forming Minerals of Kimberlites, J. Min. Sci., 2015, vol. 51, no. 4, pp. 799–810.
17. Viktorov, S.D., Golovin, Yu.I., Kochanov, A.N., Tyurin, A.I., et al., Micro- and Nano-Indentation Approach to Strength and Deformation Characteristics of Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 652–659.
18. Ispas, A., Adolphi, B., Bund, A., and Endres, F., On the Electrodeposition of Tantalum from Three Different Ionic Liquids with the Bis (Trifluoromethyl Sulfonyl) Amide Anion, Physical Chemistry, Chemical Physics, 2010, no. 12, pp. 1793–1803.
19. Ozer, N., Chen Din-Guo, Lambert, C.M., Preparation and Properties of Spin-coated Nb2O5 Film by the Sol-gel Process for Electrochromic Application, Thin Solid Films, 1996, vol. 277, nos. 1–2, pp. 162–168.
20. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., et al., Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co, and Ni, Applied Surface Science, 2011, vol. 257, no. 7, pp. 2717–2730.
21. Jung, R.-H., Tsuchiya, H., and Fujimoto, Sh., XPS Characterization of Passive Films Formed on Type 304 Stainless Steel in Humid Atmosphere, Corrosion Science, 2012, vol. 58, pp. 62–68.
22. Shchapova, Yu.V., Votyakov, S.L., Kuznetsov, M.V., and Ivanovsky, A.L., Effect of Radiation Defects on Electronic Zirconium Structure Based on X-Ray Photoelectronic Spectroscopy Data, Zh. Strukt. Khimii, 2010, vol. 51, no. 4, pp. 687–692.
23. Marshall, G.M., Patarachao, B., Moran, K., and Mercier P. H. J., Zircon Mineral Solids Concentrated from Athabasca Oil Sands Froth Treatment Tailings: Surface Chemistry and Flotation Properties, Minerals Engineering, 2014, vol. 65, pp. 79–87.
24. Chanturia, V.A., Role of Electrochemical and Semiconductive Properties of Minerals in Flotation, in Laskorina, B.N. and Plaksina, L.D., Fiziko-khimicheskie osnovy teorii flotatsii (Physicochemical Fundamentals of Flotation Theory), Moscow: Nauka, 1983, pp. 70–89.
25. Suareza, G., Acevedoa, S., Rendtorffa, N. M., et al., Colloidal Processing, Sintering and Mechanical Properties of Zircon (ZrSiO4), Ceramics Int., 2015, vol. 41, no. 1, Part B, pp. 1015–1021.
26. Ibrahim, I., Hussin, H., Azizil, K. A. M., and Alimon, M.M., A Study on the Interaction of Feldspar and Quartz with Mixed Anionic/Cationic Collector, J. Fund. Sci., 2011, vol. 7, no. 2, pp. 101–107.
27. Makara, V.A., Vasil’ev, M.A., Steblenko, L.P., et al., Variations in Impurity Composition and Microhardness of Silicium Crystal Subsurface Layers under Magnetic Field Effect, Fiz. Tekhn. Poluprov., 2008, vol. 42, issue 9, pp. 1061–1064.


RATIONAL SEPARATION OF COMPLEX COPPER–ZINC CONCENTRATES OF SULFIDE ORE
V. A. Bocharov, V. A. Ignatkina, and A. A. Kayumov

National University of Science and Technology—MISIS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: woda@mail.ru

Monomineral and compound fractions, ore material and concentrates are used to study the effect of basic processing factors on mineral separation. The key criteria are determined to choose a method of selective extraction of minerals and their species in various cycles of a process flow chart. Such key criteria include: degree of activating effect of copper minerals on other sulfides; multifunction role of iron compounds; medium pH values; combination and concentration of depressing ions of modifying reagents; ratios of selective collectors in their combinations; scientific principles of flow chart designing; principles of concentration and recovery of minerals in different processes of dressing.

Minerals, sulfides, species, flotation, activation, depression, oxidation, flotation reagents, fractionating, concentrating, hydrophobic nature, hydrophilic nature, contrast, technology, model, flow chart

DOI: 10.1134/S1062739116041202 

REFERENCES
1. Bocharov, V.A. and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh (Mineral Processing), Moscow: Ruda Metally, 2007, vol. 1.
2. Ignatkina, V.A. and Bocharov, V.A., Specific Features of Copper Sulfides and Sphalerite Flotation from Pyrite Ores, Gorny Zh., 2014, no. 12, pp. 75–79.
3. Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation), Moscow: Gorn. Kniga, 2008, vol. IV.
4. Abramov, A.A., Tekhnologiya pererabotki i obogashcheniya rud tsvetnykh metallov (Nonferrous Metal Ore Processing), Moscow: MGGU, 2005, vol. III, book 1; 2006, vol. III, book 2.
5. Kabachnik, M.I., Khimiya fosforoorganicheskikh soedinenii (Organophosphorus Compound Chemistry), Moscow: Nauka, 2008, vol. 50.
6. Bocharov, V.A. and Ignatkina, V.A., Role of Iron and its Content in Sulfide Nonferrous and Noble Metal Ore Processing, Izv. Vuzov. Tsv. Metall., 2007, no. 5, pp. 4–12.
7. Mitrofanov, S.I., Selektivnaya flotatsiya (Selective Flotation), Moscow: Nedra, 1967.
8. Sakharova, M.O., Basic Issues of Isomorphism and Genesis of Fahl Ores, Geol. Rud. Mestor., 1966, no. 1.
9. Bocharov, V.A., Ignatkina, V.A., and Khachatryan, L.S., Problems of Separation of Mineral Complexes in Processing of Massive Rebellious Nonferrous Metal Ores, Tsv. Met., 2014, no. 5, pp. 16–23.
10. Abramov, A.A., Flotatsiya. Sul’fidnye mineraly: sobranie sochinenii (Flotation. Sulfide Minerals: Collected Works), Moscow: Gorn. Kniga, 2013, vol. VIII.
11. Chanturia, V.A., Perspectives of Sustainable Mining Industry Advance in Russia, Gorny Zh., 2007, no. 2.
12. Bogdanov, O.S., Maksimov, I.S., Podnek, A.K., et al., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1990.
13. Ignatkina, V.A., Bocharov, V.A., and D’yachkov, F.G., Enhancing the Disparity in Flotation Properties of Nonferrous Metal Sulfides Using Sulfhydryl Collecting Agents with Different Molecular Structure, J. Min. Sci., 2015, vol. 51, no. 2, pp. 389–397.
14. Ryaboi, V.I., Problems on Application and Development of New Flotation Agents in Russia, Tsv. Met., 2011, no. 3, pp. 7–14.
15. Ignatkina, V.A., Bocharov, V.A., Milovich, F.O., et al., New Approaches to Investigation into Mechanism of Sulfhydryl Collector Action in Sulfide Flotation, Proc. Congress of CIS Dressers, Moscow: MISIS, 2015, vol. II, pp. 475–482.
16. Eropkin, Yu.I., Obogashchenie orudenennykh peschanikov (Processing of Mineralized Sandstones), Saint-Petersburg: Nauka, 1999.
17. Filimonov, V.I., Vershinin, E.A., and Bocharov, V.A., Sodium Sulfide Effect in Oxidation Reactions in Cyanide-Free Sulfide Mineral Flotation, Tsv. Metall., 1968, no. 7, pp. 15–17.
18. Vershinin, E.A. and Filimonov, V.I., On Integrated Effect of Sodium Sulphide and Sodium Sulfite in Chalcopyrite, Sphalerite, and Pyrite Flotation, Tsv. Metall., 1968, no. 11, pp. 15–18.
19. Himawan, T. B. M. Petrus and Hirajima, Petrus T., Alternative Techniques to Separate Tennantite from Chalcopyrite: Single Minerals and Arseno–Copper Ore Flotation Study, Proc. XXVI IMPC, New Deli, 2012.


STRENGTH RESEARCH OF ROCK CORES AFTER HIGH-ENERGY ELECTRON BEAM IRRADIATION
S. A. Kondrat’ev, V. I. Rostovtsev, and I. I. Baksheeva

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru

The data of experimental research into mechanical properties of limestone, hornfels and sandstone cores after treatment by accelerated electrons show that the irradiation changes the strength and deformation characteristics of the tested rocks. In limestone and hornfels, uniaxial compression strength and elasticity modulus decrease, and ratio of P- and S- wave velocities changes; in sandstone tensile strength decreases, while uniaxial compression strength, P- and S-wave velocities and dynamic Young’s modulus grow. Modification of the minerals after accelerated electron irradiation opens ways of creating efficient energy-saving technologies for pre-treatment and processing of complex ores.

Mineral raw material, limestone, hornfels, sandstone, strength, deformation, acoustics, elastic waves, accelerated electron irradiation, ore pre-treatment

DOI: 10.1134/S1062739116041214 

REFERENCES
1. Chanturia, V.A. and Malyarov, P.V., Review of Global Advance in Mineral Disintegration Engineering and Technology in Mineral Processing, Proc. Int. Conf. Plaksin’s Lectures–2012 “Modern Processing Mineralogy Techniques in Comprehensive Raw Mineral Material Processing, Petrozavodsk: Karelia Scientific Center, RAS, 2012, pp 3–10.
2. Chanturia, V.A. and Bunin, I.Zh., Non-Traditional High-Energy Processes for Disintegration and Exposure of Finely Disseminated Mineral Complexes, J. Min. Sci., 2007, vol. 43, no. 3, pp. 311–330.
3. Bochkarev G. R., et al., Prospects of Electron Accelerators Used for Realizing Effective Low-Cost Technologies of Mineral Processing, Proc. 20th Int. Min. Proc. Cong., Aachen, Germany, Clausthal-Zellerfeld, GDMB, 1997, vol. 1, pp. 231–243.
4. Rostovtsev, V.I., Technological and Economic Effect of Nonmechanical Energy Use in Rebellious Mineral Processing, J. Min. Sci., 2013, vol. 49, no. 4, pp. 647–654.
5. Kondrat’ev, S.A., Rostovtsev, V.I., Bochkarev G. R., Pushkareva, G.I., and Kovalenko, K.A., Justification and Development of Innovative Technologies for Integrated Processing of Complex Ore and Mine Waste, J. Min. Sci., 2014, vol.50, no. 5, pp. 959–973.
6. Chanturia, V.A., Shafeev, R.Sh., and Yakushkin, V.P., Vliyanie ioniziruyushchikh izluchenii v protsesse flotatsii (The Ionizing Irradiation Effect in Flotation), Moscow: Nauka, 1971.
7. Bogidaev, S.A., Malov, V.V., and Afanas’eva, R.V., Adsorption of Xanthates on ?-Irradiated Lead and Zinc Minerals, J. Min. Sci., 1990, vol. 26, no. 3, pp. 284–286.
8. Chanturia, V.A., Ivanova, T.I., Lunin, V.D., et al., Influence of Liquid Phase and Products of its Radiolysis on Surface Properties of Pyrite and Arsenopyrite, J. Min. Sci., 1999, vol. 35, no. 1, pp. 84–90.
9. Wang, H., Bochkarev G. R., Rostovtsev, V.I., Veigel’t, Yu.P., and Lu, S., Intensification of Polymetallic Sulfide Ore Dressing by High-Energy Electrons, J. Min. Sci., 2002, vol. 38, no. 5, pp. 499–505.
10. Huaifa Wang and Shouci Lu, Modifying Effect of Electron Beam Irradiation on Magnetic Property of Iron-Bearing Minerals, J. Physicochemical Problems Min. Process., 2014, no. 50(1), pp. 79–86.
11. Korobeinikov, M.V., Bryazgin, A.A., Bezuglov, V.V., et al., Radiation–Thermal Treatment in Ore Dressing, IOP Conf. Series: Materials Science and Engineering, 2015, 81, pp. 1–6.
12. Bochkarev G. R., Veigel’t, Yu.P., Izotov, A.S., et al., Radiation Thermal Stresses in Minerals and their Role in Magnetite Quartzite Beneficiation, J. Min. Sci., 2001, vol. 37, no. 3, pp. 323–329.
13 . Bochkarev G. R., Veigel’t, Yu.P., Mikhailov, A.M., et al., Factors Responsible for Reduction of Mineral Strength as a Result of Electron Irradiation, J. Min. Sci., 1996, vol. 32, no. 3, pp. 219–223.
14. Mikhailov, A.M., Rostovtsev, V.I., Mechanism of the Weakening and Fracture of Minerals by an Electron Beam, J. Min. Sci., 1998, vol. 34, no. 2, pp. 180–184.
15. Kovalev, A.T., Possibility of Applying Radioactive Electrization for Electrical Separation of Pulverized Mineral Mixture, J. Min. Sci., 1999, vol. 35, no. 2, pp. 199–203.
16. Bochkarev G. R. Veigel’t, Yu.P., Mikhailov, A.M., et al., Role of Thermal Factor in Treatment of Mineral Raw Material with High-Energy Electrons and the Possibility of Using This Treatment to Intensify Ore Concentration Process, J. Min. Sci., 1996, vol. 32, no. 5, pp. 417–422.
17. GOST 28985–91.
18. GOST 21153.2–84.
19. GOST 21153.3–85.
20. GOST 21153.7–75.
21. Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela (Mechanics of Deformable Solid), Moscow: Nauka, 1979.
22. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
23. Erofeev, L.Ya., Vakhromeev, G.S., Zinchenko, V.S., and Nomokonova, G.G., Fizika gornykh porod (Physics of Rocks), Tomsk: TPU, 2006.
24. Rombakh, V.P., Introduction to Theory of Destruction, Edmonds, Washington, USA, 2014.


EFFICIENT PHYSICOCHEMICAL PROCESSING OF WASTE OF COAL-FIRING HEAT-POWER PLANTS
V. S. Rimkevich, A. P. Sorokin, and O. V. Churushova

Institute of Geology and Nature Management, Far East Branch, Russian Academy of Sciences,
per. Relochnyi 1, Blagoveshchensk, 675000 Russia
e-mail: igip@ascnet.ru
Amur Science Center, Far East Branch, Russian Academy of Sciences,
per. Relochnyi 1, Blagoveshchensk, 6750000 Russia
e-mail: amurnc@ascnet.ru

The research is aimed at revealing optimum physicochemical conditions for waste processing at coal-firing heat-power plants. The efficient technology has been developed for integrated extraction of amorphous silica, alumina, English red and other useful components.

Coal-firing power plant waste, physicochemical processing, integrated extraction, efficient technology, amorphous silica, alumina, useful components

DOI: 10.1134/S1062739116041226 

REFERENCES
1. Cherepanov, A.A. and Kardash, V.T., Integrated Processing of Heat Power Plant Wastes, Geology and Mineral Resources of the World Ocean, 2009, no. 2, pp. 98–115.
2. Delitsyn, L.M. and Vlasov, A.S., Grounds for New Approaches to Utilization of Heat Power Plant Wastes, Teploenergetika, 2010, no. 4, pp. 49–55.
3. Fomina, E.Yu. and Artemova, O.S., Investigation into Feasibility to Process Heat Power Plant Wastes by Metallurgical Techniques, GIAB, 2011, no. 8, pp. 273–277.
4. Akhmetova, T.G., Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Processing of Inorganic Substances: Handbook, Moscow: Vyssh. Shkola, 2002.
5. Ravdel, A.A. and Ponomareva, A.M., Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Physical and Chemical Variables Guide), Leningrad: Khimiya, 1983.
6. Lidin, R.A., Andreeva, L.P., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Inorganic Chemistry: Guidebook), Moscow: Khimiya, 1987.
7. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya khimiya (Physical Chemistry), Moscow: Khimiya, 1999.
8. Rimkevich, V.S., Dem’yanova, L.P., and Sorokin, A.P., Comprehensive Utilization of Silica Raw Material of the Upper and Mid-Amur River Basins, J. Min. Sci., 2011, vol. 47, no. 4, pp. 522–530.
9. Rimkevich, V.S., Pushkin, A.A., and Girenko, I.V., Synthesis and Properties of Amorphous SiO2 Nanoparticles, Neorgan. Mater., 2012, vol. 48, no. 4, pp. 423–428.
10. Andreev, A.A., D’yachenko, A.N., and Kraidenko R. I., Kinetic Research into Interaction of Ammonium Fluoride and Chloride with Components of Technogenic Materials, in edit. Volkov, V.V., Mit’kina, V.N., Buinovsky, A.S., and Safronova, V.L., Present-Day Inorganic Fluorides, Proc. Second Int. Siberian Seminar INTERSIBFLUORINE–2006, Tomsk: Inst. Neorg. Khim., 2006, pp. 6–10.
11. Lainer, A.I., Eremin, N.I., Lainer, Yu.A., and Pevzner, I.Z., Proizvodstvo glinozyema (Alumina Production), Moscow: Metallurgia, 1978.


GEOINFORMATION SCIENCE


AN APPROACH TO MULTI-LAYER GEOINFORMATION SYSTEM FOR ENVIRONMENTAL APPRAISAL OF MINING REGIONS BASED ON BIOLOGICAL DIVERSITY
V. P. Potapov, V. N. Oparin, E. L. Schastlivtsev, O. L. Giniyatullina, I. E. Kharlampenkov, and P. V. Sidorenko

Kemerovo Division, Institute of Computational Technologies,
Siberian Branch, Russian Academy of Sciences,
ul. Rukavishnikova 21, Kemerovo, 650025 Russia
e-mail: kembict@gmail.com
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.ncs.ru

The development of a new approach to a distributed information system for bio-diversity appraisal in mining regions, with the use of data storage technologies, cloud computing services and mental processing and analysis of multivariable data is in process. It is suggested to adhere to a cardinally new solution in such system engineering and to add the architecture of such system with NoSQL MongoDB and GeoNetwork components that essentially offload the geoinformation system when retrying special calculations and user requests.

Geoecological block formation, multi-layer system for geomechanical, geodynamic and ecological safety of Russia, distributed systems, bio-diversity appraisal, data storage, cloud-computing service, mining regions, Kuzbass

DOI: 10.1134/S1062739116041238 

REFERENCES
1. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to Pendulum Waves in Stressed Geomedia, J. Min. Sci., Part I, 2012, vol. 48, no. 2, pp. 203?222; Part II, 2013, vol. 49, no. 2, pp. 175?209; Part III, 2014, vol. 50, no. 4, pp. 623?645; Part IV, 2016, vol. 52, no. 1, pp. 1?35.
2. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vol. 50, no. 1, pp. 142?154.
3. Oparin, V.N., Fundamental Problems of Earth Surface Reclamation under Intensive Development Impact, Proc. All-Rus. Sci. Conf. Deep Open Pit Mines, Saint-Petersburg, 2012.
4. Logov, A.B., Oparin, V.N., Potapov, V.P., Schastlivtsev, E.L., and Yukina, N.I., Entropy Analysis of Process Wastewater Composition in Mineral Mining Region, J. Min. Sci., 2015, vol. 51, no. 1, pp. 186?196.
5. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Schastlivtsev, E.L., Studies into the Processes of Mine Waste Dump Filling up by Vegetation Using Remote Sensing Data, J. Min. Sci., 2013, vol. 49, no. 6, pp. 976?982.
6. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Andreeva, N.V., Water Body Pollution Monitoring in Vigorous Coal Extraction Areas Using Remote Sensing Data, J. Min. Sci., 2012, vol. 48, no. 5, pp. 934?940.
7. Oparin, V.N., Potapov, V.P., and Giniyatullina, O.L., Integrated Assessment of the Environmental Condition of the High?Loaded Industrial Areas by the Remote Sensing Data, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1079?1087.
8. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., Andreeva, N.V., Schastlivtsev, E.L., and Bykov, A.A., Evaluation of Dust Pollution of Air in Kuzbass Coal Mining Areas in Winter by Data of Remote Earth Sensing, J. Min. Sci., 2014, vol. 50, no. 3, pp. 549?558.
9. Information System “Biodiversity of Russia” [Electronic resource] / Access mode: http://www.zin.ru/BIODIV/index.html.
10. Retrieval System for Russian Wildlife Sanctuaries [Electronic resource] / Access mode: http://www.sevin.ru/natreserves/.
11. Systema Naturae 2000 [Electronic resource] / Access mode: http://sn2000.taxonomy.nl/.
12. Global Biodiversity Information Facility [Electronic resource] / Access mode: http://www.gbif.org/.
13. EOL—Encyclopedia of Life [Electronic resource] / Access mode: http://eol.org/.
14. ITIS—Integrated Taxonomic Information System [Electronic resource] / Access mode: http://www.itis.gov/.
15. BIODAT [Electronic resource] / Access mode: http://biodat.ru/.
16. BioGIS—Israel Biodiversity Website [Electronic resource] / Access mode: http://www.biogis.huji.ac.il/Default.aspx.
17. ZooDiv—Animal Biodiversity [Electronic resource] / Access mode: http://www.zin.ru/ ZooDiv/index.html.
18. Slavinsky, D.A., Structure of Biodiversity Information Resources in Internet// http://biospace.nw.ru/.
19. Lobanov, A.L., Smirnov, I.S., Dianov, M.B., Golikov, A.A., and Khalikov, R.G., Evolution of Standard ZOOCOD—Concept of Presentation of Zoological Hierarchic Classifications in Flat Tables of Relational Databases, Proc. 10th All?Rus. Conf. RCDL’2008 Electronic Libraries: Perspective Methods, Technologies, Electronic Collections, Dubna, 2008, pp. 326–332.
20. Lobanov, A.L. and Zaitsev, M.V., Collection of Database on Mammals Systematics Based on Animal Name Classifier “ZOOCOD” // Issues of Systematics, Fauna, Small Mammals Paleontology: Proc. Zoological Institute RAS, vol. 243, Saint-Petersburg, 1991, pp. 180–198.
21. Koshkarev A. V., Geoportal as Instrument to Manage Spatial Data and Geoservices, Spatial Data, 2008, no. 2 [Electronic resource] / Access mode: http://www.gisa.ru/45968.html.
22. OGC Standards and Supporting Documents—International Standard Catalogue [Electronic resource] / Access mode: http://www.opengeospatial.org/standards.
23. The MongoDB 3.2 Manual [Electronic resource] / Access mode: https://docs.mongodb.org/manual/.
24. GeoNetwork [Electronic resource] / Access mode: http://geonetwork-opensource.org/.
25. Gaurav Vaish. Getting Started with NoSQL, Birmingham: Packt Publishing, 2013.
26. Burago, I.V., Vasik, O.N., Moiseenko, G.S., and Shevchenko, I.I., Geonetwork System for Publication and Search for Spatial Information [Electronic resource] / Access mode: http://www.gpntb.ru/libcom10/disk/15.pdf (Proc. Conf. // 14 Int. Conf. Exhib. LIBCOM-2012).
27. OpenGIS Web Processing Service [Electronic resource]/ Access mode: http://www.opengeospatial. org/standards/wps.
28. REST—GeoServer 2.9.x User Manual [Electronic resource]/ Access mode: http://docs.geoserver. org/ latest/en/user/rest/index.html#rest.


NEW METHODS AND INSTRUMENTS IN MINING


POLYMERIC INSULATING COMPOSITIONS FOR IMPERVIOUS SCREENING IN ROCK MASSES
S. V. Serdyukov, T. V. Shilova, and A. N. Drobchik

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The three-component polyurethane composition is developed to create impervious screens in rock mass by hydraulic fracturing technique. Formulas for working fluids and their injection charts are given. The article describes a lab test and the test data on polymer setting time versus activator concentration and on effect of the fluid composition on the permeability of a porous medium at the limited flow rate of reagent per unit area of the screen.

Rock mass, impervious screen, polymeric insulating composition, setting time, gas permeability, hydraulic fracturing

DOI: 10.1134/S106273911604125X

REFERENCES
1. Shilova, T.V., Zoned Screening of Underground Tunnels from Steam in Thermal Recovery of Low Gravity Oil, Proc. Acad. Usov 20th Int. Symp. for Students and Young Scientists: Problems of Geology and Mineral Mining, Tomsk: TPI, 2016, pp. 868–869.
2. Polevshchikov, G.Ya., Trizno, S.K., and Mel’nikov, P.N., RF patent no. 2108464, Byull. Izobret., 2002, no. 31.
3. Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., RF patent no. 2507378, Byull. Izobret., 2014, no. 5.
4. Kurlenya, M.V., Shilova, T.V., Serdyukov, S.V., and Patutin, A.V., Sealing of Coal Bed Methane Drainage Holes by Barrier Screening Method, J. Min. Sci., 2014, vol. 50, no. 4, pp. 814–818.
5. Kurlenya, M.V., Serdyukov, S.V., Shilova, T.V., and Patutin, A.V., Procedure and Equipment for Sealing Coal Bed Methane Drainage Holes by Barrier Shielding, J. Min. Sci., 2014, vol. 50, no. 5, pp. 994–1000.
6. Vorob’ev, A.E., Underground Leaching of Manganese from Hard Ore, GIAB, 2000, no. 5, pp. 36–39.
7. Shilova, T.V., and Serdyukov, S.V., Protection of Operating Degassing Holes from Air Inflow from Underground Excavations, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1049–1055.
8. Kurlenya, M.V., Serdyukov, S.V., Shilova, T.V., and Patutin, A.V., Improvement of Sealing Quality of Coal Bed Methane Drainage Holes, Proc. 4th Int. Conf.: Prospects for Innovative Development in the Coal Mining Regions of Russia, Prokopievsk, 2014, pp. 116–118.
9. Saunders, J.H. and Frisch, K.C., Polyurethane. Chemistry and Technology, New York: Interscience (Wiley), 1962.
10. Kukharsky, M., Lindeman, Ya., Mal’chevsky, Ya., and Rabek, T., Laboratornye raboty po khimii i tekhnologii polimernykh materialov (Laboratory Works on Chemistry and Technology of Polymers), Polish–Russian translation, Moscow: 1965.
11. USSR State Standard GOST 26450.2–85, Moscow: Izd. standartov, 1985.
12. Peskov, A.V. and Ol’khovskaya, V.A., Determining Gas permeability of Rocks with Regard to the Sliding Effect of Gas, Neftepromysl. Delo, 2010, no. 3, pp. 10–12.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå