Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2016 ãîä » JMS, Vol. 52, No. 3, 2016

JMS, Vol. 52, No. 3, 2016


GEOMECHANICS


PROCEDURE AND EVIDENCE OF SEISMIC RESEARCH INTO PHYSICAL PROPERTIES OF COHESIVE SOILS
M. V. Kurlenyaa, A. S. Serdyukov, G. S. Chernyshov, A. V. Yablokov, P. A. Dergach, and A. A. Duchkov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
Trofimuk Institute of Oil and Gas Geology and Geophysics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

The article puts forward a procedure to determine structure and physical properties of near-surface cohesive soil based on seismic surveying. The backbone of the approach is the use of distribution of P- and S-waves obtained from combination of the seismic refraction technique modification and the multi-channel surface wave analysis. The recovery of the physical properties uses correlation dependences. The authors give an example of field data processing. The field research covered a section of a motor road where groundwater level is determined and zones subjected to washout and deformation are detected.

Geological engineering, shallow seismic exploration, seismic refraction technique, multi-channel surface wave analysis, Rayleigh wave, physical and mechanical properties of soil, cohesive dispersed soil

DOI: 10.1134/S1062739116030598 

REFERENCES
1. Bagdasar’yan, A.G. and Sytenkov, V.N., Change in the Pitwall Stability with Depth, J. Min. Sci., 2014, vol. 50, no. 1, pp. 65–68.
2. Pioro, E.V. and Oshkin, A.N., Interrelations between Acoustic, Physical and Deformation Characteristics in Clay Soil, Vestn. MGU, Ser.: Geolog., 2011, no. 6, pp. 71–74.
3. Goryanov, N.N., Primenenie seismoakusticheskikh metodov v gidrogeologii i inzhenernoi geologii (Application of Seismoacoustic Methods in Hydrogeology and Geological Engineering), Moscow: Nedra, 1992.
4. Trofimov, V.T. (Ed.), Gruntovedenie (Soil Science), Moscow: Nauka, 2005.
5. State Standard GOST 12248–2010. Soil. Determination of Strength and Deformability in Laboratory Conditions, Moscow: MNTKS, 2011.
6. Metodicheskie rekomendatsii po primeneniyu seismoakusticheskikh metodov dlya izucheniya fiziko-mekhanicheskikh svoistv gruntov (Guidelines on Application of Seismoacoustic Methods to Studying Physical Properties of Soil), Moscow: VNIITS, 1976.
7. Kurlenya, M.V., Serdyukov, A.S., Duchkov, A.A., and Serdyukov, S.V., Wave Tomography of Methane Pockets in Coal Bed, J. Min. Sci., 2014, vol. 50, no. 4, pp. 617–622.
8. Gol’din, S.V., Kiseleva, L.G., and Kurdyukova, T.V., KING-Based Interpretation of Time–Travel Graphs of Refracted Waves at Rugged Topography, Geolog. Geofiz., 1985, no. 6, pp. 120–126.
9. Van Overmeeren, R.A., Hagedoorn’s Plus–Minus Method: The Beauty of Simplicity, Geophysical Prospecting, 2001, vol. 49, no. 6, pp. 687–696.
10. Park, C.B., Miller, R.D., and Xia, J., Multichannel Analysis of Surface Waves, Geophysics, 1999, vol. 64, no. 3, pp. 800–808.
11. Aki, K. and Richards, P.G., Quantitative Seismology, Freeman & Co, 1980.
12. Lai, C.G. and Rix, G.J., Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near-Surface Site Characterization, School of Civil and Environmental Engineering, Georgia Institute of Technology, 1998.
13. Solano, C. A. P., Two-Dimensional Near-Surface Seismic Imaging with Surface Waves: Alternative Methodology for Waveform Inversion, Ecole Nationale Superieure des Mines de Paris, 2013.


EVOLUTION OF STRESSES AND PERMEABILITY OF FRACTURED-AND-POROUS ROCK MASS AROUND. A. PRODUCTION WELL
L. A. Nazarova and L. A. Nazarov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

The authors model deformation and mass transfer in jointed and porous rock mass around a production well. The modeling based on the concept of a continuum with double porosity uses an original method with finite difference solution of mass transfer equations and analytical solution of pore elastoplasticity equations. From the numerical experiments, dimensions of irreversible deformation zones in the well bore zone grow with the parameter Bio. The estimate of the reservoir permeability decline in the course of operation, obtained from the pore elasticity and pore plasticity models, qualitatively agrees with the in situ observation data.

Fractured-and-porous rock mass, poroelasticity, double porosity, seepage, stress evolution, fracture zone, numerical modeling

DOI: 10.1134/S106273911603061X

REFERENCES
1. Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Deformirovanie sredy i seismicheskii protsess (Deformation of a Medium and Seismic Process), Moscow: Nauka, 1987.
2. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P., and Rozenbaum, M.A., USSR Discovery no. 400, Byull. Izobret., 1992, no. 1.
3. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (The Earth’s Crust Destruction and Self-Organization under Strong Induced Impact), Novosibirsk: SO RAN, 2012.
4. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, J. Min. Sci., Part I (2012, vol. 48, no. 2, pp. 203–222), Part II (2013, vol. 49, no. 2, pp. 175–209), Part III (2013, vol. 50, no. 4, pp. 617–622).
5. Zaporozhets, V.M. (Ed.), Geofizicheskie metody issledovaniya skvazhin: spravochnik geofizika (Borehole Geophysical Techniques: Geophysician’s Manual), Moscow: Nedra, 1983.
6. Barenblatt, G.I., Zheltov, Yu.P., and Kochina, I.N., Basic Notions of the Theory of Permeability in Fractured Media, Prikl. Matem. Mekhan., 1960, vol. 24, no. 5.
7. Al-Ghamdi, A. and Ershaghi, I., Pressure Transient Analysis of Dually Fractured Reservoirs, SPE 26959-PA, SPE J., 1996, 1 (1), pp. 93–100.
8. Ren-Shi Nie, Ying-Feng Meng,•Yong-Lu Jia, et al., Dual Porosity and Dual Permeability Modeling of Horizontal Well in Naturally Fractured Reservoir, Transport in Porous Media, 2012, vol. 92, issue 1, pp. 213–235.
9. Wu, Y.-S., Multiphase Fluid Flow in Porous and Fractured Reservoirs, Elsevier, Amsterdam, 2016.
10. Brochard, L., Vandamme, M., and Pellenq, R.J.-M., Poromechanics of Microporous Medium, J. Mechanics and Physics of Solids, 2012, vol. 60, pp. 606–612.
11. Espinoza, D.N., Vandamme, M., Dangla, P., Pereira, J.-M., and Vidal-Gilbert, S., A Transverse Isotropic Model for Microporous Solids—Application to Coal Matrix Adsorption and Swelling, J. Geophys. Res. Solid Earth, 2013, 118, pp. 6113–6123.
12. Coussy, O., Mechanics and Physics of Porous Solids, John Wiley & Son Ltd., 2010.
13. Golf-Racht, T.D., Fundamentals of Fractured Reservoir Engineering, Elsevier, 1982.
14. Dake, L.P., The Practice of Reservoir Engineering, Elsevier, 2001.
15. Wu, Y.-S. and Pruess, K., Integral Solution for Transient Fluid Flow through a Porous Medium with Pressure-Dependent Permeability, Int. J. of Rock Mech. Min. Sci., 2000, vol. 37, nos. 1–2, pp. 51–62.
16. Jing,L., C.-F., Tsang, O., and Stephansson, O., DECOVALEX—An International Co-Operative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories, Int. J. of Rock Mech. Min. Sci., 1995, vol. 32, no. 5, pp. 389–398.
17. Zhou, X. and Ghassemi, À., Finite Element Analysis of Coupled Chemo-Poro-Thermo-Mechanical Effects around a Wellbore in Swelling Shale, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, no. 4, pp. 769–778.
18. Liang, B. and Lu, X., Coupling Numerical Analysis of Seepage Field and Stress Field for the Rock Mass with Fracture, J. of Water Resources and Water Engineering, 2009, vol. 20, no. 4, pp. 14–16.
19. Zhuang, X., Huang, R., Liang, C., and Rabczuk, T., A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage, Mathematical Problems in Engineering, 2014, ID 179169.
20. El’tsov, I.N., Nazarova, L.A., Nazarov, L.A., Nesterova, G.V., Sobolev, A.Yu., and Epov, M.I., Geomechanics and Fluid Flow Effects on Electric Well Logs: Multiphysics Modeling, Russian Geology and Geophysics, 2014, vol. 55, nos. 5–6, pp. 775–783.
21. El’tsov, I.N., Nazarova, L.A., Nazarov, L.A., Nesterova, G.V., and Epov, M.I., Interpretation of Well Logs Hydrodynamics and Geomechanics Processes, Dokl. AN, 2012, vol. 445, no. 6.
22. Nazarova, L.A., Nazarov, L.A., Epov, M.I., and El’tsov, I.N., Evolution of Geomechanical and Electro-Hydrodynamic Fields in Deep Well Drilling in Rocks, J, Min. Sci., 2013, vol. 49, no. 5, pp. 704–714.
23. Nikolaevsky, V.N., Sbornik trudov. Geomekhanika. T 1: Razrushenie i dilatansiya. Neft’ i gaz (Collected Papers. Geomechnics. Vol. 1: Failure and Dilatancy. Oil and Gas), 2010.
24. Zoback, M.D. and Nur, A., Permeability and Effective Stress, Bulletin of American Association of Petroleum Geol., 1975, vol. 59, pp. 154–158.
25. Chabezloo, S., Sulem, J., Guedon, S., and Martineau, F., Effective Stress Law for the Permeability of Limestone, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, no. 2, pp. 297–306.
26. Khristianovich, S.A., Fundamentals of Filtration Theory, J. Min. Sci., 1991, vol. 27, no. 1, pp. 1–15.
27. Nazarov, L.A. and Nazarova, L.A., Some Geomechanical Aspects of Gas Recovery from Coal Seams, J. Min. Sci., 1999, vol. 35, no. 2, pp. 135—145.
28. Samarsky, A.A., Vvedenie v teoriyu raznostnykh skhem (The Introduction to the Theory of Difference Grids), Moscow: Nauka, 1971.
29. Holt, R.M., Permeability Reduction Induced by a Nonhydrostatic Stress Field, SPE Formation Evaluation, 1990, no. 5, pp. 444–448.
30. Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela (Deformable Solid Mechanics), Moscow: Nauka 1988.
31. Stasyuk, M.E., Korotenko, V.A., Shchetkin, V.V., et al., Determination of Deformation Moduli Based on Compact Bazhenite Tests, Issledovanie zalezhei uglevodorodov v usloviyakh nauchno-tekhnicheskogo progressa: sb. nauch. tr. ZapSibNIGNI (Studies of Hydrocarbons under the Scientific-and-Technological Advance: Collected Papers of ZapSibNIGNI), Tyumen: ZapSibNIGNI, 1988.
32. Dorofeeva, T.V. (Ed.), Kollektory neftei Bazhenovskoi svity Zapadnoi Sibiri (Oil Reservoirs in Bazhenov Formation in West Siberia), Leningrad: Nedra, 1983.
33. Dong Chen, Zhejun Pan, and Zhihui Ye, Dependence of Gas Shale Fracture Permeability on Effective Stress and Reservoir Pressure: Model Match and Insights, Fuel, 2015, vol. 139, pp. 383–392.


METHOD OF STRESS CALCULATION IN ROCK MASS AROUND UNDERGROUND OPENINGS, CONSIDERING UNIT WEIGHT
V. E. Mirenkov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: mirenkov@misd.nsc.ru

The practical calculation of rock mass deformation around an underground opening accounts for the unit weight of the rock mass by solving a complimentary problem on “weightless” rock mass. A domain with an opening is bounded by a plane with the preset zero vertical displacements, which enables taking into account difference of pressure along the height of the opening. This solution, with the adequately selected boundary conditions, is added with stress field of an intact rock mass and offers zero boundary conditions at the future opening perimeter, however, the issue on the validity of setting boundary conditions at the lower boundary of the calculation domain remains yet to be handled. This article presents a phenomenological model of rock mass deformation to answer the set question. It is taken into account that action of roof rock weight coincides with the orientation of tensile stresses at the opening perimeter and differs from it in the floor. The author thinks it is required to add the class of inverse problems of rock mechanics with the problems directly accounting for rock weight.

Underground opening, rock, bed, equation, solution, unit weight, stress, displacement, inverse problem

DOI: 10.1134/S1062739116030621 

REFERENCES
1. Mikhlin, S.G., Stresses in Coalbed-Overlying Rocks, Izv. AN SSSR, OTN, 1942, nos. 7–8.
2. Barenblatt, G.I. and Khristianovich, S.A., Roof Collapse in Mines, Izv. AN SSSR, OTN, 1955, no. 11.
3. Johan Clausen, Bearing Conacity of Circular Footing on a Hoek–Brown Material, Int. J. Rock Mech. Min. Sci., 2013, vol. 57, pp. 34–41.
4. Xibing Li, Dcynan Li, Zhixiang Lin, Guoyan Zhao, and Weihua Wang, Determination of the Minimum Thickness of Crown Pillar for Safe Exploitation of a Subsea Gold Mine Based on Numerical Modeling, Int. J. Rock Mech. Min. Sci., 2013, pp. 48–56.
5. Hong Shen and Syed Muntazir Abbas, Rock Slope Reliability Analysis Based on Distinct Element Method Random Set Theory, Int. J. Rock Mech. Min. Sci., 2013, vol. 61, pp. 15–22.
6. Savchenko, S.N., Geomedium Deformation in Concurrent Recovery of Two Productive Strata at the Shtokmanovsky Deposit, J. Min. Sci., 2010, vol. 46, no. 6, pp. 630–638.
7. Seryakov, V.M., The Inclusion of Rheological Properties of Rocks to Calculation of Stress-Strain State of an Undermine Rock Mass, J. Min. Sci., 2010, vol. 46, no. 6, pp. 606–611.
8. Neverov, S.A. and Neverov, A.A., Geomechanical Assessment of Ore Drawpoint Stability in Mining with Caving, J. Min. Sci., 2013, vol. 49, no. 2, pp. 265–272.
9. Mirenkov, V.E. and Krasnovsky, A.A., Accounting for Depth-Wise Linear Change of Stresses in the Intact Rock Mass in Geomechanical Problems, J. Min. Sci., 2013, vol. 49, pp. 431–436.
10. Bahareh Vazhbakht and Attila M Zsaki, A Finite Element Mesh Optimization Method Incorporating Delogic Features for Stress Analysis of Underground Openings, Int. J. Rock Mech. Min. Sci., 2013, vol. 59, pp. 111–119.
11. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., et al., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.


GEOMECHANICAL EVALUATION OF ROOF-AND-PILLAR PARAMETERS IN TRANSITION TO UNDERGROUND MINING
A. B. Makarov, I. Yu. Rasskazov, B. G. Saksin, I. S. Livinsky, and M. I. Potapchuk

SRK Consulting (Russia) Ltd,
ul. Kuznetskii most 4/3, Bld. 1, Moscow, 125009 Russia
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia

The authors present studies into geomechanics of Berezit gold–polymetal deposit at the stage of transition from open pit to underground mining. The authors have carried out geodynamic zoning and evaluated parameters of modern stress field. Rock mass ratings are used to assess physical properties of rocks. Rock mass stress state at various stages of mining is examined using numerical modeling, and underground mining system parameters are evaluated using Mathews procedure and analytical relations.

Ground conditions, geodynamic zoning, rock, stress state, rock mass rating indexes, physical properties, mathematical modeling, mining system parameters

DOI: 10.1134/S1062739116030633 

REFERENCES
1. Makarov, A.B., Prakticheskaya geomekhanika (Applied Geomechanics), Moscow: Gornaya Kniga, 2006.
2. Rasskazov, I.Yu., Kontrol’ i upravlenie gornym davleniem na rudnikakh Dal’nevostochnogo regiona (Ground Control in Russian Far East Mines), Moscow: Gornaya Kniga, 2008.
3. Kaplunov, D.R. and Ryl’nikova, M.V., Kombinirovannaya razrabotka rudnykh mestorozhdenii (Hybrid Mining of Ore Deposits), Moscow: Gornaya Kniga, 2012.
4. Kazikaev, D.M., Kombinirovannaya razrabotka rudnykh mestorozhdenii (Hybrid Mining of Ore Deposits), Moscow: Gornaya Kniga, 2008.
5. Vakh, A.S., Moiseenko, V.G., Stepanov, V.A., and Avchenko, A.V., Berezit Complex Gold Ore Deposit, Dokl. AN, 2009, 2009, vol. 425, no. 2, pp. 204–207.
6. Eirish, L.V., Metallogeniya zolota Priamur’ya, Amurskaya oblast’, Rossiya (Metallogeny of Gold in the Near Amur Area, Amur Region, Russia), Vladivostok: Dal’nauka, 2002.
7. Bieniawski, Z.T., Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering, John Wiley & Sons, 1989.
8. Hoek, E., Carter, T.G., and Diederichs, M.S., Quantification of the Geological Strength Index Chart, ARMA, 2013–672.
9. Laubscher, D.H., A Geomechanics Classification System for the Rating of Rock Mass in Mine Design, J. S. Afr. Inst. Min. Metall., 1990, no. 90(10), pp. 257–273.
10. Batugina I. M. and Petukhov, I.M., Geodinamicheskoe raionirovanie mestorozhdenii pri proektirovanii i ekspluatatsii rudnikov (Geodynamic Zoning of Mineral Deposits in Mine Planning and Operation), Moscow: Nedra, 1988.
11. Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., Shevchenko, B.F., Usikov, V.I., and Gil’manova, G.Z., Modern Stress State of the Top Crust of the Amur Plate, Fiz. Zemli, 2014, no. 3.
12. Levi, K.G., Sherman, S.I., San’kov, V.A. et al., Karta sovremennoi geodinamiki Azii. Masshtab 1: 5 000 000 (Modern Asia Geodynamics Map. Scale 1: 5 000 000), Irkutsk: IZK SO RAN, 2007.
13. Rasskazov, I.Yu., Numerical Modeling of Modern Tectonic Stress Field at the Juncture of the Central Asia and Pacific Ocean Belts, Tikhookean. Geolog., 2006, vol. 25, no. 5.
14. Rasskazov, I.Yu. and Saksin, B.G., Validation of a Design Model of Stress State in the Top Crust of the Amur Geo-Block, Problemy seismichnosti i sovremennoi geodinamiki Dal’nego Vostoka i Vostochnoi Sibiri (Seismics and Modern Geodynamics in Russian Far East and East Siberia), Khabarovsk: ITiG DVO RAN, 2010.
15. Usikov, V.I., Dynamics and Structure of tectonic Streamflows. Analysis of 3D Models of Terrain, Proc. 7th Kosygin’s Lectures: Tectonics, Magmatism and Geodynamics in East Asia, Khabarovsk: ITiG DVO RAN, 2011.
16. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Experimental and Analytical Method for Assessing Stability of Stopes, J. Min. Sci., 2012, vol. 48, no. 4, pp. 609–615.
17. Mathews, K.E., Hoek, E., Wyllie, D.C., and Stewart, S.B., Prediction of Stable Excavation Spans for Mining at Depths below 1000 Meters in Hard Rock, Golder Associates Report to Canada Centre for Mining and Energy Technology (CANMET), Department of Energy and Resources, Ottawa, Canada, 1980.
18. Nickson, S.D., Cable Support Guidelines for Underground Hard Rock Mine Operations, M. App. Sc. Thesis, University of British Columbia, 1992.
19. Makarov, A.B., Validation of Permissible Parameters for Rooms and Pillars, Fund. Prikl. Vopr. Gorn. Nauk, 2015, no. 2.
20. Mawdesley, C., Predicting Cave Initiation and Propagation in Block Caving Mines, PhD Thesis (unpublished), University of Queensland, Brisbane, 2002.


DEFORMATION CRITERION OF SALT ROCK FAILURE
V. N. Aptukov

Perm State National Research University,
ul. Bukireva 15, Perm, 614000 Russia
Galurgia JSC,
ul. Sibirskaya 94, Perm, 614000, Russia
e-mail: aptukov@psu.ru

The author offers a new deformation criterion for the compressive strength of salt rock specimens. The limiting principal strain is a function of stress parameter in the form of a ratio of hydrostatic pressure and stress intensity. The safety factor based on the deformation criterion is defined. The numerical modeling of experimental compression of various geometry specimens produces the deformation criterion for sylvinite and carnallite of Upper Kama deposit. The offered criterion is applicable to assessment of salt rock stability.

Deformation criterion, failure, salt rocks, strength loss, numerical modeling

DOI: 10.1134/S1062739116030645 

REFERENCES
1. Muzdakbaev, M.M. and Nikiforovsky, V.S., Compression Strength of Materials, Prikl. Mekh. Tekh. Fiz., 1978, no. 2, pp. 154–160.
2. Aptukov, V.N., Konstantinova, S.A., and Merzlyakov, A.F., Fracturing Behavior of Feather Salt Rock Samples under Compression, J. Min. Sci., 2009, vol. 45, no. 3, pp. 250–256.
3. Burshtein, L.S., Staticheskie i dinamicheskie ispytaniya gornykh porod (Static and Dynamic Testing of Rocks), Leningrad: Nedra, 1970.
4. Kuznetsov, G.N., Mekhanicheskie svoistva gornykh porod (Mechanical Properties of Rocks), Moscow: Ugletekhizdat, 1947.
5. Kartsahov, Yu.M., Matveev, B.V., and Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Strength and Deformability of Rocks), Moscow: Nedra, 1973.
6. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane ob’ektov na zemnoi poverkhnosti ot vrednogo vliyaniya podzemnykh gornykh razrabotok v usloviyakh Verkhnekamskogo mestorozhdeniya kaliinykh solei (Guidance on Mine Flood Prevention and Protection of Ground Surface Sites from Detrimental Effect of Underground Mining under Conditions of the Upper Kama Potash Deposit), Saint-Petersburg: VNIIG, 2004.
7. Zil’bershmidt, V. G. Zil’bershmidt, V.V., and Naimark, O.B., Razrushenie solyanykh porod (Salt Rock Failure), Moscow: Nauka, 1992.
8. Baryakh, A.A., Konstantinova, S.A., and Asanov, V.V., Deformirovanie solyanykh porod (Salt Rock Deformation), Ekaterinburg: UrO RAN, 1996.
9. Rekomendatsii po raschety ustoichivykh proletov ochistnykh vyrabotok na kaliinykh mestorozhdeniyakh (Guidelines on Stable Span Design in Underground Potash Mines), Leningrad: VNIIG, 1982.
10. Shiman, M.I., Predotvrashchenie zatopleniya kaliinykh rudnikov (Flood Prevention in Potash Mines), Moscow: Nedra, 1992.
11. Kolmogorov, V.L., Napryazheniya. Deformatsii. Razrusheniya (Stresses. Strains. Failure), Moscow: Metallurgiya, 1970.
12. Kachanov, L.M., Osnovy mekhaniki razrusheniya (Fundamentals of Failure Mechanics), Moscow: Nauka, 1969.
13. Stavrogin, A.N. and Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Strength of Rocks and Stability of Deep Underground Mines), Moscow: Nedra, 1985.
14. Aptukov, V.N., Gilev, M.V., Konstantinova, S.A., and Merzlyakov, A.F., Deformation and Failure of Solikamsk Mine-1 Carnallite Specimens, Marksheider. Nedropol’z., 2009, no. 6, pp. 61–65.
15. Konstantinova, S.A. and Aptukov, V.N., Nekotorye zadachi mekhaniki deformirovaniya i razrusheniya solyanykh porod (Some Problems of Salt Rock Deformation and Failure Mechanics), Novosibirsk: Nauka, 2013.
16. Kolarov, D., Baltov, A., and Bontcheva, N., Mekhanika plasticheskikh sred (Mechanics of Plastic Media), Sofia: BAS, 1975.


CALCULATING STABILITY OF OVERBURDEN DUMPS ON WEAK BASES
S. P. Bakhaeva, V. A. Gogolin, and I. A. Ermakova

Gorbachev Kuzbass State Technical University,
ul. Vesennyaya 28, Kemerovo, 650000 Russia

The scope of the discussion covers the issues of open pit mining efficiency and safety with dry overburden dumping over sludge base. The stress analysis of a dump at Kedrovsky Open Pit Mine uses finite element modeling of linearly deformable medium based on geotechnical, surveying and hydromechanical data. The modeling produces the field of displacements of the dump and its base and the distribution of the Mohr–Coulomb strength criterion. The sludge base breakout-hazardous areas are revealed, and the displacements of the growing dump are predicted. The developed model enables operational forecasting of strength loss at dumps.

Dump, weak base, finite element method, stress state, displacement, Mohr–Coulomb criterion

DOI: 10.1134/S1062739116030657 

REFERENCES
1. Fedoseev, A.I., Vegner, V.R., Protasov, S.I., and Bakhaeva, S.P., Practice of Replacement of Overburden from the Site of Sluicing Dump No. 1 at Kedrovsky Open Pit Mine, GIAB, 2004, no. 3, pp. 286–273.
2. Kuznetsov, M.A., Bakhaeva, S.P., Seregin, E.A., and Prostov, S.M., Examination of Deformation of a Sluicing Dump at a Pitwall, Bezop. Truda Prom., 2007, no. 5, pp. 57–59.
3. Bakhaeva, S.P. and Prostov, S.M., Integrated Monitoring of Waste Dumps at Open Pit Coal Mines, Bezop. Truda Prom., 2011, no. 4, pp. 20–24.
4. Gal’perin, A.M., Kutepov, Yu.I., Kirichenko, Yu.V., and Kiyanets, A.V., Osvoenie tekhnogennykh massivov na gornykh predpriyatiyakh (Waste Dump Management at Mines), Moscow: Gornaya Kniga, 2012.
5. Prostov, S.M., Khyamyalyainen, V.A., and Bakhaeva, S.P., Interrelation among Electrophysical Properties Their Porosity and Moisture Saturation, J. Min. Sci., 2006, vol. 42, no. 4, pp. 349–359.
6. Levenson, S.Ya. and Gendlina, L.I., Safe Dumping Equipment, J. Min. Sci., 2014, vol. 50, no. 5, pp. 938–942.
7. Cheskidov, V.I., Norri, V.K., Zaitsev, G.D., Botvinnik, A.A., Bobyl’sky, A.S., and Reznik, A.V., Effectivization of Open Pit Hard Mineral Mining, J. Min. Sci., 2014, vol. 50, no. 5, pp. 892–903.
8. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
9. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
10. http://ru.wikipedia.org/wiki / Poisson’s Ratio.
11. Sih, G.C. and Liebowitz, H., Mathematical Theories of Brittle Fracture, vol. 2: Mathematical Fundamentals, New York: Academic Press Inc., 1968.


ROCK FAILURE


A NEW INDEX OF ROCK-BREAKING TOOL EFFICIENCY
B. L. Gerike, V. I. Klishin, and P. B. Gerike

Institute of Coal, Siberian Branch, Russian Academy of Sciences,
pr. Leningradskii 10, Kemerovo, 650065 Russia

Based on the analysis of qualitative interaction between rocks and a rock-breaking tool, a new coefficient of the tool efficiency is proposed. This coefficient makes it possible to estimate the quality of the tool impact on broken rocks and to predict energy input of rock breaking and, consequently, productivity of mining machines in specific geotechnical conditions.

Disk tool, rock mass, strength indexes, failure, energy input, efficiency coefficient

DOI: 10.1134/S1062739116030682 

REFERENCES
1. Baron, L.I. and Glatman, L.B., Selecting Rotary Cutting Resistance Criterion for Rocks, Razrushenie gornykh porod sharoshechnym instrumentom (Rotary Cutting of Rocks), Moscow: Nauka, 1966.
2. Pozin, E.Z., Soprotivlyaemost’ uglei razrusheniyu rezhushchimi instrumentami (Coal Cuttabilty), Moscow: Nauka, 1972.
3. Tangaev, I.A., Energoemkost’ protsessa dobychi i pererabotki poleznykh iskopaemykh (Energy Content of Mineral Mining and Processing), Moscow: Nedra, 1986.
4. Revuzhenko, A.F. and Klishin, S.V., Energy Flux Lines in a Deformable Rock Mass with Elliptical Openings, J. Min. Sci., 2009, vol. 45, no. 3, pp. 201–206.
5. Shreiner, L. A. Tverdost’ khrupkikh tel (Hardness of Brittle Bodies), Moscow: Gostoptekhizdat, 1949.
6. Gerike, B.L. and Lizunkin, V.M., Energy-Based Evaluation of Rock Disintegration Quality), Gornyi Zh., 1998, no. 6, pp. 51–55.
7. Terpigorev, A.M. and Protod’yakonov, M.M. (Eds.), Razrushenie uglei i gornykh porod (Failure of Coals and Rocks), Moscow: Ugletekhizdat, 1958.
8. Gerike, B.L., Qualitative Characteristics of the Process of Fracturing Hard Rocks with a Disk Shearing Tool and Their Quantitative Assessments, J. Min. Sci., 2991, vol. 27, no. 2, pp. 114–118.
9. Konyashin, Yu.G., Effect of Rock Properties on Energy Content of Impactive Shearing of Solid Rock Areas between Cracks, Razrush. Gorn. Porod: Nauch. Soob. IGD Skochinskogo, 1973, issue 106.
10. Erdogan, F., Crack Propagation Theories, in Fracture, G. Liebowitz (Ed.), Academic Press, 1968.
11. Logov, A.B., Gerike, B.L., and Raskin, A.B., Mekhanicheskoe razruzhenie krepkikh gornykh prood (Hard Rock Disintegration), Novosibirsk: Nauka, 1989.
12. Baron, L.I., Glatman, L.B., Kozlov, Yu.N., and Mel’nikov, I.I., Razrushenie gornykh porod prokhodcheskimi kombainami: razrushenie agregirovannymi instrumentami (Rock Disintegration by Shearers: Fracture by Aggregate Tools), Moscow: Nauka, 1977.
13. Lizunkin, V.M., Gerike, B.L., and Utsyn, Yu.B., Mekhanizirovannaya podzemnaya razrabotka krepkikh rud malomoshchnykh mestorozhdenii (Mechanized Underground Mining of Hard Thin Ore Bodies), Chita: ChitGTU, 1999.
14. Lizunkin, V.M., Krylov, E.I., Gerike, B.L., and Lizunkin, M.V., RF patent no. 2187640, E21C25/16, Byull. Izobret., 2002, no. 12.
15. Kudlai, E.D. and Privolotsky, A.A., Studying Operating Characteristics of Shearing Drums, Sovershenstvovanie tekhniki i tekhnologii razrabotki mnogoletnemerzlykh rossypei: sb. nauch. tr. (Improvement of Mining Technology and Equipment for Permafrost Placers: Collection of Scientific Papers), Magadan, 1985.


MULTIPLE DIRECTIONAL HYDRAULIC FRACTURING WITH CHEMICALLY ACTIVE MIXTURES
I. V. Kolykhalov and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

The authors analyze numerically growth of a cross fracture between two existing fractures under multiple directional hydrofracturing using chemically active mixtures. The scope of the studies embraces effect exerted by problem parameters, such as value and orientation of external compression field, rate of healing of fractures, size and intermediate spacing of fractures, on deviation of a fracture from its initial orientation. The results are meant for optimization of the local hydrofracturing method for steam-distribution and producing wells in low-gravity oil reservoirs.

Hydrofracturing, thermal mining, low-gravity oil

DOI: 10.1134/S1062739116030694 

REFERENCES
1. Konoplev, Yu.P., Pitirimov, V.V., Tabakov, V.P. et al., Thermal Mining of Heavy Crude Oil and Natural Bitumen in Terms of Yarega Oil Field, GIAB, 2005, no. 3, pp. 246–253.
2. Konoplev, Yu.P., Buslaev, V.F., Yagubov, Z.Kh., and Tskhadaya, N.D., Termoshakhtnaya razrabotka neftyanykh mestorozhdenii (Thermal Mining of Oil), Moscow: Nedra-Biznetsentr, 2006.
3. Morozyuk, O.A., Ways of Improving Efficiency of Thermal Mining of Anomalously Viscous Oil in Terms of Yarega Oil Field, Cand. Tech. Sci. Dissertation, Ukhta: UGTU, 2011.
4. Lekontsev, Yu.M. and Sazhin, P.V., Directional Hydraulic Fracturing in Difficult Caving Roof Control and Coal Degassing, J. Min. Sci., 2014, vol. 50, no. 5, pp. 914–917.
5. Kurlenya, M.V., Altunina, L.K., Kuvshinov, V.A., Patutin, A.V., and Serdyukov, S.V., Growth Gel for Gas-Bearing Coal Bed Hydrofracturing in Mine Conditions, J. Min. Sci., 2012, vol. 48, no. 6, pp. 947–953.
6. Al-Harthy, S., Bustos, O.A., Samuel, M., Still, J., Fuller, M.J., Hamzah, N.E., Pudin bin Ismail, M.I., and Parapat, A., Options for High-Temperature Well Stimulation, Oilfield Review, Winter 2008/2009, no. 4, pp. 52–62.
7. Shilova, T.V. and Serdyukov, S.V., Protection of Operating Degassing Holes from Air Inflow from Underground Excavations, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1049–1055.
8. Azarov, A.V., Kurlenya, M.V., Patutin, A.V., and Serdyukov, S.V., Mathematical Modeling of Stress State of Surrounding Rocks around the Well Subjected to Shearing and Normal Load in Hydraulic Fracturing Zone, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1063–1069.
9. Salimov, O.V., Nasybullin, A.V., and Salimov, V.G., Effect of Multiple Fractures in the Far Zone on the Hydraulic Fracturing Efficiency, Neftepromysl. Delo, 2010, no. 10, pp. 24–27.
10. Crouch, S.L and Starfield, A.M., Boundary Element Methods in Solid Mechanics, London: George Allen and Unwin, 1984.
11. Sher, E.N. and Kolykhalov, I.V., Propagation of Closely Spaced Hydraulic Fractures, J. Min. Sci., 2011, vol. 47, no. 6, pp. 741–750.
12. Sher, E.N. and Kolykhalov, I.V., Determination of Hydrofracture Geometry in a Production Reservoir, J. Min. Sci., 2015, vol. 51, no. 1, pp. 81–87.
13. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Fracture Mechanics), Moscow: Nauka, 1974.
14. Alekseeva, T.E. and Martynyuk, P.A., Crack Emergence Trajectories at a Free Surface, J. Min. Sci., 1991, vol. 27, no. 2, pp. 90–99.


SELECTION OF ELECTROHYDRAULIC GRINDING PARAMETERS FOR QUARTZ ORE
S. R. Korzhenevsky, V. A. Bessonova, A. A. Komarsky, V. A. Motovilov, and A. S. Chepusov

Institute of Electrophysics, Ural Branch, Russian Academy of Sciences,
ul. Amundsena 106, Ekaterinburg, 620016 Russia

Under analysis is electrohydraulic grinding of rocks under electric charge using nanosecond high-stress pulses to optimize ore pretreatment. A nanosecond high-voltage generator of pulses at a capacity to 500 MW is designed and tested. A flow-through discharge cell at a voltage to 550 kW is developed. The new method of mineral grinding is highly efficient and enables designing commercial plants for electrohydraulic rock processing.

Electric fluid breakdown, solid dielectric impulse breakdown, shock wave, high-voltage pulse generator, mineral grinding, ore pretreatment

DOI: 10.1134/S1062739116030706 

REFERENCES
1. Revnivtsev, V.I., Gaponov, G.V, Zarogatsky, L.P. et al., Selektivnoe razrushenie mineralov (Selective Disintegration of Minerals), Moscow: Nedra, 1988.
2. Blekhman, I.I. and Finkel’shtein, G.A., Selective Dissociation of Useful Minerals under Minimized Overgrinding, Sovershenstvovanie i razvitie protsessa podgotovki rud k obogashcheniyu (Improvement and Advance in Ore Pretreatment), Leningrad: Mekhanobr, 1975, pp. 149–153.
3. Giyo, R., Problema izmel’cheniya materialov i ee razvitie (Problem and Advance in Material Grinding), French–Russian translation, Moscow: Lit-ra storit., 1964.
4. Yutkin, L.A., Elektrogidravlicheskii effekt (Electrohydraulic Effect), Moscow–Leningrad: Mashgiz, 1955.
5. Gylyi, G.A. and Malyushevskii, P.P., Vysokovol’tnyi elektricheskii razryad v silovykh impul’snykh sistemakh (High-Voltage Electric Discharge in Pulsed Power Systems), Kiev: Naukova Dumka, 1977.
6. Usov, A.F., Semkin, B.V., and Zinov’ev, N.T., Perekhodnye protsessy v ustanovkakh elektroimpul’snoi tekhnologii (Transient Processes in Electric Impulse Engineering Plants), Leningrad: Nauka, 1987.
7. Kotov, Yu.A., Korzhenevsky, S.R., Motovilov, V.A. et al., RF patent no. 2150326, Byull. Izobret., 2000, no. 16.
8. Kotov, Yu.A., Mesyats, G.A., Filatov, A.L., Koryukin, B.M., Boriskov, F.F., Korzhenevsky, S.R., Motovilov, V.A., and Shcherbinin, S.V., Integrated Processes of Pyrite Tailings by Nanosecond Impulses, Dokl. Akad. Nauk, 2000, vol. 372, no. 5.
9. Zinov’ev, N.T., Kurets, V.I., Filatov, G.P., and Yushkov, A.Yu., Energy and Size Characteristics of Quartz Disintegration under Electric Impulses, Izv. vuzov, Fizika, 2011, no. 1/2.


SCIENCE OF MINING MACHINES


ESTIMATE OF BLOW FREQUENCY RANGE FOR AN AIR DRILL HAMMER WITH. A. RING-SHAPED ELASTIC VALVE IN THE BACKSTROKE EXHAUST LINE
V. V. Chervov, B. N. Smolyanitsky, and I. V. Tishchenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

The authors report and discuss the experimental results on an air drill hammer with an elastic valve installed in the backstroke exhaust line for mechanical closing. It is approved that such air hammer is capable to ensure the wanted blow capacity at the fixed blow energy by varying blow frequency through adjustment of cross section choke coupling the backstroke and front stoke chambers of the hammer. With the larger cross section of the choke coupling, the maximum blow frequency is achieved and remains the same later on.

Air drill hammer, elastic valve, air flow rate, blow frequency, blow energy

DOI: 10.1134/S1062739116030718 

REFERENCES
1. Nestle, H., Bautechnik—Fachkunde Bau, Verlag Europa-Lehrmittel, Haan-Gruiten, 2001.
2. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., et al., Sources for Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, J. Min. Sci., 2008, vol. 44, no. 5, pp. 490–496.
3. Chervov, V.V., Tishchenko. I.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on the Vibro-Percussion Pipe Penetration Rate in Soil, J. Min. Sci., 2011, vol. 47, no. 1, pp. 85–92.
4. Tupitsyn, K.K., K issledovaniyu mashin udarnogo deistviya s pnevmaticheskimi pul’satorami (Testing of Machines with Air-Driven Pulsators), Novosibirsk: IGD SO RAN, Preprint, 1980.
5. Lipin, A.A., Promising Pneumatic Punchers for Borehole Drilling, J. Min. Sci., 2005, vol. 41, no. 2, pp. 157–161.
6. Smolyanitsky, B.N. and Chervov, V.V., Enhancement of Energy-Carrier Performance in Air Hammers in Underground Construction, J. Min. Sci., 2014, vol. 50, no. 5, pp. 918–928.
7. Tishchenko, I.V. and Chervov, V.V., Influence of Energy Parameters of Shock Pulse Generator on the Pipe Penetration Velocity in Soil, J. Min. Sci., 2014, vol. 50, No. 3, pp. 491–500.
8. Chervov, V.V., Impact Energy of Pneumatic Hammer with Elastic Valve in Back-Stroke Chamber, J. Min. Sci., 2004, vol. 40, no. 1, pp. 74–83.
9. Chervov, V.V., Smolyanitsky, B.N., Trubitsyn, V.V., Chervov, A.V., and Tishchenko, I.V., RF patent no. 2462575, Byull. Izobret., 2012, no. 27.
10. Sudnishnikov, B.V., Esin, N.N., and Tupitsyn, K.K., Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deistviya (Analysis and Design of Pneumatic Percussive Machines), Novosibirsk: Nauka, 1985.
11. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., Plavskikh, V.D., Rusin, E.P., Smolyanitsky, B.N., Tupitsyn, K.K., and Chepurnoi, N.P., Pnevmoproboiniki (Air Rock Hammers), Novosibirsk: IGD SO RAN, 1990.


CALCULATING BENDING VIBRATIONS OF MAIN AXIAL MINE FAN ROTOR SHAFT
A. M. Krasyuk and P. V. Kosykh

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

The article presents a calculation procedure for critical rotary speed of an axial main mine fan rotor. The calculations are made for fan model VO-21. The suppositions that make the calculations simpler without considerable errors of the results are evaluated. The calculations use the finite element method and ANSYS software. The critical rotary speeds are determined from the Campbell diagrams plotted for the estimates with and without regard for the stiffness of the bearing assemblies of the rotor. The effect exerted by the rotor bearing assembly stiffness and by the gyroscopic moment of the fan impeller on the frequency of free bending vibrations of the rotor shaft under direct and back precession is illustrated. The estimated critical rotary speeds are compared with the analytical data obtained based on discrete two-mass models. For the preliminary engineering estimation, it is possible to use a discrete two-mass model of the fan rotor without regard for the yielding of the bearing assemblies and for the influence of the gyroscopic model; in the design model, it is required to replace the transmission shaft by the point mass. The calculation error will not exceed 7%.

Fan, critical speed, precession, gyroscopic moment, bearing assembly yielding, equivalent load, Campbell diagram

DOI: 10.1134/S1062739116030730 

REFERENCES
1. Construction Regulation Code SP 120.13330.2012. Subways, Moscow: Minregion Rossii, 2013.
2. Krasyuk, A.M., Tonnel’naya ventilyatsiya (Tunnel Ventilation), Novosibirsk: Nauka, 2006.
3. Kosykh, P.V., Krasyuk, A.M., and Russky, E.Yu., Influence of Train Piston Effect on Subway Fans, J. Min. Sci., 2014, vol. 50, no. 2, pp. 362–370.
4. Beizel’man, R.D., Tsypkin, B.V., and Perel’, L.Ya., Podshipniki kacheniya: spravochnik (Rolling Bearings: Handbook), Moscow: Mashinostroenie, 1975.
5. Chermensky, O.N. and Fedotov, N.N., Podshipniki kacheniya: spravochnik-katalog (Rolling Bearings: Handbook–Catalog), Moscow: Mashinostroenie, 2003.
6. Maslov, G.S., Raschet kolebanii valov: spravochnoe posobie (Calculation of Vibrations of Shafts: Reference Aid), Moscow: Mashinostroenie, 1968.
7. Timoshenko, S.P., Kolebaniya v inzhenernom dele (Vibrations in Engineering), Moscow: Mashinostroenie, 1985.
8. Podol’sky, M.E. and Cherenkova, S.V., Nature and Conditions of Direct and Back Wobble of Rotors, Teor. Mekhaniz. Mashin, 2014, vol. 2, no. 1, pp. 27–40.
9. Genta, G., Dynamics of Rotating Systems, New-York: Springer, 2005.
10. Babkov, I.M., Teoriya kolebanii (Theory of Vibrations), Novosibirsk: Nauka, 1968.
11. Samuelsson, J., Rotor Dynamic Analysis of 3D-Modeled Gas Turbine Rotor in ANSYS, Finspång: Linkoping University, 2009.
12. Feodos’ev, V.I., Soprotivlenie materialov (Strength of Materials), Moscow: MGTU Baumana, 1999.


HYBRID UNIT FOR DIRECTIONAL HYDROFRACTURING
Yu. M. Lekontsev, A. V. Patutin, P. V. Sazhin, and O. A. Temiryaeva

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

The structural layout is presented for a hybrid unit for directional hydrofracturing with the description of operating principles of the unit in the mode of drilling and slotting. The kinematic parameters of the movable parts of the unit are calculated.

Directional hydrofracturing, drill hole, initiation slot

DOI: 10.1134/S1062739116030742 

REFERENCES
1. Isakov, A.L., Directed Fracture of Rocks by Blasting, J. Min. Sci., 1983, vol. 19, no. 6, pp. 479–488.
2. Dubynin, N.G., Volodarskaya, Sh.G., Yanovskaya, N.B., and Yanovsky, B.G., Influence of Blast-Hole Shape on Efficiency of the Explosion of Charges, J. Min. Sci., 1974, vol. 10, no. 6, pp. 747–749.
3. Langefors, U. and Kihlstom, B., The Modern Technique of Rock Blasting, Wiley, 1963.
4. Barker, D.B., Fourney, W.L., and Dally, J.W., Fracture Control in Tunnel Blasting, Transportation Research Record, 1978, no. 648, pp. 97–103.
5. Lekontsev, Yu.M., Sazhin, P.V., and Ushakov, S.Yu., Interval Hydraulic Fracturing to Weaken Dirt Bands in Coal, J. Min. Sci., 2012, vol. 48, no. 3, pp. 525–532.
6. Chernov, O.I., Hydrodynamic Stratification of Petrologically Uniform Strong Rocks as a Means of Controlling Intransigent Roofs, J. Min. Sci., 1982, vol. 18, no. , pp. 102–107.
7. Lekontsev, Yu.M. and Sazhin, P.V., Application of the Directional Hydraulic Fracturing at Berezovskaya Mine, J. Min. Sci., 2008, vol. 44, no. 3, pp. 253–258.
8. Lekontsev, Yu.M. and Sazhin, P.V., Directional Hydraulic Fracturing in Difficult Caving Roof Control and Coal Degassing, J. Min. Sci., 2014, vol. 50, no. 5, pp. 914–917.
9. Sazhin, P.V., Issledovanie traektorii dvizheniya rezhushchego organa shcheleobrazovatelya (Trajectory of a Cutting Tool of a Splitter), Gornyatsk. Smena, 2008, vol. 1, pp. 8–14.


DESIGNS OF MINING SHOVELS WITH DIGGING EQUIPMENT OF NONCLASSICAL STRUCTURAL LAYOUT
S. V. Doronin and Yu. F. Filippova

Special Design and Technology Bureau Nauka,
Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences,
pr. Mira 53, Krasnoyarsk, 660049 Russia

A formalized approach is proposed to evaluating design loads on shovels with compound kinematic chains, based on numerical estimates of response of primary structural members to unit forces. The practical implementation of the approach uses structural layout of a mine shovel with electromechanical push-bars of pressure and uplift drives.

Loading case, shovel working attachment

DOI: 10.1134/S1062739116030754 

REFERENCES
1. Peters, E.R., Osnovy teorii odnokovshovykh ekskavatorov (Theory of Shovels), Moscow: Mashgiz, 1955.
2. Volkov, D.P., Dinamika i prochnost’ odnokovshovykh ekskavatorov (Dynamics and Strength of Shovels), Moscow: Mashinostroenie, 1965.
3. Labutin, V.N., Mattis, A.R., and Zaitseva, A.A., Blast-Free Mining of Coal Seams by Excavators Equipped with Rotary Dynamic Buckets, J. Min. Sci., 2005, vol. 41, no. 2, pp. 143–150.
4. Mattis, A.R., Labutin, V.N., Cheskidov, V.I., Zaitsev, G.D., and Kudryavtsev, V.G., Substantiation of the Capacity of Percussion Devices and Estimation of the Performance Capabilities for Active Bucket Excavator EKG-5V, J. Min. Sci., 2005, vol. 41, no. 5, pp. 467–474.
5. Mattis, A.R., Zaitsev, G.D., Labutin, V.N., Cheskidov, V.I., and Tolmachev, A.V., Blast-Free Technology of Mineral Mining: State and Prospects. Part I: Experience of Study and Development of Excavators with the Dynamic Bucket, J. Min. Sci., 2004, vol. 40, no. 1, pp. 84–91.
6. Labutin, V.N., Mattis, A.R., Zaitsev, G.D., and Cheskidov, V.I., Blast-Free Technology of Mineral Mining: State and Prospects. Part II: Estimation of the Efficiency of Various Failure Methods in Opencast Mining Technologies, J, Min. Sci., 2004, vol. 40, no. 2, pp. 173–181.
7. Ananin, V.G., Calculating Optimal Parameters for Digging Equipment of Mining Shovel with Mechanical Drive in CAE APM Structure 3D, SAPR Grafika, 2006, no. 10, pp. 92–96.
8. Pavlov, V.P., Analysis of Estimated Positions of Shoveling Equipment in SolidWorks-visualNASTRAN, SAPR Grafika, 2007, no.2, pp. 28–41.
9. Dombrovsky, N.G. and Gal’perin, M.I., Stroitel’nye mashiny (Building Machines), Part II, Moscow: Vyssh. Shkola, 1985.
10. Doronin, S.V., Issledovanie konstruktivnykh reshenii i tekhnologii proektirovaniya ekskavatorov KTM: otchet o NIR (Analysis of Designs and Techniques of KTM Shovel Engineering: R&D Report), Krasnoyarsk, 2010.
11. Salov, D.A. and Tumasyan, A.R., RF patent no. 2377457: MPK F16H25/22, F16H25/24, Byull. Izobret., 2009, no. 36.


MINERAL MINING TECHNOLOGY


COALBED METHANE RELEASE AS. A. FUNCTION OF COAL BREAKUP
A. A. Ordin and A. M. Timoshenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
VostNII Science Center,
ul. Institutskaya 3, Kemerovo, 650002 Russia

The authors give theoretical and actual evidence of reduction in absolute methane release under higher rates of advance of production face in coal mines. The parabolic relation between methane release, feed speed and productivity of cutter–loader is evaluated.

Mine, coalbed, breakup, coal sizing, methane release, production face advance

DOI: 10.1134/S1062739116030766 

REFERENCES
1. Ordin, A.A. and Timoshenko, A.M., Reduction of Coal Bed Methane Release under High-Rate Advance of Production Face, J. Min. Sci., 2015, vol. 51, no. 4, pp. 779–784.
2. Timoshenko, A.M., Baranova, M.N., Nikiforov, D.V. et al., Application of Standards in High-Capacity Coal Mine Planning, Vestn. NTs VostNII, 2010, no. 1, pp. 12–18.
3. Boiky, A.B., Effect of Coal Production rate on Greenhouse gas Emission in Roadways, Geotekhn. Mekh., 2010, issue 88, pp. 237–255.
4. Grashchenkov, N.F., Petrosyan, A.E., Frolov, M.A., et al., Rudnichnaya ventilyatsiya: spravochnik (Mine Ventilation: Handbook), K. Z. Ushakov (Ed.), Moscow: Nedra, 1988.
5. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht: proekt (Guidelines on Coal Mine Ventilation Planning: Draft), Moscow, 2010.
6. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht: proekt (Guidelines on Coal Mine Ventilation Planning), Makeevka-Donbass, 1989.
7. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht: proekt (Guidelines on Coal Mine Ventilation Planning), Kiev, 1994.
8. Instruktsiya po primeneniyu skhem provetrivaniya vyemochnykh uchastkov shakht s izolirovannym otvodom metana iz vyrabotannogo prostranstva s pomoshch’yu gazootsasyvayushchihk ustanovok (Instructions on Extraction Panel Ventilation with Isolated Methane Recovery Gas Suction Plants), Federal Environmental, Industrial and Nuclear Supervision Service of Russia, Decree No. 680, 1 December, 2011.
9. Ordin, A.A., Timoshenko, A.M., and Kolenchuk, S.A., Ultimate Length and Capacity of Production heading with regard to gas Content, Considering Nonuniform Air Flow, J. Min. Sci., 2015, vol. 51, no. 4, pp. 771–778.
10. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully-Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
11. Bronshtein, N.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vuzov (Handbook of Mathematics for Engineers and University Students), Moscow: Nauka, 1986.
12. Zaburdyaev, G.S., Novikova, I.A., and Podobrazhin, A.S., Methane and Dust Emissions during Operation of Worm-Type Tools, GIAB, 2008, no. 53, pp. 56–64.


EXPERIMENTAL STUDIES INTO TECHNOLOGY OF GENERATION OF PAY ZONES IN GOLD MINE WASTE
V. S. Alekseev and R. S. Seryi

Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia

The experimental studies allow determining efficient parameters of a technology meant for formation of pay zones in gold mine waste dumps. The technology is applicable to developing gold mine waste early assumed unprofitable.

Gold mine waste, seepage flows, gold particle migration, pay zone formation

DOI: 10.1134/S1062739116030778 

REFERENCES
1. Van-Van-E, A.P., Resursnaya baza prirodno-tekhnogennykh zolotorossypnykh mestorozhdenii (Gold Reserves in Natural Placers and Placer Mining Waste), Moscow: Gornaya Kniga, 2010.
2. Rasskazov, I.Yu., Litvintsev, V.S., and Mamaev, A.Yu., Reserves of Placer Mining Waste and Basic Trends of their Development, Zolotodobyv. Prom., 2011, no. 1, pp. 14–20.
3. Litvintsev, V.S., Resource Potential of Placer Mining Waste, J. Min. Sci., 2013, vol. 49, no. 1, pp. 99–105.
4. Mirzekhanov, G.S. and Mirzekhanova, Z.G., Resursnyi potentsial tekhnogennykh obrazovanii rossypnykh mestorozhdenii zolota (Resource Potential of Waste at Gold Placer Mines), Moscow: MAKS Press, 2013.
5. Alekseev, V.S., Substantiation of Rational Technology of Pay Zone Generation during Surface Development of Placer Mining Waste in the Amur Region, Cand. Tech. Sci. Dissertation, Khabarovsk, 2012.
6. Mamaev, Yu.A., Litvintsev, V.S., and Alekseev, V.S., Generation of a Pay Zone in Waste at Noble Metal Placers, Tikhookean. Geolog., 2012, vol. 31, no. 4, pp. 106–112.
7. Litvintsev, V.S., Alekseev, V.S., and Pulyaevsky, A.M., Suffusion Processes in the Technology of Formation of Enriched Zones inside Gold Placer Mining Waste Dumps, J. Min. Sci., 2012, vol. 48, no. 5, pp. 914–919.
8. Ternova, A.F., Gidravlika gruntovykh vod: ucheb. posobie (Underground Water Hydraulics: Educational Aid), Tomsk: TGASI, 2010.


MINERAL DRESSING


CLASSIFICATION OF MINERAL SPECIES ON THE SURFACE OF NATURAL DIAMOND CRYSTALS
V. A. Chanturia, G. P. Dvoichenkova, and O. E. Koval’chuk

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
ALROSA Research and Geological Exploration Company,
Chernyshevskoe shosse 16, Mirny, 678174 Russia

The analytical research has yielded differences in composition of mineral species on the surface of natural diamonds of hyperaltered kimberlites under conditions of diamond ore occurrence and processing. The classification of the mineral species is based on the mineral origin, properties and attachment on the diamond crystal surface.

Mineral species, diamond, kimberlite, hydrophilic behavior, hydrophobic behavior, classification

DOI: 10.1134/S106273911603079X

REFERENCES
1. Chanturia, V.A., Trofimova, E.A., Dvoichenkova, G.P., Bogachev, V.I., Minenko, V.G., and Dikov, Yu.P., Theory and Practice of Electrochemical Water Treatment to Intensify Diamond-Containing Kimberlite Beneficiation, Gorn. Zh., 2005, no. 4, pp. 51–55.
2. Chanturia, V.A., Trofimova, E.A., Dikov, Yu.P., Bogachev, V.I., Dvoichenkova, G.P., and Minenko, V.G., Mechanism for Passivation and Activation of Diamond Surface in Diamond Ore Processing, Obogashch. Rud, 1999, no. 6, pp. 14–18.
3. Trofimova, E.A., Zuev, A.V., Dvoichenkova, G.P., and Bogachev, V.I., Efficiency of Diaphragm-Free Electrochemical Water Treatment in Processing of Diamond–Containing Kimberlites, Razvitie idei. Plaksina v oblasti obogashcheniya poleznykh iskopaemykh i gidrometallurgii (Development of Plaksin’s Ideas in Mineral Processing and Hydrometallurgy), Moscow: Nats. Nauchn. Tsentr Gorn. Proizv.–Gorn. Inst. Skoch., 2000.
4. Dvoichenkova, G.P., Minenko, V.G., Koval’chuk, O.E., etc., Intensification of Froth Separation of Diamond-Bearing Materials by Applying Electrochemical Aeration of Aqueous System, Gorn. Zh., 2012, no. 12, pp. 88–92.
5. Chanturia, V.A. and Goryachev, B.E., Treatment of Diamond-Bearing Kimberlites, Progressivnye tekhnologii kompleksnoi pererabotki mineral’nogo syr’ya (Progressive Techniques for Integrated Mineral Processing), Moscow: Ruda Metally, 2008, pp. 151–163.
6. Chanturia, V.A., Trofimova, E.A., Dikov, Yu.P., Dvoichenkova, G.P., Bogachev, V.I., and Zuev, A.A., Relation between Diamond Surface and Diamond Processing Properties in Kimberlite Treatment, Gorn. Zh., 1998, nos. 11–12, pp. 52–56.
7. Kulakova, I.I., Chemistry of Nano-Diamond Surface, Fiz. Tverd. Tela, 2004, vol. 46, issue 4, pp. 621–628. 8. Aleshin, V.G., Smekhnov, A.A., and Kruk, V.B., Khimiya poverkhnosti almaza (Chemistry of Diamond Surface), Kiev: Nauk. Dumka, 1990.
9. Chanturia, V.A., Trofimova, E.A., Bogachev, V.I., and Dvoichenkova, G.P., Mineral and Organic Nano-Species on Natural Diamonds: Conditions for Their Formation and Processes for Their Removal, Gorn. Zh., 2010, no. 7, pp. 68–71.
10. Chanturia, V.A., Dvoichenkova, G.P., Koval’chuk, O.E., and Kovalenko, E.G., Alteration of Process Properties of Diamonds after Treatment of Re-Modified Kimberlites, Rudy Met., 2013, no. 3, pp. 48–55.
11. Chanturia, V.A., Dvoichenkova, G.P., Koval’chuk, O.E., and Timofeev, A.S., Surface Composition and Role of Hydrophilic Diamonds in Foam Separation, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1235–1241.
12. Dvoichenkova, G.P., Mineral Formations on Natural Diamond Surface and Their Destruction Using Electrochemically Modified Mineralized Water, J. Min. Sci., 2014, vol. 50, no. 4, pp. 788–799.
13. Maksimovskii, E.A., Fainer, N.I., Kosinova, M.L., and Rumyantsev, Yu.M., Investigation into Structure of Fine Nanocrystalline Films, Zh. Strukt. Khim., 2004, vol. 45, pp. 61–65.
14. Strickland-Constable, R.F., Kinetics and Mechanism of Crystallization, London and New York: Academic Press, 1968.


COLLECTABILITY OF PHYSICALLY ADSORBED XANTHATE ION–DIXANTHOGEN ASSOCIATES
S. A. Kondrat’ev, E. A. Burdakova, and I. A. Konovalov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

Under discussion is collectability of ethyl and butyl xanthate species resulted from non-stoichiometric interaction with oxidizer. It is visually proved that solution contains fine micro-drops stabilized by negative charge. The size and ζ–potential of micro–drops are determined together with the spreading velocity of emulsion over water surface. The mentioned velocity is higher than the spreading velocity of products of non-stoichiometric interaction between xanthate and heavy metal salt. The products of interaction between xanthates and oxidizers are known as desorbable species (DS), as at the moment of rupture of water film between mineral particle and air bubble they can detach from particle surface and attach to air–water interface. Spreading of DS over the interface forces water out of the film. The forces applied to liquid in the film from the side of DS of ethyl and butyl xanthates are evaluated. The volume–flow rate of water from the film is related with the surface pressure of reagent species active at the air–water interface. The surface pressure of dixanthogen–xanthate emulsion is evaluated as a function on initial concentration of xanthate. Collectability of the reagent depends on the surface tension of DS solution and is governed by the structure of hydrocarbon fragment of the agent.

Flotation, flotation activity, dixanthogen emulsion, surface pressure, liquid film, physical adsorption, selectivity

DOI: 10.1134/S1062739116030801 

REFERENCES
1. Òaggart, A.F., del Guidice, G. R. M., and Ziehl, O.A., The Case for the Chemical Theory of Flotation, Amer. Inst. Min. Metallurg. Petrol. Eng. Transactions, 1934, vol. 112, pp. 348–381.
2. Plaksin, I.N. and Shafeev, R.Sh., On the Effect of Electrochemical Potential on Xanthate Distribution on Sulfide Surface, Dokl. Akad. Nauk, 1958, vol. 118, no. 3, pp. 546–548.
3. Plaksin, I.N. and Shafeev, R.Sh., On Quantitative Evaluation of Xanthate Attachment in Terms of Surface Properties of Sulfide Minerals, Dokl. Akad. Nauk, 1959, vol. 128, no. 4, pp. 777–780.
4. Finkelstein, N.P. and Poling, G.W., The Role of Dithiolates in Flotation of Sulfide Minerals, Miner. Sci. Eng., 1977, vol. 9, pp. 177–197.
5. Lippinen, J.O., Basilio, C.I., and Yoon, R.H., In-situ FTIR Study of Ethyl Xanthate Adsorption on Sulfide Minerals under Conditions of Controlled Potential, Int. J. Min. Process., 1989, vol. 26, pp. 259–274.
6. Tolun, R. and Kitchener J. A., Electrochemical Study of the Galena–Xanthate–Oxygen Flotation System, Trans. Inst. Min. Metall., London, 1964, vol. 73, pp. 313–322.
7. Toperi, D. and Tolun, R., Electrochemical Study and Thermodynamic Equilibrium of the Galena–Oxygen–Xanthate Flotation System, Trans. Inst. Min. Metall., Sect. C: Mineral Process. Extract. Metall., 1969, vol. 78, pp. C191–C197.
8. Woods, R., The Oxidation of Ethyl Xanthogenate on Platinum, Gold, Copper and Galena Electrodes: Relation to the Mechanism of Mineral Flotation, J. Phys. Chem., 1971, vol. 75, no. 3, pp. 354–362.
9. Pritzker, M.D. and Yoon, R.H., Thermodynamic Calculations on Sulfide Flotation Systems: I. Galena–Ethyl Xanthate System in the Absence of Metastable Species, Int. J. Min. Process., 1984, vol. 12.
10. Majima, H. and Takeda, M., Electrochemical Studies of the Xanthate–Dixanthogen System on Pyrite, Amer. Inst. Min. Metallurg. Petrol. Eng. Transactions, 1968, vol. 241, pp. 431–436.
11. Wang, X-H., Forssberg, K. S. E., Mechanisms of Pyrite Flotation with Xanthates, Int. J. Min. Process., 1991, vol. 33, pp. 275–290.
12. Chanturia, V.A. and Vigdergauz, B.E., Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii (Electrochemistry of Sulfides. Theory and Practice of Flotation), Moscow: Nauka, 1993.
13. Zhang, Q., Xu, Z., Bozkurt, V., and Finch, J.A., Pyrite Flotation in the Presence of Metal Ions and Sphalerite, Int. J. Min. Process., 1997, vol. 52, pp. 187–201.
14. Vucinic, D.R., Lazic, P.M., and Rosic, A.A., Ethyl Xanthate Adsorption and Adsorption Kinetics on Lead-Modified Galena and Sphalerite under Flotation Conditions, Colloids and Surface A: Physicochem. Eng. Aspects, 2006, vol. 279, pp. 96–104.
15. Nowak, P., Xanthate Adsorption at PbS Surfaces: Molecular Model and Thermodynamic Description, Colloids and Surfaces A: Physicochem. Eng. Aspects, 1993, vol. 76, pp. 65–72.
16. Wang, X., Forssberg, K. S. E., and Bolin, N.J., The Aqueous and Surface Chemistry of Activation in the Flotation of Sulphide Minerals–A Review. Part II: A Surface Precipitation Model, Min. Process. Extract. Metall. Review, 1989, vol. 4, pp. 167–199.
17. Kondrat’ev, S.A., Moshkin, N.P., and Konovalov, I.A., Collecting Ability of Easily Desorbed Xanthates, J. Min. Sci., 2015, vol. 51, no. 4, pp. 830–838.
18. Bulatovic, Srdjan M. Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores, Elsevier Science & Technology Books, 2007.
19. Finkelstein, N.P. and Allison, S.A., Natural and Induced Hydrophobicity in Sulphide Mineral Systems, Aiclhe Symposium Series, 1976, vol. 71, no. 150, pp. 165–175.


ADSORPTION OF TANNIN-BEARING ORGANIC REAGENTS ON STIBNITE, ARSENOPYRITE AND CHALCOPYRITE IN COMPLEX GOLD ORE FLOTATION
T. N. Matveeva, N. K. Gromova, and L. B. Lantsova

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia

The authors report studies into adsorption of tannin and cow-parsnip extract components on stibnite, arsenopyrite and chalcopyrite using UV spectroscopy, scanning laser microscopy and measurement of air bubble detachment from a mineral particle. It is found that tannin and organic reagents are selectively adsorbed on the surface of the listed sulfide minerals and exert selective effect on adsorption of sulfhydryl collecting agent, which, in its turn, may result in efficient recovery of the minerals in proper concentrates under complex gold ore flotation.

Complex gold ore, stibnite, arsenopyrite, chalcopyrite, tannin, plant extract, adsorption

DOI: 10.1134/S1062739116030813 

REFERENCES
1. Solozhenkin, P.M., Process for Treatment of Gold–Antimony Ores and Concentrates, in Chanturia, V.A., Progressivnye tekhnologii kompleksnoi pererabotki mineral’nogo syr’ya (Advanced Integrated Raw Mineral Treatment), Moscow: Ruda Metally, 2008, pp. 112–119.
2. Khan, G.A., Gabrielova, L.I., and Vlasova, N.S., Flotatsionnye reagenty i ikh primenenie (Flotation Agents and Their Use) Moscow: Nedra, 1986.
3. Robertson, C., Bradshaw, D., and Harris, P., Decoupling the Effects of Depression and Dispersion in the batch Flotation of a Platinum Bearing Ore, Proc. 22nd. Min. Proc. Congress, Cape Town, South Africa, 2003, pp. 920–928.
4. Somasundaran, P., Wang, J., Pan, Z., et al., Interactions of Gum Depressants with Talc: Study of Adsorption by Spectroscopic and Allied Techniques, Proc. 22nd. Min. Proc. Congress, Cape Town, South Africa, 2003, pp. 912–919.
5. Chanturia, V.A., Ivanova, T.A., Matveeva, T.N., Gromova, N.K., and Lantsova, L.B., RF Patent no. 2397025, Byull. Izobr., 2010, no. 23.
6. Chanturia, V.A., Matveeva, T.N., Ivanova, T.A., Gromova, N.K., and Lantsova, L.B., New Complexing Agents to Select Auriferous Pyrite and Arsenopyrite, J. Min. Sci., 2011, vol. 47, no. 1, pp. 102–108.
7. Beattie, D., Mierczynska-Vasilev, A., Kor, M., and Addai-Mensah, J., Polymer Depressant Adsorption Selectivity in Mixed Mineral Systems, Proc. 27th Min. Proc. Congress, Santiago, Chile, 2014, Book of Abstracts, vol. I.
8. Braga, P., Chaves, A., Luz, A., and Franca, S., Polymeric Depressants in Purification by Flotation of Molybdenite, Proc. 27th Min. Proc. Congress, Santiago, Chile, 2014, Book of Abstracts, vol. I.
9. Kretovich, V.L., Biokhimiya rastenii (Biochemistry of Plants), Moscow: Vyssh. Shkola, 1986.
10. Goodwin, T.W. and Mercer, E.I, Introduction to Plant Biochemistry, Oxford: Pergamon, 1983, vol. 2.
11. Ivanova, T.A., Matveeva, T.N., Chanturia, V.A., and Ivanova, E.N., Composition of Multicomponent Heracleum Extracts and its Effect on Flotation of Gold-Bearing Sulfides, Journal of Mining Science, 2011, vol. 51, no. 4, pp. 819–924.
12. Musikhin, I.M. and Sigaev, A.I., Investigation into Physical Properties and Chemical Composition of Sosnovsky Cow-Parship and Fiber Semi-Product Production from It, Sovrem. Naukoemk. Tekhn. Tekhnol. Nauki, 2006, no. 3, pp. 65–67.
13. Matveeva, T.N., Gromova, N.K., and Koporulina, E.V., Analysis of Adsorption of Phytogenous Collecting Agents at the Gold-Containing Surface during Flotation, J. Min. Sci., 2015, vol. 51, no. 3, pp. 601–608.
14. Matveeva, T.N., Gromova, N.K., Ivanova, T.A., and Chanturia, V.A., Physicochemical Effect of Modified Diethyldithiocarbamate in Sulfide Mineral Flotation from Sulfide Ores, Journal of Mining Science, 2013, vol.49, no. 5, pp. 803–810.


IMPROVEMENT OF DISSOCIATION OF REBELLIOUS MINERALS
T. S. Yusupov

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
e-mail: yusupov@igm.nsc.ru

Under analysis is low efficiency of drum mills when dissociating higher strength aggregates of rebellious ore. It is shown that the main reason is insufficient destructive force. The structural–chemical characteristics of mineral aggregates and the role of defects in their dissociation are described. The author evaluates principles of estimating required energy input to dissociate aggregates composed of minerals with different types and values of interatomic and intermolecular bonds under high-power and high-velocity free impacts in disintegrators. By way of example, velocities of collision between minerals and disintegrator tools in dissociation of aggregates of sulfide and rare-metal ores and coal are given.

Ore, fine dissemination, minerals, aggregates, milling, disintegration, collision velocity, mineral interface strength, chemical bond, structural defect

DOI: 10.1134/S1062739116030825 

REFERENCES
1. Chanturia, V.A., Innovative Techniques to Process Rebellious Mineral Materials, Geol. Rudnykh Mest., 2008, vol. 50, no. 6, pp. 558–568.
2. Yusupov, T.S., Baksheeva, I.I., and Rostovtsev, V.I., Analysis of Different-Kind Mechanical Effects on Selectivity of Mineral Dissociation, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1248–1253.
3. Sidenko, P.M., Izmel’chenie v khimicheskoi promyshlennosti (Milling in Chemical Industry), Moscow: Khimiya, 1977.
4. Golosov, S.I., Concept of Fine Grinding and Centrifugal Planetary Mills, Mekhanokhimicheskie yavleniya pri sverkhtonkom izmel’chenii (Mechanical and Chemical Phenomena in Superfine Grinding), Novosibirsk: SO AN SSSR, 1971, pp. 23–40.
5. Yusupov, T.S. and Kondrat’ev, S.A., Technological Restrictions and Negative Factors of Fine Ore Grinding in Drum Mills and Ways to Improve Selectivity of Dissociation, Proc. Conf. Machinery to Process Ore and Non-Metallic Materials. Mineral Processing Techniques, Novosibirsk: Sibprint, 2015, pp. 253–259.
6. Ramdor, P., Rudnye mineraly i ikh srastaniya (Ore Minerals and Mineral Aggregates), Moscow: Inostr. Liter., 1962.
7. Revnivtsev, V.I., Selektivnoe razrushenie mineralov (Selective Mineral Disintegration), Moscow, 1988.
8. Pirogov, B.I., Teoreticheskie osnovy tekhnologicheskoi mineralogii (Theoretical Fundamentals of Process Mineralogy), 1988, pp. 127–134.
9. Khopunov, E.A., Selektivnoe razrushenie mineral’nogo i tekhnogennogo syr’ya (Selective Disintegration of Mineral and Technogenic Materials), Ekaterinburg, 2013.
10. Thissen, P.A., Meyer, Ê., and Heinicke, G., Crundlagen der Tribochemie, Berlin: Verlag, 1966, no. 1.
11. Smol’yakov, A.R., Mineral Intergrowth Boundaries in Ore, GIAB, 2007, no. 11, pp. 346–353.
12. Kitel, Ch., Vvedenie v fiziku tverdogo tela (Introduction to Solid Body Physics), Moscow: Nauka, 1978.
13. Yusupov, T.S., Theory and Practice of Directed Alteration of Structure and Properties of Minerals in Fine Grinding, Thesis of Dr. Tech. Sci., Novosibirsk, 1988.
14. Golik, V.I., Metal Recovery from Mineral Processing, Rejects, Obogashch. Rud, 2010, no. 5, pp. 38–40.
15. Aleksandrova T. N., Gurman, M.A., and Kondrat’ev, S.A., Some Approaches to Gold Extraction from Rebellious Ores on the South of Russia’s Far East, J. Min. Sci., 2011, vol. 47, no. 5, pp. 684–694.
16. Shadrunova, I.V., Ozhogina, E.G., Kolodezhnaya, E.V., and Gorlova O. E., Slag Disintegration Selectivity, J. Min. Sci., 2013, vol. 49, no. 5, pp. 831–839.
17. Yusupov, T.S. and Burdukov, A.P., Metamorphism Influence on Grindability of Coals under Percussion Effect, Khim. Tverd. Tela, 2013, no. 4, pp. 206–208.
18. Burdukov, A.P., Popov, V.I., Yusupov, T.S., Hanjalic, K., and Chernetskii, M.Y., Autothermal Combustion of Mechanically Activated Micronized Coal in A5 MW Pilot-Scale Combustor, Fuel, 2014, vol. 122.


METHOD TO MAKE NESTS OF USEFUL COMPONENTS BY WAY OF ACCUMULATION
A. G. Mikhailov, M. Yu. Kharitonova, I. I. Vashlaev, and M. L. Sviridova

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
ul. Akademgorodok 50, Bld. 24, Krasnoyarsk, 660036 Russia

Experimental evaluation is given for mineral preconcentration in a bed of a sorption collector in percolation of low concentration useful components from aqueous solutions of salts. Sorption collectors represented by interlayers of lignite, peat, marble and vermiculite are included in an evaporation barrier installed in subsurface zone of rock mass aeration. Accumulation properties of such geochemical sorption barriers are examined. Migrating solution was aqueous solutions of salts of cobaltous and nickelous nitrates. It has been found feasible to shape beneficiation zones under up-going capillary permeation of the solutions through the sorption barriers in the zone of aeration in rock mass.

Geochemical sorption barrier, aqueous solution, permeation, concentration, aeration zone

DOI: 10.1134/S1062739116030837 

REFERENCES
1. Mikhailov, A.G., Kharitonova, M.Yu., et al., Mobility of Water-Soluble Nonferrous and Precious Metals in Aged Mineral Processing Waste, J. Min. Sci., 2013, vol. 49, no. 3. pp. 514–520.
2. Perel’man, A.I., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Geografizdat, 1961.
3. Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshaftov: ucheb. (Landscape Geochemistry: Textbook), Moscow: Astreya–2000, 1999.
4. Bochkarev, G.R., Pushkareva, G.I., and Rostovtsev, V.I., Intensification of Ore Concentration and Sorption Extraction of Metals from Technogenic Raw Material, J. Min. Sci., 2007, vol. 43, no. 3. pp. 331–340.
5. Izotov, A.A., Koverdyaev, O.N., and Vershinina, O.O., Ways to Reduce Drainage Water Impact on Environment in Mining Areas, Gorny Zh., 2006, no. 10, pp. 103–106.
6. Kaimin, E.P., Zakharova, E.V., Konstantinova, L.I., Zubkov, A.A., and Danilov, V.V., Silicic Acid Use as Impermeable Membrane in Sand Level, Geoekologia, 2007, no. 2, pp. 137–142.
7. Zhizhaev, A.M., Bragin, V.I., and Mikhailov, A.G., Precipitation of Copper by Natural Calcium Carbonates, Obog. Rud, 2001, no. 5, pp. 13–17.
8. Trubetskoy, K.N., Peshkov, A.A., Matsko, N.A., et el., Perspective Processes for Building up Artificial Mineral Foundations, Proc. Jubilee Meeting of Geology, Geophysics, Geochemistry, and Mining Division of the Russian Academy of Sciences: Development of New Research Directions and Processes for Subsoil Management Moscow: 2000, pp. 59–71.
9. Mikhailov, A.G., Geotechnological Preparation of Placer Mining Waste, Ekologiya i prirodopol’zovanie (Ecology and Natural Resource Management), Dnepropetrovsk: 2013, issue 16, pp. 46–54.


MINING THERMOPHYSICS


INITIATION OF UNDERGROUND FIRE SOURCES
V. N. Oparin, T. A. Kiryaeva, V. Yu. Gavrilov, Yu. Yu. Tanashev, and V. A. Bolotov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 5, Novosibirsk, 630090 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

Porous structure parameters of different rank Kuzbass coal and gas- and mass-exchange processes under coal heating are analyzed. The main part of volatile matter is dissolved in the volume of coal beds. For all coal specimens, it is typical that mass fraction of methane and ethane decreases with temperature while mass fraction of hydrogen, carbonic oxide and ethane increases. The latter gases can be the sources of violent burning of coal beds. UHF pyrolysis of bituminous coal reveals physical balance and composition of gaseous products. The results permit coal rating based on carbonization, enable recommending the use of inert gases in underground fire fighting and allow estimating temperature level in fire source zones in coal beds based on chemical composition of emitted gases.

Coal outburst- and fire-hazard, coal, porosity, temperature, volatile yield, ranks, mass- and gas-exchange processes, chemical composition

DOI: 10.1134/S1062739116030850 

REFERENCES
1. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.
2. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, vol. 49, no. 2, pp. 175–209.
3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
4. Oparin, V.N., Pendulum Waves and “Geomechanical Temperature”, Proc. Second Russian–Chinese Sci. Conf. Nonlinear Geomechanical-Geodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012, pp. 13–19.
5. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
6. Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N., Nonlinear Deformation-Wave Processes in Various Rank Coal Specimens Loaded to Failure under Varied Temperature, J. Min. Sci., 2015, vol. 51, no. 4, pp. 641–658.
7. Khodot, V.V., Yanovskaya, M.F., Premysler, Yu.S., et al., Fizikokhimiya gazodinamicheskikh yavlenii v shakhtakh (Physics and Chemistry of Gas-Dynamic Phenomena in Mines), Moscow, 1973.
8. Dubinin, M.M. and Onusaitis, B.A., Porous Structure Parameters of Rational-Range Commercial Activated Carbon, Uglerodnye adsorbenty i ikh primenenie v promyshlennosti (Carbon Adsorbents and Their Industrial Use), Perm, 1969, pp. 3–25.
9. Bobin, V.A., Sorbtsionnye protsessy v prirodnom ugle i ego struktura (Sorption in Mineral Coals, Coal Structure), Moscow: IPKON AN SSSR, 1987.
10. Ettinger, I.L. and Shul’man, N.V., Raspredelenie metana v porakh iskopaemykh uglei (Methane Distribution in Mineral Coal Pores), Moscow: Nauka, 1975.
11. Vengerov, I.R., Teplofizika shakht i rudnikov. Matematicheskie Modeli (Thermophysics of Mines. Mathematical Models), vol. 1, Donetsk: Nord Press, 2008.
12. Kiryaeva, T.A. and Mel’gunov, M.S., Preliminary Data on State-of-the-Art Investigation into Coal Structure, GIAB, Special issue no. 7, Kuzbass-1, 2009, pp. 155–160.
13. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problem ugol’nykh plastov (Fundamental and Applied Techniques to Solve Coal Bed Problem, Moscow: IAGN, 2000.
14. Iskhakov, Kh.A., Activation of Methane Explosion Components by their Sorption at Surface of Coal Dust, TEK i resursy Kuzbassa (Fuel and Energy Complex and Kuzbass Mineral Resources), 2006, no. 2, pp. 55–57.
15. Kalyakin, S.A., Ideology of Explosive Safety at Coal Mines Hazardous in Gas and Coal Dust, Bezopasn. Tr. Prom., 2010, no. 11, pp. 38–41.
16. Skritskii, V.A., Fedorovich, A.P., and Khramtsov, V.I., Endogennye pozhary v ugol’nykh shakhtakh, priroda ikh vozniknoveniya, sposoby predotvrashcheniya i tusheniya (Endogenetic Fires at Coal Mines, their Nature, Prevention and Extinguishing), Kemerovo: Kuzbassvuzizdat, 2006.
17. http://fas.su/page-511.
18. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., and Shutilov, R.A., On Genetic Relation between Outbursts and Fire Hazard of Kuzbass Coal Beds, Proc. Int. Russia–Kazakhstan Symposium Coal Chemistry and Ecology in Kuzbass, Kemerovo: Inst. Ugl. Khim Khim Mater. SO RAN, 2014.
19. Oparin, V.N. and Kiryaeva, T.A., Genetics of Outbursts and Fire Hazard of Kuzbass Coal Beds, GIAB, 2015, no. 3, pp. 400–413.


TEMPERATURE FIELD ANALYSIS IN SALTY ROCKS AT SHAFT MOUTH UNDER OPERATION OF. A. FREEZING SYSTEM
Yu. A. Khokholov, A. S. Kurilko, and D. E. Solov’ev

Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
pr. Lenina 43, Yakutsk, 677980 Russia

The 3D mathematical model of temperature conditions in salty rock mass at shaft mouth takes into account parameters and modes of freezing unit operation, temperature of ambient air and air in the shaft, as well as nonuniformity and rate of salinity of enclosing rocks. The model allows dynamics of temperature variation in rocks around the shaft and load-bearing capacity of each pole of head frame foundation depending on rock mass temperature and salinity. Different variants of freezing unit operation are considered to select the variants to ensure the required load-bearing capacity of the head frame poles and the diamond shaft lining safety.

Mathematical modeling, permafrost, heat exchange, shaft, salty rocks, freezing unit, load-bearing capacity, pole

DOI: 10.1134/S1062739116030862 

REFERENCES
1. Construction Norm and Regulations 2.02.04–88. Osnovaniya i fundamenty na vechnomerzlykh gruntakh (Bases and Foundations on Permafrost Ground), Moscow: Gosstroi SSSR, 1990.
2. Kramskov, N.P., Stability of Headgears at Vertical Shafts is the Basis of Safe Underground Diamond Mining, Nauka Obrazov., 2004, no. 1, pp. 27–34.
3. Kozeev, A.A., Izakson, V.Yu., and Zvonarev, N.K., Termo- i geomekhanika almaznykh mestorozhdenii (Heat- and Geo-Mechanics of Diamond Deposits), Novosibirsk: Nauka, 1995.
4. Sleptsov, V.I., Mordovskoi, S.D., and Izakson, V.Yu., Matematicheskoe modelirovanie temploobmennykh protsessov v mnogoletnemerzlykh gornykh porodakh (Mathematical Modeling of Heat Exchange Processes in Permafrost), Novosibirsk: Nauka, 1996.
5. Samarsky, A.A., and Moiseenko, B.D., Efficient Shock-Capturing Method for Stephen’s Multi-Dimensional Problem, Zh. Vychislit. Matem. Matem. Fiz., 1965, vol. 5, no. 5, pp. 816–827.
6. Permyakov, P.P. and Ammosov, A.P., Matematicheskoe modelirovanie tekhnogennogo zagryazneniya v kriolitozone (Mathematical Modeling of Industrial Production-Induced Contamination of Permafrost Zone), Novosibirsk: Nauka, 2003.
7. Kurtener, D.A. and Chudnovsky, A.F., Raschet i regulirovanie teplovogo rezhima v otkrytom i zashchishchennom grunte (Calculation and Adjustment of Temperature Field in Open and Sheltered Ground), Leningrad: Gidrometeoizdat, 1969.
8. Shcherban’, A.N., Kremnev, O.A., and Zhuravlenko, V.Ya., Rukovodstvo po regulirovaniyu teplovogo rezhima shakht (Manual on Temperature Field Regulation in Mines), Moscow: Nedra, 1977.
9. Anderson, D. and Morgenstern, N., Physic, Chemistry and Mechanics of Frozen Ground, Permafrost: The 2nd Int. Conf. Proceedings, 1973, pp. 257–288.
10. Maslova, A.D., Osadchaya, G.G., Tumel’, N.V., and Shpolyanskaya, N.A., Osnovy geokriologii: ucheb. posobie (Basic Geocryology: Educational Book), Ukhta: IUIB, 2005.
11. Popov, V.I. and Kurilko, A.S., Solution of Problems of Heat and Mass Transfer under Freezing–Thawing of Rocks, Considering Equation of Phase State of Pore Water, GIAB, Fizika gornykh porod (Rock Physics), Moscow: Gornaya Kniga, 2006, pp. 236–244.
12. Ivata, S., Quantitative Relation between Unfrozen Water in Partly Frozen Ground and Initial Moisture, Proc. 10th Int. Congr. Soils Scientists, vol. 1, Moscow: Nauka, 1974, pp. 56–61.
13. Samarsky, A.A. and Vabishchevich, P.N., Vychislitel’naya teploperedacha (Computational Heat Transfer), Moscow: Editorial URSS, 2003.
14. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1983.
15. Yanenko, N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki (Method of Split-Step Solution of Multi-Dimensional Problems of Mathematical Physics), Novosibirsk: Nauka, 1967.
16. Analiz rezul’tatov termomekhanichsekogo kontrolya gruntov osnovaniya koprov vertikal’nykh stvolov rudnika Udachnyi, podgotovka reglamenta po rezhimu raboty zamorazhivayushchei stantsii na period ego ekspluatatsii: otchet IGDS SO RAN (Analysis of Data of Thermomechanical Control over Soil Foundations of Headgears at Vertical Shafts in Udachny Mine and Regulations on Operating Mode of Freezing Station Within the Mine Service Life: Report by the Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences), Yakutsk, 2012.
17. Construction Regulations 24.13330.2011 Svainye fundamenty (Pile Foundations), Moscow: Min. Reg. Razv., Russian Federation, 2011.


MODELING TEMPERATURE FIELD DYNAMICS IN POST-BLASTING OPEN PIT MINES IN PERMAFROST
M. V. Kaimonov and S. V. Panishev

Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
pr. Lenina 43, Yakutsk, 677980 Russia

The article discusses the case study of temperature behavior prediction in permafrost rock mass before and after blasting at Kangalass lignite deposit. It is illustrated how the blasting period is related with the temperature behavior in the disintegration of broken rocks. The results are the basis to predict dragline productivity in different seasons and to select efficient scheme for blasted rock removal.

Open pit mine, permafrost, adfreezing, rock mass temperature, dragline, mathematical modeling

DOI: 10.1134/S1062739116030874 

REFERENCES
1. Kurilko, A.S. and Kaimonov, M.V., On Secondary Mineral Material Adfreezing at North Operating Mines, GIAB, 2005, Yakutiya Issue no. 3, pp. 290–297.
2. Gal’yanov, A.V., Rozhdestvensky, V.N., and Blinov, A.N., Transformatsiya struktury gornykh massivov pri vzryvnykh rabotakh na kar’erakh (Transformation of Rock Mass Structure under Blasting at Open Pit Mines), Ekaterinburg: IGD UO RAN, 1999.
3. Tikhonov, A.N. and Samarsky, A.A., Uravneniya matematicheskoi fiziki (Mathematical Physics Equations), Moscow: Nauka, 1977.
4. Pavlov, A.V. and Olovin, B.A., Iskusstvennoe ottaivanie merzlykh porod teplom solnechnoi radiatsii pri razrabotke rossypei (Artificial Rock Melting by Solar Radiation Heat in Alluvial Mining), Novosibirsk: Nauka, 1974.
5. Perl’shtein, G.Z., Vodno-teplovaya melioratsiya merzlykh porod na severo-vostoke SSSR (Water-Thermal Melioration of Frozen Rocks in North-Eastern Areas of the USSR), Novosibirsk: Nauka, 1979.
6. Gavril’ev, R.I., Teplofizicheskie svoistva komponentov prirodnoi sredy v kriolitzone (Thermophysical Properties of Nature Components in Permafrost Zone), Novosibirsk: SO RAN, 2004.
7. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1983.
8. Panishev, S.V., Ermakov, S.A., and Kaimonov, M.V., Investigation into Influence of Temperature Regime of Blasted Permafrost Rocks on Dragline Productivity at Kangalass Open Pit Mine, GIAB, 2010, no. 7, pp. 146–150.
9. Panishev, S.V. and Ermakov, S.A., Temperature Effect on Stripping in Permafrost Zone, J. Min. Sci., 2013, vol. 49, no. 2, pp. 279–283.
10. Panishev, S.V., Ermakov, S.A., Kaimonov, M.V., Kozlov, D.S., and Maksimov, M.S., Complex Temperature Monitoring of Permafrost Rocks at Kangalass Open Pit Mine, GIAB, 2013, no. 9, pp. 62–69.


NEW METHODS AND INSTRUMENTS IN MINING


DOWN-THE-HOLE DEVICE FOR MEASURING RECOVERY AND COAL PERMEABILITY
S. V. Serdyukov, T. V. Shilova, and L. A. Rybalkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

A down-the-hole device has been designed for gas dynamics analysis in coal. The device is manufactured based on the layout of a straddle packer with an adjustable interval. The device design is suitable for hydrofracturing and gas dynamics researches using the methods of indicator diagrams and pressure buildup and drawdown curves in package with relaxation of coal and rock mass by means of radially symmetric loading of hole walls in the hydrofracture interval.

Coal bed, hole, gas dynamics analysis, hydrofracturing, down-the-hole device

DOI: 10.1134/S1062739116030886 

REFERENCES
1. Uskov, A.V. and Voitov, M.D., Directional Hole Drilling for Premine Coal Drainage, Vestn. KuzGTU, 2010, no. 3, pp. 33–34.
2. Bol’shinsky, M.I., Lysikov, A.B., and Kaplyukhin, A.A., Gazodinamicheskie yavleniya v shakhtakh (Gas-Dynamic Events in Mines), Sebastopol: Veber, 2003.
3. Serdyukov, S.V., Degtyareva, N.V., Patutin, A.V., and Rybalkin, L.A., Precision Dilatometer with Built-In System of Advance along the Borehole, J. Min. Sci., 2015, vol. 51, no. 4, pp. 860–864.
4. Shkuratnik, V.L. and Nikolenko, P.V., Metody opredeleniya napryazhenno-deformirovannogo sostoyaniya massiva gornykh porod: nauch.-obrazovat. kurs (Methods to Determine Stress State of Rocks: Education and Research Course), Moscow: MGGU, 2012.
5. Martynyuk, P.A., Pavlov, V.A., and Serdyukov, S.V., Assessment of Stress State in Rocks by Deformation Characteristic of Borehole Zone with Hydrofracture, J. Min. Sci., 2011, vol. 47, no. 3, pp. 290–296.
6. Serdyukov, S.V., Patutin, A.V., Shilova, T.V. et al., Metodika kompleksnykh geofizicheskikh skvazhinnykh issledovanii gazonosnykh ugol’nykh plastov: otchet o NIR (Procedure for Integrated Geophysical Borehole Surveys in Gaseous Coal Beds: R&D Report), Novosibirsk: 2013.
7. Fel’dman, E.P., Vasilenko, T.A., and Kalugina, N.A., Physical Kinetics of Coal–Methane System: Mass Transfer, Pre-Outburst Events, J. Min. Sci., 2014, vol. 50, no. 3, pp. 448–464.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå