JMS, Vol. 52, No. 2, 2016
GEOMECHANICS
DETERMINATION OF MECHANICAL PROPERTIES OF GEOMATERIALS BASED ON NANO-INDENTATION TESTS
AND FRACTION ORDER MODELS
M. A. Zhuravkov and N. S. Romanova
Belarusian State University,
pr. Nezavisimosti 4, Minsk, 220030 Belarus,
e-mail: Zhuravkov@bsu.by
The article focuses on efficient analysis and test methods to determine nano- and micro-mechanical properties of rocks and crystals. A modification of the classical elastic problems of contact mechanics implemented using the mathematical apparatus of fractional integro-differentiation is proposed. The authors build new models and algorithms aimed to advance the studies into properties and states of geomaterials based on the atomic-force microscopy techniques, and describe testing of the new approaches in calculation of the elastic modulus for hydrocarbons with nano-additives.
Mechanical properties of rocks and crystals, fractional models, calculation of elastic modulus for hydrocarbons with nano-additives
DOI: 10.1134/S1062739116020333 REFERENCES
1. Viti, C., Collettini, C., and Tesei, T., Pressure Solution Seams in Carbonatic Fault Rocks: Mineralogy, Micro/ Nanostructures and Deformation Mechanism, Contributions to Mineralogy and Petrology, 2014, vol. 167, no. 2, pp. 1–15.
2. Briand, D., Yeatman, E., Roundy, S., Brand, O., Fedder, G.K., et al. (Eds.), Micro Energy Harvesting, John Wiley & Sons, 2015.
3. Bandini, A., Berry, P., Bemporad, E., Sebastiani, M., Chicot, D., et al., Role of Grain Boundaries and Micro-Defects on the Mechanical Response of a Crystalline Rock at Multiscale, International Journal of Rock Mechanics and Mining Sciences, 2014, vol. 71, pp. 429–441.
4. Suslov, A.A. and Chizhik, S.A., Scanning Probing Microscopes (Review), Mater. Tekhnol. Instrument., 1997, vol. 2, no. 3, pp. 78–86.
5. Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., et al., The Nanomechanical Signature of Breast Cancer, Nat. Nano, 2012, vol. 7, pp. 757–765.
6. Luque, T., Melo, E., Garreta, E., Cortiella, J., Nichols, J., et al., Local Micromechanical Properties
of Decellularized Lung Scaffolds Measured with Atomic Force Microscopy, Acta Biomaterialia, 2013, vol. 9, pp. 6852–6859.
7. Dimitriadis, E., Horkay, F., Maresca, J., Kachar, B., and Chadwick, R., Determination of Elastic Moduli
of Thin Layers of Soft Material Using the Atomic Force Microscope, Biophys. J., 2002, vol. 82,
no. 5, pp. 2798–2810.
8. Kataoka, N., Iwaki, K., Hashimoto, K., et al., Measurements of Endothelial Cell-to-Cell and Cell-to-Substrate Gaps and Micromechanical Properties of Endothelial Cells during Monocyte Adhesion, Proc. National Academy of Sciences of the United States of America, 2002, vol. 99, vo. 24, pp. 15638–15643.
9. Aptukov, V.N., Mitin, V.Yu. Moloshtanova, N.E., and Morozov, I.A., Nano-Range Mechanical Characteristics of Carnallite, Spathic Salt and Sylvite, J. Min. Sci., 2013, vol. 49, no. 3, pp. 382–387.
10. Viktorov, S.D., Golovin, Yu.I., Kochanov, A.N., Tyurin, A.I., Shuklinov, A.V., Shuvarin, I.A., and Pirozhkova, T.S., Micro- and Nano-Indentation Approach to Strength and Deformation Characteristics of Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 652–659.
11. Borodich, F.M., Bull, S.J., and Epstein, S.A., Nano-indentation in Studying Mechanical Properties of Heterogeneous Materials, J. Min. Sci., 2015, vol. 51, no. 3, pp. 470–476.
12. Morita, S., Wiesendanger, R., Meyer, E., and Giessib, F.J., Noncontact Atomic Force Microscopy, Springer, Berlin, 2002.
13. Haugstad, G., Atomic Force Microscopy, Understanding Basic Modes and Advanced Applications,
Wiley, 2012.
14. Benoit, M., Cell Adhesion Measured by Force Spectroscopy on Living Cells, Methods Cell Biol., 2002, vol. 68, pp. 91–114.
15. Benoit, M. and Gaub, H.E., Measuring Cell Adhesion Forces with the Atomic Force Microscope at the Molecular Level, Cells Tissues Organs, 2002, vol. 172(3), pp. 174–189.
16. Zhuravkov, M.A., Fundamental’nye resheniya teorii uprugosti i nekotorye ikh primeneniya v geomekhanike, mekhanike gruntov i osnvanii. Kurs lektsii (Basic Solutions of the Elasticity Theory and Applications in Geomechanics and in Mechanics of Soil and Foundations. Course of Lectures), Minsk: BGU, 2008.
17. Zhuravkov, M. and Romanova, N., Review of Methods and Approaches for Mechanical Problem Solutions Based on Fractional Calculus, Mathematics and Mechanics of Solids, 2014, pp. 1–26.
18. Argatov, I.I. and Sabina, F.J., Asymptotic Analysis of the Substrate Effect for an Arbitrary Indenter, The Quarterly Journal of Mechanics and Applied Mathematics, 2010, vol. 66(1), pp. 75–95.
19. Gefen, A., Cellular and Biomolecular Mechanics and Mechanobiology, Series: Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, vol. 4.
20. Argatov, I.I., Depth-Sensing Indentation of a Transversely Elastic Layer: Second-Order Asymptotic Models for Canonical Indenters, Int. Journal of Solids and Structures, 2011, vol. 48, pp. 3444–3452.
21. Popov, G.Ya., Kontsentratsiya uprugikh napryazhenii vozle shtampov, razrezov, tonkikh vklyuchenii i podkreplenii (Concentration of Elastic Stresses at Dies, Cuts, Intercalations and Reinforcement Elements), Moscow, 1982.
22. Galin, L.A., Kontaktnye zadachi teorii uprugosti (Contact Problems of Elasticity Theory), Moscow, 1980.
23. Sneddon, I.N., Fourier Transforms, McGraw-Hill, New York, 1951.
24. Zhuravkov, M.A., Romanova, N.S., and Prokhorov, N.A., Properties of Biomaterials Based on Nano-indentation Technologies. Part I: Modification of Contact Mechanics Models for Nano-indentation Simulation, Mekh. Mashin Mater., 2015, no. 1, pp. 47–58.
25. Zhuravkov, M.A., Romanova, N.S., and Prokhorov, N.A., Properties of Biomaterials Based on Nano-indentation Technologies. Part II: Procedures to Find Contact Point by Force Spectroscopy, Mekh. Mashin Mater., 2015, no. 2, pp. 58–66.
26. Amenadze, Yu.A., Teoriya uprugosti (Elasticity Theory), Moscow: Vyssh. Shk., 1976.
27. Schinagl, R.M., et al., Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage, J. Orthop. Res., 1997, vol. 15, pp. 499–506.
28. Royston, T.J., Mansy, H.A., and Sandler, R.H., Excitation and Propagation of Surface Waves
on a Viscoelastic Half-Space with Application to Medical Diagnosis, J. Acoust. Soc. Am., 1999,
vol. 106, pp. 3678–3686.
29. Royston, T.J., Yazicioglu, Y., and Loth, F., Surface Response of a Viscoelastic Medium
to Subsurface Acoustic Sources with Application to Medical Diagnosis, J. Acoust. Soc. Am., 2003,
vol. 113, pp. 1109–1121.
30. Craiem, D., Rojo, F., Atienza, J., Armentano, R., and Guienea, G., Fractional-Order Viscoelasticity Applied to Describe Uniaxial Stress Relaxation of Human Arteries, Physics in Medicine and Biology, 2008, vol. 53, pp. 4543–4554.
31. Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Fractional Derivatives, and Some Applications), Minsk: Nauka
Tekhnika, 1987.
32. Zhuravkov, M.A. and Starovoitov, E.I., Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti (Continuum Mechanics. Elasticity and Plasticity Theory), Minsk: BGU, 2011.
33. Szoszkiewicz, R. and Riedo, E., New AFM Developments to Study Elasticity and Adhesion at the Nanoscale, Applied Scanning Probe Methods V, Springer Berlin Heidelberg, 2007.
34. Zhuravkov, M.A., Matematicheskoe modelirovanie deformatsionnykh protsessov v tverdykh deformiruemykh sredakh (na primere zadach mekhaniki gornykh porod i massivov) (Mathematical Modeling of Deformation Processes in Deformable Solid Media: In Terms of Rock Mechanics Problems), Minsk: BGU, 2002.
35. Alonso, J.L. and Goldmann, J.L., Feeling the Forces: Atomic Force Microscopy in Cell Biology, Life Science, 2003, vol. 72(23), pp. 2553–2560.
36. Stifter, T., Marti, O., and Bhushan, B., Theoretical Investigation of the Distance Dependence of Capillary and van der Waals Forces in Scanning Force Microscopy, Phys. Rev. B, 2000, vol. 62, pp. 13667–13673.
37. Jang, J., Schatz, G.C., and Ratner, M.A., Capillary Force in Atomic Force Microscopy, Journal of Chemical Physics, 2004, vol. 120, no. 3, pp. 1157–1160.
38. De Lazzer, Dreyer, M., and Rath, H. J. A., Particle-Surface Capillary Forces, Langmuir, 1999, vol. 15,
no. 13, pp. 4551–4559.
39. Sedin, D.L. and Rowlen, K.L., Adhesion Forces Measured by Atomic Force Microscopy in Humid Air, Analytical Chemistry, 2000, vol. 72, vo. 10, pp. 2183–2189.
40. Rabinovich, Y.I., et al., Capillary Forces between Surfaces with Nanoscale Roughness, Advances in Colloid and Interface Science, 2002, vol. 96, no. 1, pp. 213–230.
41. Heim, L.O., Kappl, M., and Butt, H.J., Tilt of Atomic Force Microscope Cantilevers: Effect on Spring Constant and Adhesion Measurements, Langmuir, 2004, vol. 20, no. 7, pp. 2760–2764.
42. Takeyasu, K., Atomic Force Microscopy in Nanobiology, Pan Stanford Publishing, 2014.
43. Butt, H., Cappella, B., and Kappl, M., Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications, Surface Science Reports, 2005, vol. 59(1–6), pp. 1–152.
44. Zhuravkov, M., Drozd, L., Romanova, N., and Krupoderov, A., Mechanical–Mathematical Modeling of Biological Tissue Behavior, Analytic Methods in Interdisciplinary Applications, Springer Proceedings in Mathematics & Statistics, 2015, vol. 116, pp. 153–181.
45. Buzio, R. and Valbusa, U., Probing the Role of Nanoroughness in Contact Mechanics by Atomic Force Microscopy, Advances in Science and Technology, 2006, vol. 51, pp. 90–98.
46. Tranchida, D. and Piccarolo, S., Local Mechanical Properties by Atomic Force Microscopy Nano-indentations, Applied Scanning, Probe Methods XI, Springer Berlin Heidelberg, 2009.
47. Barash, Yu., Sily Van-der-Vaal’sa (van der Waals Forces), Moscow: Nauka, 1988.
48. Crick, S.L. and Yin, F. C. P., Assessing Micromechanical Properties of Cells with Atomic Force Microscopy: Importance of the Contact Point, Biomechan. Model Mechanobiol., 2007,
vol. 6, pp. 199–210.
49. Pharr, G.M., Oliver, W.C., and Brotzen, F.R., On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic Modulus during Indentation, Journal of Materials Research, 1992, vol. 7, no. 3, pp. 613–617.
50. Merchan, L., Szoszkiewicz, R., and Riedo, E., Nano-Mechanics: Elasticity in Nano-Objects, Fundamentals of Friction and Wear, Springer Berlin Heidelberg, pp. 219–245.
51. Fung, Y.C., Biomechanics: Material Properties of Living Tissues, Springer, 1993.
52. Sneddon, I.N., The Relation between Load and Penetration in the Axis Symmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Engng. Sci., 1965, vol. 3.
EFFECT OF GAS CONTENT AND ACTUAL STRESSES ON COALBED PERMEABILITY
V. N. Zakharov, O. N. Malinnikova, V. A. Trofimov, and Yu. A. Filippov
Institute of Integrated Mineral Development, Russian Academy of Science,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: olga_malinnikova@mail.ru
The analytical review covers the key factors that influence permeability of a coalbed under mining-induced alteration of stress state. The authors put forward an analytical relation between coal permeability, stresses and adsorbed gas to define parameters of gas leakage zone parameters and laws of mass transfer. The analytically derived relation is compared with the known model of coal structure and with the experimental results. The proposed model of coalbed permeability allows mechanism of leakage and localization of seepage zones in coal provided that the model parameters are properly selected or found experimentally.
Coal–rock mass, permeability, methane, seepage, stress
DOI: 10.1134/S1062739116020345 REFERENCES
1. Feit, G.N., Malinnikova, O.N., Zykov, V.S., and Rudakov, V.A., Prediction of Rockburst
and Sudden Outburst Hazard on the Basis of Estimate of Rock-Mass Energy, J. Min. Sci., 2002, vol. 38, no. 1, pp. 61–63.
2. Khristianovich, S.A., Fundamentals of Seepage Theory, J. Min, Sci., 1985, vol. 25, no. 5, pp. 397–412.
3. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., et al., Interaction of Geomechanical and Geochemical processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
4. Fiziko-khimiya gazodinamicheskikh yavlenii v shakhtakh (Physical Chemistry of Gas-Dynamic Events in Mines), Moscow: Nauka, 1972.
5. Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., Teoriya nestatsionarnoi fil’tratsii zhidkosti i gaza (Theory of Unsteady State Seepage of Fluid and Gas), Moscow: Nedra, 1972.
6. Kuznetsov, S.V. and Krigman, R.N., Prirodnaya pronitsaemost’ ugol’nykh plastov i metody ee opredeleniya (Natural Coalbed Permeability and Estimation Techniques), Moscow: Nauka, 1978.
7. Basniev, K.S., Dmitriev, N.M., Kanevskaya, R.D., and Maksimov, V.M., Podzemnaya gidromekhanika (Underground Hydromechanics), Moscow–Izhevsk: Int. Komp’yut. Issled., 2005.
8. Gritsenko, A.I., Aliev, Z.S., Ermilov, O.M., et al., Rukovodstvo po issledovaniyu skvazhin (Borehole Surveying Manual), Moscow: Nauka, 1995.
9. Romm, E.S., Strukturnye modeli porovogo prostranstva gornykh porod (Structural Models of Rock Pore Space), Leningrad: Nedra, 1985.
10. Kuznetsov, S.V., A Porous Soil Model (Geometry and Seepage Coefficient), Prikl. Mekh. Tekh. Fiz., 1961, no. 1.
11. Connell, L.D., Lu, M., and Pan, Z., An Analytical Coal Permeability Model for Tri-Axial Strain and Stress Conditions, Int. J. Coal Geol., 2010, no. 84, pp. 103–114.
12. Cui, X., Bustin, R.M., and Chikatamarla, L. Adsorption-Induced Coal Swelling and Stress: Implications for Methane Production and Acid Gas Sequestration into Coal Seams, J. Geophys. Res., 2007, no. 112.
13. Palmer, I. and Mansoori, J., How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model Evaluation, 1998, pp. 539–544.
14. Pan, Z. and Connell, L.D., Modeling of Anisotropic Coal Swelling and Its Impact
on Permeability Behavior for Primary and Enhanced Coalbed Methane Recovery, Int. J. Coal Geol., 2011, no. 85, pp. 257–267.
15. Pan, Z., Connell, L.D., and Camilleri, M., Laboratory Characterization of Coal Reservoir Permeability for Primary and Enhanced Coalbed Methane Recovery, Int. J. Coal Geol., 2010, no. 82, pp. 252–261.
16. Scott, M., Mazumder, S., and Jiang, J., Permeability Increase in Bowen Basin Coal as a Result of Matrix Shrinkage during Primary Depletion, SPE International SPE 158152, 2012, vol. 1, pp. 323–343.
17. Seidle, J., Jeansonne, M., and Erickson, D., Application of Matchstick Geometry to Stress Dependent Permeability in Coals, SPE Rocky Mountain Regional Meeting, Society of Petroleum Engineers, 1992.
18. Somerton, W.H., Soylemezolu, I.M., and Dudley, R.C., Effect of Stress on Permeability of Coal, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1975, no. 12, pp. 129–145.
19. Nazarov, L.A. and Nazarova, L.A., Some Geomechanical Aspects of Gas Recovery from Coal Seams, J. Min. Sci., 1999, vol. 35, no. 2, pp. 135–145.
20. Pan, Z., and Connell, L.D., Modeling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data, Int. J. Coal Geol., 2012, 92, pp. 1–44.
21. Nazarova, L.A., Nazarov, L.A., Karchesvky, A.L., and Vandamme, M., Determining Kinetic Parameters of a Block Coal Bed Gas by Solving Inverse Problem Based on Data of Borehole Gas Measurements, J. Min. Sci., 2015, vol. 51, no. 4, pp. 666–672.
22. Feit, G.I. and Malinnikova, O.N., Geological-and-Physical Criteria of Coalbed Gas Drainage Efficiency for Commercial Methane Recovery, GIAB, 2001, no. 5.
23. Feit, G.I., Malinnikova, O.N., Gur’yanov, V.V., and Matvienko, G.N., Method to Estimate Methane Producibiity of Coalbeds by a Set of Geological-and-Physical Indexes, GIAB, 2002, no. 6.
24. Pinkun Guo and Yuanping Cheng, Permeability Prediction in Deep Coal Seam: A Case Study on No. 3 Coal Seam of the Southern Qinshui Basin in China, The Scientific World Journal, 2013, vol. 2013.
25. Trofimov, V.A., Coalbed Gas Pressure Determination, GIAB, 2012, Special Issue 1.
26. Kuznetsov, S.V. and Trofimov, V.A., Analysis of Gas Pressure Measurements in Coal Seams in Connection with the Manifestation of Permeability around Holes and Mine Workings, J. Min. Sci., 1998, vol. 34, no. 2, pp. 113–118.
27. Vasyuchkova, G.K. and Feit, G.N., Gas Permeability of Highly Tectonically Damaged Outburst-Hazardous Coal, Nauch. Soobshch. IGD Skochinskogo, 1982, issue 209.
28. Khodot, V.V., Effect of Elastic Properties on Gas Adsorption and Seepage in Coal, Rudnichnaya aerologiya i bezopasnost’ truda v shakhtakh (Mine Aerology and Safet)y), Moscow, 1949.
29. Nozhkin, N.V., Zablagovremennaya degazatsiya ugol’nykh mestorozhdenii (Preliminary Degassing of Coal Deposits), Moscow: Nedra, 1979.
30. Shcherbanh’, A.N. and Tsyrul’nikov, A.S., Gazopronitsaemost’ ugol’nykh plastov (Coalbed Gas Permeability), Kiev: AN USSR, 1958.
METHODS OF IN SITU STRENGTH TESTING OF ROCKS AND JOINTS
F. K. Nizametdinov, A. A. Nagibin, V. V. Levashov, R. F. Nizametdinov,
N. F. Nizametdinov, and A. E. Kasymzhanova
Karaganda State Technical University,
Blv. Mira 56, Karaganda, 100000 Kazakhstan,
e-mail: mdig_kstu@mail.ru
The article offers in situ test methods for cohesion and internal friction angle in rocks and at joints. Technologies and instrumentation for shearing of rock wedges in an open pit mine and for laser scanning and digital imaging of local falls and breaks of inaccessible rock blocks in pitwalls have been developed and approved for constructing a limit equilibrium equation and for calculation of strength properties of rocks and joints. Rock wedges for the tests are prepared using various design drill rigs, the rock wedges are sheared using a 40-t jack placed in a special metal housing with an electric hydraulic pump. Exploration of inaccessible local falls in pitwalls uses electronic tachometers and 3D mine scanner. The tests and approval of the described exploration techniques have been carried out in open pits in Kazakhstan and Kirgizia.
In situ testing, cohesion, rocks and joints, internal friction angle, rock wedge, fall, hydraulic jack, shear, limit equilibrium equation
DOI: 10.1134/S1062739116020357 REFERENCES
1. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Slope Stability of Open Pits and Dumps),
Moscow, 1965.
2. Popov, I.I., Nizametdinov, F.K., Okatov, R.P., and Dolgonosov, V.N., Prirodnye i tekhnogennye osnovy upravleniya ustoichivost’yu ustupov i bortov kar’erov (Natural and Technological Principles of Slope Stability Control in Open Pit Mines), Almaty: Gylym, 1997.
3. Wittke, W., Rock Mechanics, Springer–Verlag, Berlin, 1984.
4. Bieniawski, Z., Engineering Classification of Joined Rock Masses, Trans. South Africa Inst. Civ. Eng., 1973, vol. 15, pp. 335–344.
5. Nizametdinov, F.K., Ozhigin, S.G., Dolgonosov, V.N., et al., Upravlenie ustoichivost’yu tekhnogennykh gornykh sooruzhenii (Stability Control of Man-Made Mine Structures), Karaganda: Kaz.-Ross.
Univ., 2014.
6. Babello, V.A., In Situ Study of Rock Mass Strength in Urtui Open Pit Brown Coal Mine, GIAB, 2004,
no. 10, pp. 203–206.
7. Babello, V.A., Krivorotov, A.P., and Fedoseeva, L.V., Results of Determining Strength Characteristics of Rocks by Wedge Failure Method, Izv. Vuzov, Stroit., 2006, no. 1, pp. 98–103.
8. Il’nitskaya, E.N., Teder, R.N., Vatolin, E.S., et al., Svoistva gornykh porod i metody ikh opredeleniya (Properties of Rocks and Determination Methods), Moscow, 1969.
9. Bondarik, G.K., Komarov, I.S., and Ferronsky, V.N., Polevye metody inzhenerno-geologicheskikh issledovanii (Field Measurements), Moscow, 1967.
10. Lomtadze, V.D., Metody laboratornykh issledovanii fiziko-mekhanicheskikh svoistv gornykh porod (Laboratory Testing of Physico-Mechanical Properties of Rocks), Leningrad, 1972.
11. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Experimental and Analytical Method for Assessing Stability of Slopes, J. Min. Sci., 2012, vol. 48, no. 4, pp. 609–615.
12. Nazarov, L.A., Nazarova, L.A., Usol’tseva, O.M., and Kuchai, O.A., Estimation of State and Properties of Various-Scale Geomechanical Objects Using Solutions of Inverse Problems, J. Min. Sci., 2014, vol. 50,
no. 5, pp. 831–840.
13. Popov, I.I., Shpakov, P.S., and Poklad, G.G., Ustoichivost’ porodnykh otvalov (Stability of Overburden Dumps), Alma-Ata, 1987.
14. Popov, I.I., Shpakov, P.S., and Yunakov, Yu.L., Upravlenie ustoichivost’yu kar’ernykh otkosov (Slope Stability Control in Open Pit Mines), Moscow: Gornaya Kniga, 2008.
15. Bagdasar’yan, A.G., Lukishov, B.G., Rodionov, V.N., and Fedyanin, A.S., Detection of Features of
a Rupture Structure in Walls of an Open Pit in Terms of the Muruntau Open Pit, J. Min. Sci., 2008, vol. 44, no. 1, pp. 73–81.
16. Kartashov, Yu. M., Matveev, B.V., and Mikheev, G.V., Prochnost’ i deformiruemost’ gornykh porod (Rock Strength and Deformability), Moscow, 1979.
LAWS OF SPREADING AND OPERATIONAL EVALUATION PROCEDURE FOR INDUCED SEISMICITY IN MINES AND IN MINING AREAS
D. V. Yakovlev, S. V. Tsirel, and S. N. Mulev
Rock Mechanics and Surveying Research Institute—VNIMI,
21-ya liniya 6, Lit. A, Saint-Petersburg, 199106 Russia
e-mail: vnimioao@yandex.ru
The scope of the article encompasses features of natural and induced seismicity and the change in frequency plots when natural seismicity turns into natural-and-induced seismicity in mining areas and when induced seismicity becomes natural-and-induced seismicity in mines. It is shown how induced seismicity is connected with the subsidence of overlying strata in mines—seismic process propagates together with the subsidence but seismic activity lowers in the time of maximum subsidence and intensifies when subsidence ceases or decelerates. The authors lay emphasis on estimates of seismic activity in mines and give details of an integrated index F procedure tested in mines and adjusted within the 10 year-long period of application.
Seismic event, earthquake, mining operations, frequency plot, subsidence, seismological network, geodynamic monitoring, hazard estimate, forecast
DOI: 10.1134/S1062739116020369 REFERENCES
1. Khallurin, V.I., Rauåtian, Ò.Î., and Richards, P.O., The Seismic Signal Strength of Chemical Explosions, Bulletin of the Seismological Society of America, 1998, vol. 88, no. 6, pp. 1511–1524.
2. Adushkin, V.V., Induced Seismicity: Sources, Causes and Classification, Gornaya geomekhanika i marksheideriya III tysyacheletiya (Rock Mechanics and Surveying in the 3rd Millennium), Saint-Petersburg: VNIMI, 2004.
3. Adushkn, V.V. and Turuntaev, S.B., Tekhnogennye protsessy v zemnoi kore (opasnosti katastrofy) (Induced Processes in the Earth Crust: Disaster Hazards), Moscow: INEK, 2005.
4. Nikolaev, A.V., Issues of Induced Seismicity, Navedennaya seismichnost’ (Induced Seismicity), Moscow: Nauka, 1994.
5. Rastorgi, B.K and Gupta, H.K., Dams and Earthquakes, Elsevier Science, 1975.
6. Simpson, D.W. and Leith, W., The 1976 and 1984 Gazli, USSR, Earthquakes: Were They Induced? Bulletin of the Seismological Society of America, 1984, vol. 75, no. 5, pp. 1465–1468.
7. Wetmiller, R.J., Plouffe, M., Cajka, M.G., and Hasegawa, H.S., Investigation of Natural and Mining-Related Seismic Activity in Northern Ontario, Rockbursts and Seismicity in Mines, Rotterdam: Brookfield, 1990, pp. P. 249–254.
8. Williams, T.J. and Cuvelier, D.J., Report on a Field Trial of an Underhand Longwall Mining
Method to Alleviate Rockburst Hazards, Rockbursts and Seismicity in Mines, Rotterdam: Brookfield, 1990, pp. 349–353.
9. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics of the Upper Lithosphere: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
10. Yakovlev, D.V., Lazarevich, T.I., and Tsirel’, S.V., Natural and Induced Seismic Activity in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 6, pp. 862–872.
11. Wettainen, T. and Martinsson, J., Estimation of Future Ground Vibration Levels in Malmberget Town due to Mining-Induced Seismic Activity, Journal of the Southern African Institute of Mining and Metallurgy, 2014, vol. 114, no. 10, pp. 835–843.
12. Vallejos, J.A. and McKinnon, S.D., Correlations between Mining and Seismicity for Re-Entry Protocol Development, International Journal of Rock Mechanics and Mining Sciences, 2011, vol. 48, pp. 616– 625.
13. Snelling, P., Godin, L., and McKinnon S., The Role of Geologic Structure and Stress in Triggering Remote Seismicity in Creighton Mine, Sudbury, Canada, International Journal of Rock Mechanics and Mining Sciences, 2013, vol. 58, pp. 166–179.
14. Emanov, A.F., Emanov, A.A., Leskova, E.V., Fateev, A.V., Semin, A.Yu., Demidova, A.A., and Yankaitis, V.V., Temporal Network Observations. Induced Seismicity in Kuzbass, Zemletryaseniya Rossii v 2007 godu (Earthquakes in Russia in 2007), Obninsk: GS RAN, 2009.
15. Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Seismicity Activation under Coal Mining in Kuzbass, Fiz. Mezomekh., 2009, no. 12, pp. 37–43.
16. Butra, J. and Kudeiko, J., Rockburst Hazard Evaluation and Prevention Methods in Polish Copper Mines, Cuprum, 2011, vol. 61, no. 4, pp 5–20.
17. Hudyma, M. and Potvin, Y., An Engineering Approach to Seismic Risk Management in Hardrock Mines, Journal Rock Mechanics and Rock Engineering, 2010, vol. 43, pp. 891–906.
18. Suorineni, F.T., Hebblewhite, B., and Saydam, S., Geomechanics Challenges of Contemporary Deep Mining: A Suggested Model for Increasing Future Mining Safety and Productivity, Journal of the Southern African Institute of Mining and Metallurgy, 2014, vol. 114, no. 12, pp. 1023–1032.
19. Adushkin, V.V. and Malovichko, A.A. (Eds.), Vzryvy i zemletryaseniya na territorii Evropeiskoi chasti Rossii (Explosions and Earthquakes in the European Territory of Russia), Moscow: GEOS, 2013.
20. Tryapitsyn, V.M. and Shabarov, A.N., Sovremennaya geodinamika i tektonika Khibin (Modern Geodynamics and Tectonics in Khibiny), Kostroma: Avantitul, 2007.
21. Aref’ev, S.S., Epitsentral’nye seismologicheskie issledovaniya (Epicentral Seismological Research), Moscow: Akademkniga, 2003.
22. Kurlenya, M.V., Oparin, V.N., Vostrikov, V.I., Arshavskii, V.V., and Mamadaliev, N., Pendulum Waves. Part III: Data of On-Site Observations, J. Min. Sci., vol. 32, no. 5, pp. 341–361.
23. Aleksandrova, N.I. and Sher, E.N., Modeling of Wave Propagation in Block Media, J. Min. Sci., 2004,
vol. 40, no. 6, pp. 579–587.
24. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Kharlampenkov, I.E., Fractal Analysis of Geodynamic Event Migration Paths in the Kuzbass Area, J. Min. Sci., 2012, vol. 48, no. 3, pp. 474–479.
25. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to Pendulum Waves in Stressed Geomedia. Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
26. Shabarov, A.N., Dupak, Yu.N., Tsirel’, S.V., et al., Applications of Underground Geodynamics, Gornaya geomekhanika i marksheideriya III tysyacheletiya (Rock Mechanics and Surveying in the 3rd Millennium), Saint-Petersburg: VNIMI, 2004.
27. Kuz’min, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Modern Geodynamics and Geodynamic Risk Evaluation in Subsoil Use), Moscow: AEN, 1999.
28. Kas’yanova, N.A. and Kuz’min, Yu.O., Sovremennaya anomal’naya geodinamika nedr i ee vliyanie na ob’ekty neftegazovogo kompleksa (nauchnye osnovy, prakticheskie prilozheniya i metody ucheta anomal’nykh geodinamicheskikh yavlenii ) (Modern Abnormal Underground Geodynamics and Its Effects on Oil and Gas Industry: Science, Applications and Methods to Account for Abnormal Geodynamic Events), Moscow: Geoinformmark, 1996.
29. Petukhov, I.M. and Linkov, A.M., Mekhanika gornykh udarov i vybrosov (Mechanics of Rockbursts and Outbursts), Moscow: Nedra, 1983.
30. Construction Regulations SP 14.13330.2014, Stroitel’stvo v seismicheskikh raionakh (Construction in Seismically Active Regions), Moscow, 2015.
31. Geller, R.J., Jackson, D.D., Kagan, Y.Y., and Mulargia, F., Earthquakes Cannot be Predicted, Science, 1997, vol. 275, no. 5306, pp. 1616–1617.
32. Matthews, R.A., Decision-Theoretic Limits on Earthquake Prediction, Geophysical Journal International, 1997, vol. 131, no. 3, pp. 526–529.
33. Petukhov, I.M. and Batugina, I.M. (Eds.), Geodinamicheskoe raionirovanie nedr: metodicheskie ukazaniya (Underground Geodynamic Zoning: Guidelines), Leningrad: VNIMI, 1990.
34. Polozhenie po bezopasnomy vedeniyu gornykh rabot na mestorozhdeniyakh, sklonnykh i opasnykh po gornym udaram (Regulations on Safety of Rockburst-Hazardous Mining), Moscow: Rostekhnadzor, 2014.
35. RD 06–329–99. Instruktsiya po bezopasnomy vedeniyu gornykh rabot na rudnykh i nerudnykh mestorozhdeniyakh, ob’ektakh stroitel’stva podzemnykh sooruzhenii, sklonnykh i opasnykh po gornym udaram (Regulations on Safety of Metal and Nonmetal Mining and Underground Construction under Rockburst Hazard), Moscow: Rosgortekhnadzor, 2003.
36. RD 05–328–99. Instruktsiya po bezopasnomy vedeniyu gornykh rabot na shakhtakh, razrabatyvayushchikh ugol’nye plasty, sklonnye k gornym udaram (Regulations on Safety of Rockburst-Hazardous Coal Mining), Moscow: Rosgortekhnadzor, 2000.
37. Lomakin, V.S., Mulev, S.N., Skakun, A.P., Tsirel’, S.V., Belyaeva, L.I., Lopatkov, D.G., and
Kaplunenko, A.K., Metodika prognoza udaroopasnogo sostoyaniya massiva (Rockburst Hazard Prediction Procedure), Saint-Petersburg: VNIMI, 2007.
38. Benioff, H., Earthquakes and Rock Creep, Bulletin of the Seismological Society of America, 1951, vol. 41, no. 1, pp. 31–62.
39. Petukhov, I.M., Smirnov, V.A., Vinokur, V.Sh., and Dal’nov, A.S., Geofizicheskie issledovaniya gornykh udarov (Geophysical Research of Rockbursts), Moscow: Nedra, 1975.
ROCK FAILURE
NUMERICAL SOLUTION OF PLANE HYDROFRACTURE PROBLEM
IN MODIFIED FORMULATION UNDER ARBITRARY INITIAL CONDITIONS
A. M. Linkov
Institute for Problems of Mechanical Engineering, Russian Academy of Sciences,
Bol’shoy Pr. V.O. 61, Saint Petersburg, 199178 Russia,
e-mail: voknilal@hotmail.com
Saint Petersburg State Politechnic University,
ul. Politechnicheskaya 29, Saint Peterburg, 195251 Russia
The solution to a hydraulic fracture problem for the model of Khristianovich–Geertsma–de Klerk is obtained on the basis of the modified formulation of the problem, which, in contrast with the conventional approach, employs the particle velocity rather than the flux. This served to complement the system of ordinary differential equations, resulting after spatial discretization, with the speed equation. The complete system is solved by the Runge–Kutta method for arbitrary initial conditions. The decaying influence of the initial conditions on key characteristics of a fracture (opening and length) at the end of a treatment, is established and numerically analyzed.
Hydraulic fracture, speed equation, asymptotic umbrella, initial conditions, non-Newtonian fluid, opening, fracture length
DOI: 10.1134/S1062739116020394 REFERENCES
1. Wrobel, M. and Mishuris, G., Hydraulic Fracture Revisited: Particle Velocity Based Simulation, Int. J. Engineering Sci., 2015, vol. 94, pp. 23–58.
2. Nordgren, R.P., Propagation of a Vertical Hydraulic Fracture, Soc. Pet. Eng. J.,
August 1972, pp. 307–314.
3. Spence, D.A. and Sharp, P.W., Self-Similar Solutions for Elastohydrodynamic Cavity Flow, Proc. Roy Soc., London, Ser. A, 1985, vol. 400, pp. 289–313.
4. Alekseenko, O.P. and Vaisman, A.M., Certain Aspects of a Two-Dimensional Problem on the Hydraulic Fracturing of an Elastic Medium, J. Min. Sci., 1999, vol. 35, no. 3, pp. 269–275.
5. Adachi, J. and Detournay, E., Self-Similar Solution of Plane-Strain Fracture Driven by a Power-Law Fluid, Int. J. Numer. Anal. Meth. Geomech., 2002, vol. 26, pp. 579–604.
6. Adachi, J., Siebrits, E., et al., Computer Simulation of Hydraulic Fractures, Int. J. Rock Mech. Mining Sci., 2007, vol. 44, pp. 739–757.
7. Detournay, E. and Peirce, A., On the Moving Boundary Conditions for a Hydraulic Fracture, Int. J. Engineering Sci., 2014, vol. 84, pp. 147–155.
8. Linkov, A.M., Speed Equation and Applications to Solving Ill-Posed Problems on Hydrofracturing, Dokl. AN, 2011, vol. 439, no. 4, pp. 473–475.
9. Kemp, L.F., Study of Nordgren’s Equation of Hydraulic Fracturing, SPE Production Engineering, 1990, vol. 5, pp. 311–314.
10. Linkov, A.M., On Efficient Simulation of Hydraulic Fracturing in Terms of Particle Velocity, Int. J. Engineering Sci., 2012, vol. 52, pp. 77–88.
11. Mishuris, G., Wrobel, M., and Linkov, A., On Modeling Hydraulic Fracture in Proper Variables: Stiffness, Accuracy, Sensitivity, Int. J. Engineering Sci., 2012, Vol. 61, pp. 10–23.
12. Linkov, A.M., Analytical Solution of Hydraulic Fracture Problem for Non-Newtonian Fluid, J. Min, Sci., 2013, vol. 49, no. 1, pp. 8–18.
13. Zheltov, Yu.P. and Khristianovich, S.A., Hydraulic Fracturing of an Oil Reservoir, Dokl. AN SSSR. OTN, 1955, no. 5, pp. 3–41.
14. Khristianovich, S.A. and Zheltov, V.P., Formation of Vertical Fractures by Means of Highly Viscous Liquid, Proc. 4th World Petroleum Congress, Rome, 1955, pp. 579–586.
15. Geertsma, J., de Klerk, F., A rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures, J. Pet. Tech., December, 1969, pp. 1571–1581.
16. Perkins, T.K. and Kern, L.F., Widths of Hydraulic Fractures, J. Pet. Tech., Sept., 1961, pp. 937–949.
17. Linkov, A.M., The Particle Velocity, Speed Equation and Universal Asymptotics for the Efficient Modeling of Hydraulic Fractures, Prikl, Matem. Mekhan., 2015, vol. 79, no. 1, pp. 74–89.
18. Sethian, J.A., Level Set Methods and Fast Marching Methods, Cambridge: Cambridge Univ. Press, 1999.
19. Peirce, A. and Detournay, E., An Implicit Level Set Method for Modeling Hydraulically Driven Fractures, Comput. Methods Appl. Mech. Engng., 2008, vol. 197, pp. 2858–2885.
20. Kachanov, L.M., Osnovy mekhaniki razrusheniya (Basic Failure Mechanics), Moscow: Nauka, 1974.
21. Muskhelishvili, N.I., Singulyarnye integral’nye uravneniya (Singular Integral Equations), Moscow: Nauka, 1962.
22. Samarsky, A.A. and Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.
EFFECT OF LOADING RATE ON FRACTURE TOUGHNESS
WITHIN THE KINETIC CONCEPT OF THERMAL FLUCTUATION MECHANISM OF ROCK FAILURE
V. P. Efimov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ensher@sibmail.ru
Based on the strength and crack resistance tests of dolerite and gabbro–diorite samples subjected to bending as a function of loading rate, it is shown that the kinetic constants of strength in Zhurkov model have the same values in the localized and non-localized failure modes. The tests on destruction of an organic glass sample with an edge crack yield the similar results.
Strength, endurance, crack resistance, loading rate, bending, initial energy of failure actuation
DOI: 10.1134/S1062739116020406 REFERENCES
1. Regel’, V.R., Slutsker, A.I., and Tomashevskii, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of Strength of Solids), Moscow: Nauka, 1974.
2. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Fracture Mechanics), Moscow:
Nauka, 1974.
3. Parton, V.Z. and Morozov, E.M., Mekhanika uprugoplasticheskogo razrusheniya (Elastoplastic Failure Mechanics), Moscow: Nauka, 1975.
4. Zhurkov, S.N., Kinetic Concept of Strength of Solids, Vestn. AN SSSR, 1968, no. 3, pp. 46–52.
5. Cherepanov, G.P., On Crack Propagation in Solid, Int. J. Solids & Structures, 1969, vol. 5, pp. 863–871.
6. Efimov, V.P. and Sher, E.N., Determination of Dynamic Fracture Toughness of Organic Glass, Prikl. Mekh. Tekh. Fiz., 2001, vol. 42, no. 5, pp. 217–225.
7. Teokaris, P.S., Local Flow at a Crack Tip in Plexiglass, Prikl. Mekh., 1970, no. 2, pp. 159–165.
8. Efimov, V.P., Dynamic Calibration of Crack-Resistance Measurements of Brittle Materials by the Cleavage Method, J. Min. Sci., 1990, vol. 26, no. 4, pp. 371–375.
9. Efimov, V.P., Investigation into the Long-Term Strength of Rocks under Loading with a Constant Rate, J. Min. Sci., 2007, vol. 43, no. 6, pp. 600–606.
10. Srawley, J.E., Plain Strain Crack Toughness, Razrushenie (Failure), vol. 4, Moscow:
Mashinostroenie, 1977.
11. Ouchterlony, F., Fracture Toughness of Rock, Svedefo Report DS, Stockholm, Sweden, 1982.
TRANSFORMATION OF ACOUSTIC PULSES INTO ELECTROMAGNETIC RESPONSE IN STRATIFIED AND DAMAGED STRUCTURES
A. A. Bespal’ko, Yu. N. Isaev, and L. V. Yavorovich
National Research Tomsk Polytechnic University
pr. Lenina 30, Tomsk, 634050 Russia
e-mail: lusi@tpu.ru
The article gives the results of simulated propagation of electromagnetic signals in stratified and damaged dielectric solid model structures exposed to pulsed acoustic treatment. It is shown that the acousto-electric transformations in such structures result in transition of energy of acoustic pulses to energy of electromagnetic responses in double electric layers. The amplitude–frequency parameters of electromagnetic signals are connected with the characteristics of the determinate acoustic effects and with the charge state of the stratified and damaged structures.
Determinate acoustic signal, electromagnetic signal, stratified structure, charged defect, double electric layer, amplitude–frequency parameters
DOI: 10.1134/S1062739116020418 REFERENCES
1. Zhurkov, S.N., Kinetic Concept of Strength of Solids, Vestn. AN SSSR, 1968, no. 3, pp. 46–52.
2. Regel’, V.R., Slutsker, A.I., and Tomashevsky, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of Strength of Solids), Moscow: Nauka, 1974.
3. Rzhevskii, V.V. and Novik, G.Ya., Osnovy fiziki gornykh porod (Basic Physics of Rocks), Moscow: Nedra, 1984.
4. Bolotin, Yu.I., Maslov, L.A., and Polunin, V.I., Correlating a Crack Size and Acoustic Emission Pulse Amplitude, Defektoskopiya, 1975, no. 4, pp. 119–122.
5. Nosov, V.V., Determination Procedure of Informative Parameters of Acoustic Emission Signal, Defektoskopiya, 1998, no. 5, pp. 91–98.
6. Lavrov, A.V. and Shkuratnik, V.L., Acoustic Emission in Rocks under Deformation and Failure: Review, Akust. Zh., 2005, vol. 51, Addendum, pp. 6–18.
7. Landau, L.D and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continua), Moscow: Nauka, 1982.
8. Vishnevskaya, N.L. and Zashchinsky, L.A., Increase in Strength of Self-Consistent Electric Field in a Dielectric under Mechanic Impact, Izv. vuzov, Fizika, 1977, no. 5, pp. 71–74.
9. Perel’man, M.E. and Khatiashvili, N.G., Electromagnetic Emission Generation under Oscillation of Double Electric Layers and Its Activity during Earthquakes, DAN SSSR, 1983, vol. 271, no. 1, pp. 80–83.
10. Khatiashvili, N.G. and Perel’man, M.E., Electromagnetic Emission Generation under Acoustic Wave Travel across Dielectrics and Some Rocks, DAN SSSR, 1982, vol. 263, no. 4, pp. 71–74.
11. Bespal’ko, A.A., Gol’d, R.M., Yavorovich, L.V., and Datsko, D.I., Excitation of Electromagnetic Radiation in Laminated Rocks under Acoustic Influence, J. Min. Sci., 2003, vol. 39, no. 2, pp. 112–117.
12. Koktavy, P., Pavelka, J., and Sikula, J., Characterization of Acoustic and Electromagnetic Emission Sources, Measurement Science and Technology, 2004, no. 15, pp. 973–977.
13. Bespal’ko, A.Ya., Yavorovich, L.V., and Fedotov, P.I., Relationship between Electromagnetic Signal parameters and Electric Characteristics of Rocks under Acoustic and Quasistatic Influence, Izv. TPU, 2005, vol. 308, no. 7, pp. 18–23.
14. Bespal’ko, A.Ya., Yavorovich, L.V., and Surzhikov, A.P., Svyaz’ petrofizicheskikh svoistv gornykh porod s izmeneniem parametrov elektromagnitnykh signalov pri akusticheskom vozdeistvii (Connection between Petrophysics of Rocks and Change in Parameters of Electromagnetic Signals under Acoustic Effect), Tomsk: TPU, 2011.
15. Bespal’ko, A.A., Yavorovich, L.V., and Fedotov, P.I., Mechanoelectrical Transformations in Quartz and Quartz-BearingRrocks under Acoustic Action, J. Min. Sci., 2007, vol. 43, no. 5, pp. 472–476.
16. Golyamin, I.P., Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. Little Encyclopedia), Moscow: Sov. Entsiklop., 1979.
18. Segerlind, L., Applied Finite Element Analysis, John Wiley and Sons, 1984.
19. Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential Equations, Springer–Verlag, 1987.
20. Bespal’ko, A.A., Surzhikov, A.P., and Yavorovich, L.V., Study of Mechanoelectrical Transformation in Rocks under Dynamic Impact, Russian Journal of Non-Ferrous Metals, 2007, no. 1, pp. 9–11.
MINERAL MINING TECHNOLOGY
APPRAISAL AND DEVELOPMENT OF GOLD-CONTAINING MINE WASTE
IN THE AMUR RIVER AREA
V. S. Litvintsev, R. S. Sery, T. S. Banshchikova, and P. P. Sas
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: litvinzev@igd.khv.ru
It has been found that gold mine waste in the Amur River Area (Priamurye, Russian Far East) contains associated minerals of gold, belonging in the group of useful components. In view of the complicated nature of the mine waste, it is decided on the appraisal and recovery of the associated useful components with the help of rational technologies.
Useful associated minerals, mine waste, primary concentration tailings, beneficiation products, heavy primary concentrate, titano-magnetite, ilmenite, scheelite, zircon, silver, platinum
DOI: 10.1134/S106273911602043X
REFERENCES
1. Benevol’sky, B.I. and Shevtsov, T.P., Potential of Placer Gold Mining Waste in the Russian Federation, Mineral. Resursy, 2000, no. 1.
2. Shilo, N.A., Uchenie o rossypyakh. Teoriya rossypeobrazuyushchikh rudnykh formatsii i rossypei (Theory of Placers), Vladivostok: Dal’nauka, 2002.
3. Trubetskoy, K.N. and Umanets, V.N., Integrated Development of Mining Waste, Gornyi Zh., 1992, no. 1.
4. Trubetskoy, K.N., Chanturia, V.A., Kaplunov, D.R., and Ryl’nikova, M.V., Kompleksnoe osvoenie mestorozhdenii i glubokaya pererabotka mineral’nogo syr’ya (Integrated Mineral Mining and High-Level Processing), Moscow: Nauka, 2010.
5. Chanturia, V.A., Kozlov, A.P., Matveeva, T.N., and Lavrinenko, A.A., Innovative Technologies and Extraction of Commercial Components from Unconventional and Difficult-to-Process Minerals and Mining-and-Processing Waste, J. Min. Sci., 2012, vol. 48, no. 5, pp. 904–913.
6. Leshkov, V.G., Razrabotka rossypnykh mestorozhdenii: uchebnik dlya vuzov (Placer Mining: College Textbook), Moscow: MGGU, Gornaya Kniga, 2007.
7. Mamaev, Yu.A., Litvintsev, V.S., and Alekseev, V.S., Processes of Formation of a Pay Layer in Noble Metal Placer Mining Waste, Tikhookean. Geolog., 2012, vol. 31, no. 4.
8. Bykhovsky, L.Z. and Sporykhina, L.V., Mining Waste as a Source of Mineral Supply: The Current State and Issues, Mineral. Resursy Rossii. Ekonom. Upravlen., 2011, no. 4.
9. Flerov, I.B., Placer Mining Waste—The Unvalued Gold Resource of Russia, Mineral. Resursy Rossii. Ekonom. Upravlen., 2004, no. 4.
10. Sorokin, A.P., Van-Van-E, A.P., Glotov, V.D., Belousov, L.V., et al., Atlas osnovnykh zolotorossypnykh mestorozhdenii yuga Dal’nego Vostoka i ikh gorno-geologicheskie modeli (Atlas of Basic Gold Placers of Russian Far East and Their Geological and Mining Models), Vladivostok–Blagoveshchensk–Khabarovsk: DVO RAN, 2000.
11. Litvintsev, V.S., Resource Potential of Placer Mining Waste, J. Min. Sci., 2013, vol. 49, no. 1, pp. 99–105.
12. Litvintsev, V.S., Ponomarchuk, G.P., and Banshchikova, T.S., Gold Content in the Gold
Production-Generated Silt-and-Clay Formations in the Far East Area of Russia, J. Min. Sci., 2010, vol. 46, no. 5, 575–581.
13. Litvintsev, V.S., Alekseev, V.S., and Pulyaevsky, A.M., Suffusion Processes in the Technology
of Formation of Enriched Zones inside Gold Placer Mining Waste Dumps, J. Min. Sci., 2012, vol. 48,
no. 5, pp. 914–919.
14. Litvintsev, V. S. Pulyaevsky, A.M., and Sas, P.P., Optimization of Flushing Sluice Flow in Hydrohoist Gold Washing Machines, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1054–1057.
15. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., Banshchikova, T.S., Podshivalov, V.S.,
and Al’kov, S.P., Prospects for Recovery of Rebellious Gold from Placer Mining Waste, Obog. Rud, 2005, no. 5, pp. 42–45.
16. Litvintsev, V.S., Ponomarchuk, G.P., Banshchikova, T.S., and Shokina, L.N., Effect of Mineral Composition of Sluice Concentrates on Performance of Physicochemical Recovery of Thin Plate and Fine Gold, Izv. Vuzov, Gornyi Zh., 2009, no. 2.
17. Banshchikova, T.S., Litvintsev, V.S., and Shokina, L.N., Problems of Gold Recovery from Sludge Ponds of Placer Mining Waste, GIAB, 2007, vol. 8, no. 12.
18. Litvintsev, V.S., Banshchikova, T.S., Ponomarchuk, G.P., Nechaev, V.V., and Zambrzhitsky, A.I., Features of Material Constitution and Specificity of Mining at Bolotisty Brook Placers in the Khabarovsk Area, Marksheider. Nedropol’z., 2011, no. 1.
19. Bykhovsky, L.Z., Sporykhina, L.V., and Tsvetkova, K.V., Mineral Mining Waste in Russia. Issues of Registering and Development, Proc. 14th Con. on Geology of Pacers and Deposits in the Mantle of Waste, Novosibirsk, 2010.
20. Metodicheskoe rukovodstvo po izucheniyu i ekologo-ekonomicheskoi otsenke tekhnogennogo mestorozhdeniya (Instructional Guidelines on the Analysis and Ecological and Economic Appraisal of Mineral Mining Waste, Moscow: GKZ, RF Ministry of Natural Resources and Environment, 1994.
EVALUATION OF TECHNOLOGICAL PARAMETERS FOR APATITE EXTRACTION BY SURFACE MINERS
A. A. Ordin and E. E. Schwabenland
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru
Fedorovsky All-Russian Research Institute of Minerals,
Staromonetnyi per. 31, Moscow, 119017 Russia
e-mail: eschwabenland@mail.ru
The article describes the research results on evaluation of rational technological parameters for open pit mining of Oshurkovo apatite deposit using Wirtgen Surface Miners. Basic relations between the surface miner capacity, ground conditions and technological factors are substantiated. The authors have constructed lag models and determined optimal design capacity of the open pit mine.
Open pit mining, non-explosive technology, surface miner, construction lag, optimization, capacity
DOI: 10.1134/S1062739116020441 REFERENCES
1. Schwabenland, E.E., Potential of Surface Miners, Rats. Osv. Nedr, 2014, no. 1, pp. 54–60.
2. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
3. Tverdov, A.A., Zhura, A.V., and Nikishichev, S.B., Modern Approaches to Determining Boundaries of Open Pit Mining, Ugol’, 2009, no. 2, pp. 21–24.
4. Anistratov, Yu.I. and Anistratov, K.Yu., Open Pit-and-Underground Mining of Coal, Ugol’, 2009,
no. 2, pp. 6–9.
5. Kaputin, Yu.E., Informatsionnye tekhnologii i ekonomicheskaya otsenka gornykh proektov (Information Technologies and Economic Appraisal of Mining Projects), Saint-Petersburg: Nedra, 2008.
6. Elkington, T and Durham, R., Integrate Open Pit Pushback Selection and Production Capacity Optimization, J. Min. Sci., vol. 47, no. 2, pp. 177–190.
7. Abdel Sabour, S.A. and Dimitrakopoulos, R., Incorporating Geological and Market Uncertainties and Operation Flexibility into Open Pit Mine Design, J. Min. Sci., 2011, vol. 47, no. 2, pp. 191–201.
8. Richmod, A., Evaluating Capital Investment Timing with Stochastic Modeling of Time-Dependent Variables in Open Pit Optimization, J. Min. Sci., 2011, vol. 47, no. 2, pp. 227–234.
9. Godoy, M. and Dimitrakopoulos, R., A Risk Quantification Framework for Strategic Mine Planning: Method and Application, J. Min. Sci., 2011, vol. 47, no. 2, pp. 235–246.
10. King, B., Optimal Mining Practice in Strategic Planning, J. Min. Sci., 2011, vol. 47, no. 2, pp. 247–253.
11. Achireko, P.K., Application of Modified Conditional Simulation and Artificial Neural Networks to Open Pit Mining, Canada, Nova Scotia, Halifax, Dalhousie University Daltech, 1998.
12. Meagher, C., Dimitrakopoulos, R., and Avis, D., Optimized Open Pit Mine Design, Pushbacks and the Gap Problem—A Review, J. Min. Sci., 2014, vol. 50, no. 3, pp. 508–526.
13. Ordin, A.A., Dinamicheskie modeli optimizatsii proektnoi moshchnosti shakhty (Dynamic Models of Mine Production Optimization), Novosibirsk: IGD SO AN SSSR, 1991.
14. Ordin, A.A. and Klishin, V. I. Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Lag Modeling-Based Optimization of Mine Process-Dependent Variables), Novosibirsk: Nauka, 2009.
15. Nikol’sky, A.A., Ordin, A.A., Kurilko, A.S., Klishin, B.I., and Kulakov, V.N., Bestselikovaya tekhnologiya podzemnoi razrabotki rossypnykh zalezhei Yakutii (Pillarless Underground Mining of Placers in Yakutia), V. N. Oparin (Ed.), Novosibirsk: Nauka, 2014.
16. Ordin, A.A., Nikol’sky, A.M., and Golubev, Yu.G., Lag Modeling and Design Capacity Optimization at Operating Diamond Placer Mines Solur and Vostochny, Republic of Sakha, Yakutia, J. Min. Sci., 2012, vol. 48, no. 3, pp. 515–524.
17. Ordin, A.A. and Vasil’ev, I.V., Optimized Depth of Transition from Open Pit to Underground Coal Mining, J. Min. Sci., 2014, vol. 50, no. 4, pp. 696–706.
SCIENCE OF MINING MACHINES
VOLTAGE STABILIZATION SYSTEM FOR POWER INSTALLATIONS IN MINES
B. F. Simonov, S. A. Kharitonov, S. V. Brovanov, E. Ya. Bukin,
and D. V. Makarov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: Simonov_BF@mail.ru
Novosibirsk State Technical University,
pr. K. Marksa 20, Novosibirsk, 630073 Russia
e-mail: Kharitonov@corp.nstu.ru
National Research Tomsk Polytechnic University,
pr. Lenina 30, Tomsk, 634050 Russia
e-mail: Kharit1@yandex.ru
The authors analyze feasibility of voltage stabilization for permanent magnet synchronous generators in independent variable-frequency power networks. The method of voltage stabilization is based on series connection of the generator and a semiconductor converter generating wattless power. Basic energy characteristics of the semiconductor converter and synchronous generator are analytically defined, frequency constraints of the proposed method are found, and rational frequency range and overall power of the system are determined.
Synchronous generator, permanent magnets, variable frequency, voltage stabilization, semiconductor converter
DOI: 10.1134/S1062739116020465 REFERENCES
1. http://www.cleantechinvestor.com/portal/fuel-cells/6422-mining-and-energy.html.
2. Kharitonov, S.A., Ryabchitsky, M.V., Vorob’eva, S.V., and Kalinin, V.V., Intelligent Power Systems for Small Settlements, Tekhn. Elektrodin., Silov. Elektron. Energoeffekt.: Tematich. Vypusk, Kiev, Inst. Elektrodin., NAN, 2010, pp. 32–37.
3. Kharitonov, S., Riabchitsky, M., and Vorobiova S., Smart Grid for the Small Regions, Proc. 2nd Int. Conf. Computational Technologies in Electrical and Electronics Engineering, Sibircon, 2010, vol. 2.
4. Kharitonov, S.A. and Ryabchitsky, M.V., New-Generation Self-Sustained Power Plants, Proc. Conf. Enhanced Reliability and Efficiency of Power Stations and Grids, Moscow, 2010, vol. 2.
5. Kharitonov, S.A., Simonov, B.F., Korobkov, D.V., and Makarov, D.V., Voltage Stabilization in Permanent-Magnet Synchronous Generator with Variable Rotation Frequency, J. Min. Sci., 2012, vol. 48, no. 4, pp. 675–687.
6. Kharitonov, S.A., Korobkov, D.V., Makarov, D.V., Levin, A.V., Yukhnin, M.M., and Konyakhin, S.F., AC Power Generator System with Variable Frequency Generator, Elektron. Elektrooborud. Transport., 2012, nos. 4–5, pp. 2–8.
7. Kharitonov, S.A., Korobkov, D.V., Makarov, D.V., Levin, A.V., Konyakhin, S.F., and Yukhnin, M.M., Feasibility of Permanent-Magnet Synchronous Generator Voltage Stabilization in the Power Generation System of and Aircraft, Aviats. Prom., 2012, no. 4, pp. 9–13.
8. Kharitonov, S.A., Korobkov, D.V., Makarov, D.V., Levin, A.V., Konyakhin, S.F., and Yukhnin, M.M., Determination of Electric Parameters of an Unstable Frequency and Stable Voltage Power Generation System, Aviats. Prom., 2013, no. 1, pp. 3–10.
9. Kharitonov, S.A., Korobkov, D.V., Makarov, D.V., and Garganeev, A.G., Permanent-Magnet Synchronous Generator Voltage Stabilization at Variable Load, Dokl. TUSUR, 2012, No. 1(25).
10. Kharitonov, S.A., Korobkov, D.V., Makarov, D.V., Levin, A.V., Konyakhin, S.F., and Yukhnin, M.M., Aircraft Power Generation System, Nauch. Vestn. NGTU, 2013, no. 1(50).
11. Makarov, D.V., Kharitonov, S.A., and Makarova, E.A., Generation System of Electric Energy of “Variable Speed–Variable Frequency–Constant Amplitude” Type, Micro/Nanotechnologies and Electron Devices (EDM), International Conference and Seminar, 2010, pp. 464–69.
12. Makarov, D.V., Khlebnikov, A.S., Geist, A.V., and Bachurin, P.A., Generation System with Variable Frequency and Constant Amplitude, Energetics (IYCE), Proc. 3rd Int. Youth Conf., 2011, pp. 1–9.
13. Herrera, J.I. and Reddoch, T. W. Testing Requirements for Variable Speed Generating Technology for Wind Turbine Applications, Electric Power Research Institute (EPRI) AP-4590, Project 1996–22, Final Report, May, 1986.
14. Kharitonov, S.A., Elektromagnitnye protsessy v sistemakh generirovaniya elektricheskoi energii dlya avtonomnykh ob’ektov (Electromagnetic Processes in the Power Generation Systems for Self-Sustained Installations), Novosibirsk: NGTU, 2011.
15. Xiuxian, X., Dynamic Power Distribution Management for All Electric Aircraft, Cranfield
University, 2011.
16. Simonov, B.F., Kharitonov, S.A., and Mashinsky, V.V., Mechatronic System “Synchronous
Generator–Three-Phase Bridge Rectifier for Self-Contained Power Facilities, J. Min. Sci., 2012, vol. 48, no. 3, pp. 497–505.
17. Ivanov-Smolansky, A.V., Elektricheskie mashiny: uchebnik dlya vuzov (Electrical Machines: College Textbook), Moscow: Energiya, 1980.
DEVELOPMENT OF METHOD TO IMPROVE EFFICIENCY OF RESIDUAL CURRENT DEVICE UNDER 1000 V ON EXCAVATORS
OF MINING ENTERPRISES
B. B. Utegulov, A. B. Utegulov, and A. B. Uakhitova
Seifullin Kazakh AgroTechnical University,
pr. Pobedy 62, Astana, 010000, Kazakhstan
e-mail: utegulov_bolatbek@mail.ru
This article presents the results of experimental studies on a coal mine. According to the results, the current of single phase-to-earth fault in the network under 1000 V has a value less than the current of the residual current device set point. This article presents a method aimed to improving the efficiency of the residual current device used on excavators and drill-rings at mining enterprises. Indeed, the method developed to improve the efficiency of residual current devices under 1000 V is based on setting up a direct current into three-phase mains with a fixed set-point of protection against any phase-to-ground insulation damage, where electric equipment is switched off due to increases of capacitance between a conductor and earth when live-line bare-hand touching of electric equipment occurs.
Mines, shovel, safety cut-out, electrical safety, electrical insulation condition
DOI: 10.1134/S1062739116020477 REFERENCES
1. Abalakov, G.I., Research and Development of Pre-Insulation Monitoring for High Voltage Cables in Mines, Cand. Tech. Sci. Dissertation, Kemerovo, 1999.
.2. Sidorov, A.I., Utegulov, B.B, Utegulov, A.B., Uakhitova, A.B., Procedure for Isolation Parameters under Damage of a Phase in a Mine Network up to 100 V, Tr. KarGTU, 2007, no. 3, pp. 88–90.
3. Yagudaev, B.M., Shishkin, N.F., and Nazarov, V., Zashchita ot elektroporazheniya v gornoi promyshlinnosti (Protection against Electrocution in Mining Industry), Moscow: Nedra, 1982.
4. Valinevicius, A., Keras, E., and Balaisis, P., Protection against Electric Shock Using Residual
Current Devices in Circuits with Electronic Equipment, Electronics & Electrical Engineering, 2007,
vol. 76, pp. 51–54.
5. Xiang, Y., Cuk, V., and Cobben., J., Impact of Residual Harmonic Current on Operation of Residual Current Devices, Proc. 10th Int. Conf. on Environment and Electrical Engineering (EEEIC), Rome, 2011.
6. Meijer, C., van der Ven, J.-K., and Ross, R., EMC and Electrical Safety on Board Ships: How EMI Filters Undermine the Protection against Electric Shock, Proc. Int. Symp. on Electromagnetic Compatibility (EMC Europe), Brugge, 2013.
7. Kisarimov, R.A., Elektrobezopasnost’ (Electrical Safety), Moscow: Radiosoft Press, 2013.
8. Manoilov, V.E., Elektrobezopasnost’ i chelovek (Electrical Safety and Man), Moscow: Nauka, 1991.
9. Gladilin, L.V., Schutsky, V. I. Batsezhev, Yu.G., and Chebotaev, N.I., Elektrobezopasnost’ v gornodobyvayushchei promyshlennosti (Electrical Safety in Mining Industry), Moscow: Nedra Press, 1977.
10. Pravila bezopasnosti v ugol’nykh i slantsevykh shakhtakh (Safety Rules for Coal and Shale Mines), Moscow: Nedra, 1986.
11. Utegulov, B.B., Utegulov, A.B., Uakhitova A. B., Amurgalinov, S.T., and Begentaev, B.M., Issledovanie bezopasnosti proizvodstva rabot v setyakh napryazheniem do 1000 V na ekskavatore EKG-8I (A Safety Study of Works in Networks up to 1000 V on excavator EKG-8I), Vestn. PSU. Series on Energy, 2009, No. 3, pp. 111–114.
12. Utegulov, B.B., Utegulov, A.B., Begentaev, M.M., Begentaev, B.M., Uakhitova A. B., Zhakipov, N., and Sadvakasov, T., Method for Determining the Insulation in Asymmetric Networks with Voltage up to 1000 V in Mines, Proc. IASTED Int. Conf. Power and Energy Systems and Applications (PESA), Pittsburgh, USA, 2011.
13. Uakhitova, A.B., Isolation Control Procedure for Asymmetrical Network with Isolated Neutral and Voltage of 6–20 kV, Izv. Vuzov, Probl. Energetik: KGEU, 2012, nos. 9–10, pp. 102–106.
14. Shutsky, V.I. and Utegulov, B.B., Patent no. SU917127-B, 1982.
15. Utegulov, B.B., Utegulov, A.B., Uakhitova A. B., Amurgalinov, S.T., and Begentaev, B.M., Numerical Values of the Insulation of Electrical Networks up to 1000 V Excavator EKG-8I, Vestn. PSU. Series: Energy, 2009, no. 4, pp. 102–107
16. Edinye pravila bezopasnosti pri razrabotke mestorozhdenii poleznykh iskopaemykh otkrytym sposobom (Common Safety Regulations for Open Pit Mineral Mining), Moscow: Gostekhnadzor, 2003.
17. Lazarev, A.I., Development of Safety Shutdown System for Mine Electric Networks under 1 kV with a Frequency-Controlled Electric Drive, Cand. Tech. Sci. Dissertation, Moscow: MEI, 1998.
18. Utegulov, B.B., Uakhitova, A.B., Utegulov, A.B., and Amurgalinov, S.T., Innovation patent no. 23240, Astana: KazPATENT.
19. Utegulov, B.B., Uakhitova, A.B., Utegulov, A.B., and Amurgalinov, S.T., Method of Safety Shutdown in Electric Network with Isolated Neutral under 1000 V on Excavators, Nauka Tekhn. Kazakhstan., 2010,
no. 1, pp. 105–107.
MINERAL DRESSING
LOW-TEMPERATURE EFFECTS TO IMPROVE EFFICIENCY
OF PHOTOLUMINESCENCE SEPARATION OF DIAMONDS
IN KIMBERLITE ORE PROCESSING
V. A. Chanturia, I. Zh. Bunin, G. P. Dvoichenkova, and O. E. Koval’chuk
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: dvoigp@mail.ru
ALROSA Research and Geological Exploration Company,
Chernyshevskoe shosse 16, Mirny, 678174 Russia
The article gives new experimental data on spectral characteristics of photoluminescence of natural diamonds extracted from deep horizons of Mir and Internatsionalnaya Pipes, Republic of Sakha (Yakutia) depending on composition of basic and additional optically active structural defects in crystals and on temperature during spectrum recording, considering kinetics of luminescence. It is hypothesized on applicability of low-temperature effects to enhance efficiency of photoluminescence separation of diamond crystals.
Diamonds, photoluminescence, spectroscopy, microstructural characteristics, optically active defects, low temperatures
DOI: 10.1134/S1062739116020489 REFERENCES
1. Gorobets, B.S. and Rogozhin, A.A., Spektry lyuminestsentsii mineralov: spravochnik (Mineral Luminescence Spectra: Handbook), Moscow: Vseros. Nauch.-Issled. Inst. Min. Syr’ya, 2001.
2. Mironov, V.P., X-Ray Luminescence of Natural Diamonds, Proc. 9th Int. Workshop on Luminescence and Laser Physics, Irkutsk: IGU, 2005, pp. 102–116.
3. Orlov, Yu.L., Mineralogiya almaza (Diamond Mineralogy), Ed. 2, Moscow: Nauka, 1984.
4. Kvaskov, V.B., Prirodnye almazy Rossii (Natural Diamonds in Russia), Moscow: Polyaron, 1997.
5. Martynovich, E.F., Morozhnikova, L.V., and Novikov, V.V., X-Ray Luminescence of Diamonds, in Lyuminestsentsiya i spektral’nyi analiz (Luminescence and Spectral Analysis), vol. 3, Irkutsk: IGU, 1974.
6. Martynovich, E.F., Morozhnikova, L.V., and Parfianovich, I.A., Spectral and Kinetic Characteristics of X-Ray Luminescence Centers in Diamond, Fiz. Tv. Tela, 1973, vol. 15, issue 3, pp. 927–929.
7. Martynovich, E.F., Morozhnikova, L.V., Klyuev, Yu.A., and Plotnikova, S.P., X-Ray Luminescence of Different Natural Diamonds, Voprosy teorii i praktiki almaznoi obrabotki (Theoretical and Practical Issues of Diamond Machining), Moscow: Nauch.-Issled. Inst. Mashinostr., 1977, pp. 28–38.
8. Mironov, V.P., Super-Luminescence of Diamonds under Pulsed Electronic Excitation, Proc. 9th Int. Workshop on Luminescence and Laser Physics, Irkutsk: IGU, 2005, pp. 94–101.
9. Novikov, N.V., Kocherzhinsky, Yu.A., Shul’man, L.N., et al., Fizicheskie svoistva almazov: spravochnnik (Physical Properties of Diamonds: Reference Book), Kiev: Nauk. Dumka, 1987.
10. Plotnikova, S.P., Classification and Selection of Natural Diamonds for Electronic Engineering, Almaz v elektronnoi tekhnike (Diamond in Electronic Engineering), V. B. Kvaskov (Ed.), Moscow: Energoatomizdat, 1990, pp. 156–170.
11. Vasil’ev, E.A., Ivanov-Omsky, V.I., Pomazansky B. S., and Bogush, I.N., Nitrogen Addition to Quench Luminescence in N3 Center in Natural Diamond, Zh. Tekh. Fiz., 2044, vol. 30, issue 19, pp. 7–11.
12. Beskrovanov, V.V., Ontogeniya almaza (Diamond Ontogeny), Novosibirsk: Nauka, 2000.
13. Sobolev, E.V., Nitrogen Centers and Growth of Natural Diamond Crystals, Problemy petrologii zemnoi kory i verkhnei mantii (Petrology Issues of the Earth Crust and Outer Mantle), Novosibirsk: Nauka, 1978, pp. 245–255.
14. Khmel’nitsky, R.A., Perspectives in Growing of Large-Size Monocrystal Diamond, Uspekhi Fiz. Nauk, 2015, vol. 185, no. 2, pp. 143–159.
CATIONIC FLOTATION OF NONSULFIDE MINERALS
S. A. Kondrat’ev and D. V. Sem’yanova
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru
From the analysis of information on flotation of quartz, barite, hematite and diamond spar using cationic reagents (amines), the authors show deficiency of thermodynamic approach to explain flotation results by one type of adsorption due to ion–electrostatic mechanism. The discussion offers hypothesis that says that at low pH collecting ability of a reagent is connected with hydrophobic attachment of the reagent ions in adsorption layer. In alkaline range of pH, the collecting ability is conditioned by formation and precipitation of ionomolecular associates in the adsorption layer of a mineral. These types of adsorption attach particle surface which is preliminarily made hydrophobic by ion–electrostatic mechanism. These adsorption types are active at bubble–liquid interface and can go to this interface upon rupture of water film between a particle and a bubble. According to the suggested hypothesis, liquid tension in the film becomes nonuniform and a surface force arises and expels kinematic constraint for particle–bubble attachment. The analytical review of the collected test data on cationic reagents proves the suggested hypothesis. The causes of breakdown of correlation between surface pressure and collecting ability for initial conditions of flotation are explained.
Flotation, cationic reagent, ionomolecular associates, surface pressure, collecting reagent activity
DOI: 10.1134/S1062739116020490 REFERENCES
1. De Bruyn, P.L., Flotation of Quartz by Cationic Collectors, Min. Eng. Trans. Amer. Inst. Min. Metall. Eng., 1955, vol. 202, pp. 291–296.
2. Fuerstenau, D.W., Healy, T.W., and Somasundaran, P., The Role of the Hydrocarbon Chain of Alkyl Collectors in Flotation, Min. Eng. Trans. Amer. Inst. Min. Metall. Eng., 1964, vol. 229, pp. 321–325.
3. Gaudin, A.M. and Fuerstenau, D.W., Quartz Flotation with Cationic Collectors, Min. Eng. Trans. Amer. Inst. Min. Metall. Eng., 1955, vol. 202, pp. 958–962.
4. Somasundaran, P. and Fuerstenau, D.W., On Incipient Flotation Condition, Min. Eng. Trans. Amer. Inst. Min. Metall. Eng., 1968, vol. 241, pp. 102–108.
5. Fuerstenau, D.W. and Pradip, Zeta Potentials in the Flotation of Oxide and Silicate Minerals, Advances in Colloid and Interface, 2005, vol. 114–115, pp. 9–26.
6. Laskowski, J.S., Flotation Thermodynamics: Can We Learn Anything from It? Canad. Metallurg. Quarterly, 2007, vol. 46, no. 3, pp. 251–258.
7. Fuerstenau, D.W., Correlation of Contact Angles, Adsorption Density, Zeta Potentials, and Flotation Rate, Trans. Amer. Inst. Min. Metall. Eng., 1957, vol. 208, pp. 1365–1367.
8. Takeda, S. and Usui, S., Adsorption of Dodecylammonium Ion on Quartz in Relation to its Flotation, Colloids and Surfaces, 1987, vol. 23, issues 1–2, pp. 15–28.
9. Gaudin, A.M. and Bloecher, F.W., Concerning the Adsorption of Dodecylamine on Quartz, Min. Eng. Trans. Amer. Inst. Min. Metall. Eng., 1950, vol. 187, pp. 499–505.
10. Takeda, S. and Usui, S., Cationic Flotation of Quartz from an Artificial Mixture with Hematite Using Hexylamin, Colloids and Surfaces, 1988, vol. 29, issues 1–2, pp. 221–232.
11. Finch, J.A. and Smith, G.W., Dynamic Surface Tension of Alkaline Dodecylamine Solutions, J. Colloid and Interface Sci., 1973, vol. 45, no. 1., pp. 81–91.
12. Somasundaran, P. and Wang Dianzuo, Solution Chemistry, Minerals and Reagents, Amsterdam: Elsevier, 2006.
13. Smith, R.W. and Akhtar, S., Cationic Flotation of Oxide and Silicates, in Flotation, M. C. Fuerstenau and A. M. Gaudin (Eds.), Memorial Volume, 1976, vol. 1, New York: AIME Inc., pp. 87–116.
14. Somasundaran, P., The Role of Ionomolecular Surfactant Complexes in Flotation, Int. J. Min. Proc., 1976, vol. 3, no. 1, pp. 35–40.
15. Bleier, A., Goddard, E.D., and Kulkarni, R.D., Adsorption and Critical Flotation Conditions, J. Colloid and Interface Sci., 1977, vol. 59, no. 3, pp. 490–504.
16. Dolzhenkova, A.N. and Kholodnitsky, B.A., Measurement of Contact Angles in Terms of Flotation, Obogashch. Rud, 1975, no. 5, pp. 40–43.
17. Arnold, R., Brownbill, E.E., and Ihle, S.W., Hallimond Tube Flotation of Scheelite and Calcite with Amines, Int. J. Min. Proc., 1978, vol. 5, pp. 143–152.
18. Soto, H. and Iwasaki, I., Selective Flotation of Phosphates from Dolomite Using Cationic Collectors. Part I: Effect of Collector and Nonpolar Hydrocarbons, Int. J. Min. Proc., 1986, vol. 16, pp. 3–16.
19. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and their Activity, Part I, J. Min. Sci., 2008, vol. 44, no. 6, pp. 118–125.
20. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and their Activity, Part II, J. Min. Sci., 2009, vol. 45, no. 2, pp. 85–95.
21. Yoon, R.-H. and Yordan, J.L., Induction Time Measurements for the Quartz-Amine Flotation System, J. Colloid and Interf. Sci., 1991, vol. 141, no. 2, pp. 374–383.
22. Stechemesser, H., Geidel, Th., and Weber, K., Expansion of Three-Phase Contact Line after Rupture
of Thin Non-Symmetrical Films. Part II: Influence of pH on Expansion Rate at Compressed Electrical Double-Layer in the System Quartz Amine Solution/Air Bubble, Colloid & Polymer Sci., 1980,
vol. 258, pp. 1206–1207.
23. Smit, R.W., Co-Adsorption of Dodecylamine Ion and Molecule on Quartz, Trans. Soc. Min. Engr., AIME, 1963, vol. 226, pp. 427–433.
24. Smit, R.W. and Lai, R. W. M., On the Relationship between Contact Angle and Flotation Behavior, Trans. Soc. Min. Engr., AIME, 1966, vol. 235, pp. 413–418.
25. Smith, R.W. and Scott, J.L., Mechanisms of Dodecylamine Flotation of Quartz, Min. Proc. Extr. Metall. Review: Int. J., 1990, vol. 7, pp. 81–94.
26. Castro, S.H., Vurdela, R.M., and Laskowski, J.S., The Surface Association and Precipitation
of Surfactant Species in Alkaline Dodecylamine Hydrochloride Solutions, Colloids and Surfaces, 1986,
vol. 21, pp. 87–100.
27. Novich, B.E., Flotation Response Prediction from Interfacial Properties, Colloid and Surfaces, 1990,
vol. 46, pp. 255–269.
28. Pugh, R.J., The Role of the Solution Chemistry of Dodecylamine and Oleic Acid Collectors in the Flotation of Fluorite, Colloid and Surfaces, 1986, vol. 18, pp. 19–41.
29. Novich, B.E. and Ring, T.A., A Predictive Model for Alkylamine–Quartz Flotation System, Langmuir, 1985, vol. 1, no. 6, pp. 701–708.
30. Kondrat’ev, S.A. and Ryaboi, V.I., Assessment of Collecting Power of Dithiophosphates and Its Relation to Selectivity of Valuable Component Recovery, Obogashch. Rud, 2015, no. 3, pp. 25–30.
PYRITE GRAIN AND AIR BUBBLE ATTACHMENT KINETICS
IN AGITATED PULP
A. A. Nikolaev, A. A. Petrova, and B. E. Goryachev
National University of Science and Technology—MISiS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: nikolaevopr@misis.ru
Air bubble and pyrite grain attachment is studied. It is found that mineralization area on an air bubble depends on pulp agitation time, potassium butyl xanthate concentration and pyrite grain size. The authors show the relation between mineralization area of air bubble and weight of mineral load. Using experimental data, it is calculated how many pyrite grains from a narrow size range attach to an air bubble during pulp agitation time, and the weight of these grains is estimated. Physical forces on mineral loading exerted by pyrite grains of – 0.1 + 0.071, – 0.071 + 0.044 and – 0.044 + 0 mm in size at an air bubble at different pulp agitation times, as well as the absolute and specific retention forces are calculated, as well.
Flotation, air bubble mineralization, flotation kinetics, pyrite, potassium xanthate, flotation force, particle–bubble attachment
DOI: 10.1134/S1062739116020502 REFERENCES
1. Klassen, V.I. and Mokrousov, V.A., Vvedenie v teoriyu flotatsii (Introduction to Flotation Theory), Ed. 2, Moscow: Gosgortekhizdat, 1959.
2. Bogdanov, O.S., Maksimov, I.I., Podnek, A.K., et al., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Mineral Ore Flotation), Moscow: Nedra, 1990.
3. Rubinshtein, Yu.B., and Filippov, Yu.A., Kinetika flotatsii (Flotation Kinetics), Moscow: Nauka, 1980.
4. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sul’fidov. Teoriya i praktika (Electrochemistry of Sulfides. Theory and Practice), Moscow: Ruda Metally, 2008.
5. Kondrat’ev, C.A., Mineralization of Bubbles in Flotation, J. Min. Sci., 2004, vol. 40, no. 1, pp. 92–100.
6. Abramov, A.A., Tekhnologiya obogashcheniya rud tsvetnykh metallov (Nonferrous Metal Ore Processing), Moscow: Nedra, 1983.
7. Chanturia, V.A. and Vigdergauz, V.E., Theory and Practice in Improving the Mineral Wetting Discreteness, Gorny Zh., 2005, no. 4, pp. 59–63.
8. Kondrat’ev, S.A., Influence of Main Flotation Parameters on Detachment of Hydrophilic Particle from Bubble, J. Min. Sci., 2005, vol. 41, no. 4, pp. 373–379.
9. Goryachev, B.E., Naing Lin U, Nikolaev, A.A., Peculiarities of Flotation of Pyrite Originated from Ural Copper–Zinc Deposit with Potassium Butyl Xanthate and Sodium Dithiophosphate, Tsvet. Met., 2014,
no. 6, pp. 16–22.
10. Verrelli, D.I., Koh, P. T. L., and Nguyen, A.V., Particle–Bubble Interaction and Attachment in Flotation, Chem. Eng. Sci., 2011, vol. 66, issue 23, pp. 5910–5921.
11. Goryachev, B.E. and Nikolaev, A.A., Interconnection between Physical–Chemical Characteristics of Two-Component Solid Surface Wetting and Floatability of the Same Surface Particles, J. Min. Sci., 2006, vol. 2, no. 3, pp. 296–303.
12. Samygin, V.D. and Grigor’ev, P.V., Modeling of Hydrodynamic Effect on Flotation Selectivity. Part I: Air Bubble Diameter and Turbulent Dissipation Energy, J. Min. Sci., 2015, vol. 51, no. 1, pp. 157–163.
13. Samygin, V.D. and Grigor’ev, P.V., Modeling of Hydrodynamic Effect on Flotation Selectivity.
Part II: Influence of Initial Feed Separation into Large and Small Fractions, J. Min. Sci., 2015, vol. 51,
no. 2, pp. 374–379.
14. Gusev, V.A. and Mordkovich, A.G., Matematika: spravochnye materialy (Mathematics: Reference Book), Moscow: Prosveshchenie, 1990.
BASIC PRINCIPLES OF SELECTING SEPARATION METHODS FOR SULFIDE MINERALS HAVING SIMILAR PROPERTIES IN COMPLEX ORE CONCENTRATES
V. A. Ignatkina, V. A. Bocharov, and A. A. Kayumov
National University of Science and Technology—MISiS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: woda@mail.ru
The article gives analytical and experimental data on separation of sulfide minerals in bulk concentrates of complex ores. The separation methods for minerals having similar process properties are selected. It is found which factors influence mineral separation efficiency in concentrates of rebellious and complex ore processing. The authors present fresh data on activating effect exerted by cations of copper on floatability of sphalerite, galena, pyrite and pyrrhotine species, as well as on activating effect of copper minerals. It has been studied how species of pyrite and nonferrous metal sulfides influence oxidation, floatability and depression. The selected methods to separate complex ore concentrates provide for multi-stage flotation circuit, with recovery of rebellious species into rough concentrates and products and their separation in different cycles later on. A system mode has been developed and recommended for dosing selective collectors, depressors and modifiers to achieve the best flotation performance.
Minerals, sulfides, species, hydrophilicity, contrast range, technology, sulfhydryl collectors, fractions, genesis
DOI: 10.1134/S1062739116020514 REFERENCES
1. Mitrofanov, S.I., Selektivnaya flotatsiya (Selective Flotation), Moscow: Nedra, 1967.
2. Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation), Moscow: Gornaya Kniga,
vol. IV, 2008.
3. Avdokhin, V.M. and Abramov, A.A., Okislenie sul’fidnykh mineralov v protsessakh obogashcheniya (Oxidation of Sulfide Minerals in Dressing), Moscow: Nedra, 1989.
4. Bocharov, V.A. and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh (Mineral Processing), Moscow: Ruda Metally, 2007, vol. 1.
5. Ignatkina, V.A. and Bocharov, V.A., Specific Features of Flotation of Various Copper Sulfides and Sphalerite of Pyritic Ores, Gorny Zh., 2014, no. 12, pp. 75–79.
6. Bocharov, V.A., Ignatkina, V.A., and Kayumov, A.A., Fahl Ore Flotation, J. Min. Sci., 2015, vol. 51,
no. 3, pp. 573–579.
7. Bocharov, V.A. and Ryskin, M.Ya., Tekhnologiya konditsionirovaniya i selektivnoi flotatsii rud tsvetnykh metallov (Process for Conditioning and Selective Flotation of Nonferrous Metal Ores), Moscow:
Nedra, 1993.
8. Glembotsky, V.A. and Dmitrieva, G.M., Vliyanie genezisa mineralov na ikh flotatsionnye svoistva (Influence of Mineral Genesis on Their Flotation Properties), Moscow: Nauka, 1965.
9. Golikov, A.A., Interaction of Collecting Agents at Sulfide Surface, Tsv. Met., 1990, no. 11, pp. 11–15.
10. Ignatkina, V.A., Bocharov, V.A., and D’yachkov, F.G., Enhancing the Disparity in Flotation Properties of Non–ferrous Metal Sulfides Using Sulfhydryl Collecting Agents with Different Molecular Structures, J. Min. Sci., 2015, vol. 51, no. 2, pp. 389–397.
11. Bogdanov, O.S., Maksimov, I.S., Podnek, A.K., et al., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Mineral Ore Flotation), Moscow: Nedra, 1990.
12. Vershinin, E.A. and Filimonov, V.I., Coaction of Sodium Sulfide and Sodium Sulfite in Flotation of Chalcopyrite, Sphalerite, and Pyrite, Tsv. Metallurg., 1968, no. 11, pp. 15–18.
13. Ignatkina, V.A. and Bocharov, V.A., Selection of Sulfhydryl Collecting Agents in Flotation of Nonferrous Sulfides from Rebellious Ores, Izv. vuzov. Tsv. Metallurg., 2015, no. 1, pp. 3–10.
14. Ignatkina, V.A., Bocharov, V.A., and D’yachkov, F.G., Collecting Properties of Diisobutyl Dithiophosphinate in Sulfide Minerals Flotation from Sulfide Ores, J. Min. Sci., 2013, vol. 49, no. 5, pp. 138–146.
15. Nesterova, L.I. and Fedorova, M.N., Material Constitution Factors of Uchaly Ores, Trudy Uralmekhanobr, 1958, issue 3, pp. 45–49.
16. Bocharov, V.A. and Ignatkina, V.A., Investigation into the Effects of Genetic Peculiarities of Pyrites and their Structural Associates on Contrastive and Technological Properties, Tsv. Met., 2014, no. 8, pp. 20–27.
17. Kabachnik, M.I., Khimiya fosfororganicheskikh soedinenii (Chemistry of Phosphorus Organic Compounds), vol. l, Moscow: Nauka, 2008.
18. Lui, G., Zhong, Í., and Dai, Ò. Investigation of the Selective of Ethoxycarbamites during the Flotation of Copper Sulfides, Mineral and Metallurgical Process., 2008, vol. 25, no 1, pp. 19–24.
19. Bocharov, V.A. and Ignatkina, V.A., Role of Iron and Its Content in Processing of Sulfide Nonferrous and Noble Metals, Izv. vuzov. Tsv. Metallurg., 2007, no. 5, pp. 4–12.
20. Konev, V.A., Flotatsiya sul’fidov (Sulfide Flotation), Moscow: Nedra, 1985.
21. Eropkin, Yu.I., Obogashchenie orudenennykh peschanikov (Beneficiation of Mineralized Sandstones), Saint Petersburg: Nauka, 1999.
22. Kozlova, I.P., Peculiarities of Complex Ore Processing at Rubtsovsk Ore Preparation Plant, Proc.
Conf. Development of Hi-Tech Processes at Mining-and-Metallurgical Integrated Works, Ekaterinburg, 2013, pp. 35–37.
23. Kakovsky, I.A. and Komkov, V.D., Investigation into Flotation Properties of Dithiophosphates, Izv. vuzov. Gorny Zh., 1970, no. 11, pp. 181–186.
24. Ignatkina, V.A. and Bocharov, V.A., Non–ferrous Sulfide Flotation Flowsheets Based on Combinations of Selective Collectors, Gorny Zh., 2010, no. 2, pp. 58–64.
25. Bakinov, K.G., Processes for Separation of Lead–Copper Concentrates, Obogashch. Rud, 1962,
no. 5, pp. 16–22.
26. Grosman, L.I. and Hadzhiev, P.G., Suppression of Sulfide Minerals by Products of ZnSO4–Na2CO3 Interaction, Izv. vuzov. Tsv. Metallurg., 1966, no. 3, pp. 25–32.
27. Ignatkina, V.A., Bocharov, V.A., Milovich F. O., et al., New Approaches to Studies of the Mechanism for Sulfhydryl Collectors in Sulfide Flotation, Moscow: MISiS, Proc. CIS Mineral Processing Engineers, Moscow: MISiS, 2015, vol. II, pp. 475–482.
28. Filimonov, V.I., Vershinin, E.A., and Bocharov, V.A., On Effect of Sodium Sulfite in Oxidation Reactions in Cyanide-Free Sulfide Mineral Flotation, Tsv. Met., 1968, no. 7, pp. 15–17.
29. Brion, D., Photoelectron Spectroscopic Study of the Surface Degradation of Pyrite (FeS2), Chalcopyrite (CuFeS2), Sphalerite (ZnS) and Galena (PbS) in Air and Water, Appl. Surface Sci., 1980, vol. 5, pp. 133.
30. Abramov, A.A., Tekhnologiya pererabotki i obogashcheniya rud tsvetnykh metallov (Nonferrous Metal Ore Processing), Moscow: MGGU, 2005, vol. III, book 1; 2006, vol. III, book 2.
THERMODYNAMIC MODELING OF DEARSENATION OF REBELLIOUS GOLD–QUARTZ–ARSENIC ORE IN WATER VAPOR
P. L. Paleev, P. A. Gulyashinov, and A. N. Gulyashinov
Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences,
ul. Sakh’yanovoi 6, Ulan-Ude, 670047 Russia
e-mail: palpavel@mail.ru
The article describes theoretical and experimental data on dearsenation of gold-containing scorodite ore in water vapor. It is shown that roasting of scorodite with pyrite in super-heated vapor enables complete removal of arsenic and sulfur in the form of sulfides from the original material and exposes noble metals.
Gold-containing scorodite, pyrite, roasting in super-heated vapor, thermodynamic modeling
DOI: 10.1134/S1062739116020526 REFERENCES
1. Kopylov, N.I. and Kaminsky, Yu.D., Arsenic Problem in Mineral Processing, Khim. Int. Ust. Razv., 1997, vol. 5, pp. 221–258.
2. Isabaev, S.M., Sulphidation of Arsenic-Containing Compounds and Development of Processes for Arsenic Removal from Concentrates and Intermediate Products of Nonferrous Metallurgy, Dr. Tech. Sci. Thesis, Irkutsk, 1991.
3. Chanturia, V.A., Fedorov, A.A., and Matveeva, T.N., Assessment of Processing Features of Different-Origin Gold-Bearing Pyrites and Arsenopyrites, Tsv. Met., 2000, no. 8, pp. 9–12.
4. Isabaev, S.M., Kuzgibekova, Kh., Physicochemical Fundamentals of Heterogeneous Interaction
in Fe–As–S, Cî–As–S, Ni–As–S, Cu–As–S under Nonequilibrium Sulphidation Conditions, Tsv. Met., 2002, no. 4, pp. 33–36.
5. Sinyarev, G.B., Vatolin, N.A., Trusov, B.G., and Moiseev, G.L., Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov (Computing Machines for Thermodynamic Calculations of Metallurgical Processes), Moscow: Nauka, 1982.
6. Metodicheskie osnovy issledovaniya khimicheskogo sostava gornykh porod, rud i mineralov (Methodological Fundamentals to Study Chemical Composition of Rocks and Minerals), Moscow:
Nedra, 1979.
NEW METHODS AND INSTRUMENTS IN MINING
DETERMINATION OF ELASTIC PROPERTIES OF ROCKS
UNDER VARYING TEMPERATURE
S. V. Suknev
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
pr. Lenina 43, Yakutsk, 677980 Russia
e-mail: suknyov@igds.ysn.ru
The author performs the comparative analysis of the international standards on determination of elastic properties of rocks from uniaxial compression tests, with benefits and shortcomings of the standards presented. The measurement data on lateral and transverse strains obtained in rocks and model metal samples under compression using different type extensometers are reported. The scope of the analysis embraces applicability of extensometers to the determination of elasticity modulus and Poisson’s ratio in rocks under variation in temperature. Examples of estimating elastic properties in thawed and frozen rocks are given in terms of enclosing rocks at Botuobinskaya diamond pipe.
Rocks, compression, elasticity modulus, Poisson’s ratio, temperature
DOI: 10.1134/S1062739116020538 REFERENCES
1. GOST (State Standard) 28985–91: Rocks. Test Method for Deformation Characteristics under Uniaxial Compression, 2004.
2. Martin, C.D. and Chandler, N.A., The Progressive Fracture of Lac du Bonnet Granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, vol. 31, no. 6, pp. 643–659.
3. Hakala, M., Kuula, H., and Hudson, J.A., Estimating the Transversely Isotropic Elastic Intact Rock Properties for In Situ Stress Measurement Data Reduction: A Case Study of the Olkiluoto Mica Gneiss, Finland, Int. J. Rock Mech. Min. Sci., 2007, vol. 44, no. 1, pp. 14–46.
4. Eberhardt, E., Stead, D., Stimpson, B., and Read, R.S., Identifying Crack Initiation and Propagation Thresholds in Brittle Rock, Can. Geotech. J., 1998, vol. 35, no. 2, pp. 222–233.
5. ASTM D7012–10: Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, West Conshohocken: ASTM International, 2010.
6. DIN EN 14580:2005–07: Prufverfahren fur Naturstein—Bestimmung des statischen Elastizitatsmoduls, Berlin: Deutsches Institut fur Normung e.V., 2005.
7. Suknev, S.V., Application of Circumferencial and Diametral Strain Sensors to Determination of Poisson’s Ratio under Compression, GIAB, 2012, no. 12.
8. GOST (State Standard) R 1.0–2004: Standardization in Russian Federation. Basic Provisions, 2007.
9. GOST (State Standard) R 1.0–2004: Standardization in Russian Federation. Corporate Standards. Basic Provisions, 2007.
10. GOST (State Standard) R 1.5–2004: Standardization in Russian Federation. National Standards of the Russian Federation: Regulations for Definition, Presentation, Style and Indication, 2007.
11. GOST (State Standard) 21153.2–84: Rocks. Test Method for Ultimate Uniaxial Compressive
Strength, 2001.
INSTRUMENTAL DEFORMATION MONITORING SYSTEM AND ITS TRIAL
IN OPEN-PIT DIAMOND MINE
S. A. Bornyakov and D. V. Salko
Institute of the Earth Crust, Siberian Branch, Russian Academy of Sciences,
ul. Lermontova 128, Irkutsk, 664033 Russia
e-mail: bornyak@crust.irk.ru
Irkutsk State University,
ul. Lenina 3, Irkutsk, 664001 Russia
The designed automated system for pitwall deformation monitoring consists of an independent data recorder, strain sensors, AD converters, and front-end and back-end controls. Data are accumulated on server in on-line mode via cellular modem. The self-contained tools are supplied from accumulators recharged by solar batteries, which expands operational life of the system. The system has been trailed in an open pit mine at Nyurbinskaya kimberlite pipe in deformation monitoring of faults in the eastern pitwall and estimation of its stability.
Pitwall, block-and-fault structure, deformation monitoring, instrumental system, recorder sensor, control program
DOI: 10.1134/S1062739116020550 REFERENCES
1. http://www.reutechmining.com/ru/products/products-overview.
2. Vostrikov, V.I. and Akinin, A.A., System of Remote Geomonitoring of Deformation–Wave Processes in a Rock Mass, J. Min. Sci., 2004, vol. 40, no. 6, pp. 629–632.
3. Vostrikov, V.I., Akinin, A.A., Krivetsky, A.V., and Kuratov, K.A., Off-Line Longitudinal Deformometer, J. Min. Sci., 2005, vol. 41, no. 6, pp. 588–590.
4. Vostrikov, V.I., Ruzhich, V.V., and Federyaev, O.V., Monitoring Rock Fall-Hazardous Site in Open Pit Walls, J. Min. Sci., 2009, vol. 45, no. 6, pp. 620–627.
5. Vostrikov, V.I. and Polotnyanko, N.S., Karier Multichannel Measurement System for Deep Open Pit Walls Monitoring, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1094–1098.
6. Dimaki, A.V., Astafurov, S.V., Shil’ko, E.V., Ruzhich, V.V., and Psakh’e, S.G., Sdvig-3M—Software/Hardware System to Record Movement in Faulting Zones, Proc. Int. Conf. Geodynamic and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2006.
7. Dimaki, A.V and Psakh’e, S.G., Spaced Monitoring System for Displacements in Block Media, Designed Based on SDVIG-4M Complex, J. Min. Sci., 2009, vol. 45, no. 2, pp. 194–200.
8. Salko, D.V. and Bornyakov, S.A., Automatic Monitoring Systems for Geophysical Characteristics on Geodynamic Testing Grounds, Pribory, 2014, no. 6.
9. Bornyakov, S.A. and Vstovsky, S.G., Initial Experience Gained in Seismic-and-Deformation
Monitoring in the Baikal Rift Zone (South Baikal Earthquake on August 29, 2008), Dokl. Akad Nauk, 2010, vol. 431, no. 4.
10. Bak, P., Tang, Ñ., and Wiesenfeld, Ê., Selforganized Criticality: An Explanation of Noise, Phys. Rev. Lett., 1987, no. 59(4), pp. 381–384.
11. Ma Jin, Guo Yanshuang, and Sherman, S.I., Accelerated Synergism along a Fault: A Possible indicator for an Impending Major Earthquake, Geodynamics & Tectonophysics, 2014, no. 5(2), pp. 387–399.
MINING ECOLOGY
ENVIRONMENTAL APPRAISAL OF THE AREA OF KACHKANAR MINING-AND-PROCESSING PLANT BY SATELLITE MONITORING DATA
G. V. Kalabin, V. I. Gorny, and S. G. Kritsuk
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: kalabin.g@gmail.com
Ecological Safety Research Center, Russian Academy of Sciences,
ul. Korpusnaya 18, Saint-Petersburg, 197110 Russia
e-mail: v.i.gornyy@mail.ru
The authors prove relevance of digital space data to be used for regional and local operational quantitative estimation of nature in the area of mineral mining and processing. The research findings are analyzed in terms of environmental appraisal made for the area of an open pit mine at Gusevogorskoe deposit of titano-magnetite ore with vanadium admixture (Sverdlovsk Region, Russia).
Mining and processing plants, vegetative cover condition, earth remote sensing methods, normalized difference vegetation index
DOI: 10.1134/S1062739116020562 REFERENCES
1. Kalabin, G.V., Quantitative Assessment Procedure for Environment Conditions in the Mining and Processing Industry Areas, J. Min. Sci., 2012, vol. 48, no. 2, pp. 382–389.
2. Kalabin, G.V., Moiseenko, T.I., Gorny, V.I., Kritsuk, S.G., and Soromotin, A.V., Satellite Monitoring of Natural Environment at Olimpiada Gold Open-Cut Mine, J. Min. Sci., 2013, vol. 49, no. 1, pp. 160–166.
3. Kalabin, G.V., Gorny, V.I., and Kritsuk, S.G., Satellite Monitoring of Vegetation Mantle Response to the Sorsk Copper–Molybdenum Mine Impact, J. Min. Sci., 2014, vol. 50, no. 1, pp. 155–162.
4. http: //www.mining-enc.ru/kachkanarskij-gorno-obogatitelnyj kombinat.
5. Pavlov, A.I., Generalized Iron Ore Production Output in Russia in 2010, Tekhniko-ekonomicheskie pokazateli gornykh predpriyatii za 1990–2010 gg. (Performance of Mines in 1990–2010), Ekaterinburg: UrO RAN, 2011.
6. Prirodnye resursy i ekologiya Rossii. Federal’nyi atlas (Natural Resources and Ecology of Russia. Federal Atlas), Moscow, 2002.
7. Gosudarstvennyi doklad “O sostoyanii okruzhayushchei sredy Sverdlovskoi oblasti v 2013 godu (Governmental Report on the State of the Environment in the Sverdlovsk Region in 2013),
Ekaterinburg, 2012.
8. http: //www.kgok.ru, www.mnr.gov.ru.
9. http://ladsweb.nascom.nasa.gov/data.
10. http://www.cgiar-csi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41.
11. http://terranorte.iki.rssi.ru/onlinegis/html/viewer.php?q=1.
INTEGRATED ASSESSMENT OF THE ENVIRONMENTAL IMPACT OF MINING
M. B. Bubnova and Yu. A. Ozaryan
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: ozaryanigd@gmail.com
The article gives new information on integrated assessment of the environmental impact of mining in the south of Russian Far East. The assessment is based on: Earth remote sensing data; normalized difference vegetation index for nature–technology systems; combination of the calculated vegetation index and digital relief model to implement individual estimation of the induced impact and natural effects; joint analysis of the induced impact based on satellite monitoring and field survey data; computation of ecological-and-economic damage.
Nature-and-technology systems, satellite monitoring, ecological damage, integrated assessment
DOI: 10.1134/S1062739116020574 REFERENCES
1. Trubetskoy, K.N., Galchenko, Yu.P., Burtsev, L.I., Ekologicheskie problemy osvoeniya nedr pri ustoichivom razvitii prirody i obshchestva (Ecology Problems of Mineral Resource Development under Well-Established Nature and Society Evolution), Moscow: Nauchtekhlitizdat, 2003.
2. Pevzner, M.E. and Kostovetsky, V.P., Ekologiya gornogo proizvodstva (Mineral Mining and Production Ecology), Moscow: Nedra, 1990.
3. Saksin, B.G., Prognoznaya otsenka regional’nogo geokhimicheskogo vozdeistviya na okruzhayushchuyu prirodnuyu sredu dobyvayushchikh predpriyatii tsvetnoi metallurgii v usloviyakh vostoka Rossii (Predictive Estimate of Regional Geochemical Impact of Nonferrous Metal Ore Mines on Environment in Eastern Regions of the Russian Federation), Khabarovsk: IGD DVO RAN, 2012.
4. Bubnova, M.B. and Ozaryan, Yu.A., Geoecological Valuation of Natural-and-Mine Engineering Systems on the South of the Far East, J. Min. Sci., 2012, vol. 48, no. 5, pp. 941–946.
5. Kalabin, G.V., Moiseenko, T.I., Gorny, V.I., Kritsuk, S.G., and Soromotin, A.V., Satellite Monitoring of Natural Environment at Olimpiada Gold Open-Cut Mine, J. Min. Sci., 2013, vol. 49, no. 1, pp. 160–166.
6. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., et al., Evaluation of Dust Pollution of Air in Kuzbass Coal Mining Areas in Winter by Data of Remote Earth Sensing, J. Min. Sci., 2014, vol. 50, no. 3, pp. 549–558.
7. Sandlersky, R.B., Evaluation of Potential Biological Productivity of Southern Taiga Terrains by Using Remote Sounding Evidence, Proc. Int. Conf. Landscape Design: General Provisions, Methodology, Technology, Moscow: MGU, 2006, pp. 217–221.
8. Tuckera, C.J., Pinzona, J.E., Browna, M.E., Slaybacka, D.A., Paka, E.W., Mahoneya, R., Vermotea, E.F., and Saleousa, N.E., An Extended AVHRR 8?km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data, Int. J. Rem. Sensing, 2005, vol. 26, issue 20, pp. 4485–4498.
9. Morin, V.A., Bubnova, M.B., and Morina, O.M., Ecological Role of Pioneer Flora in Industrially Disturbed Amur Basin Lands, GIAB, 2009, no. 5, pp. 253–263.
10. Mamaev, Yu. A., Krupskaya, L.T., Saksin, B.G., et al., Ecological–Biogeochemical Assessment of Mining Technogenesis of Far–East Southern Areas, Gornyi Zh., 2005, no. 12, pp. 145–147.
11. Pashkevich, M.A., Geokhimiya tekhnogeneza sredy (Geochemistry of Technogenesis of the Medium: Textbook), Saint Petersburg: SPGU, 2004.
12. Rastanina, N.K. and Krupskaya, L.T., Role of Ecological Factors in People Health Examination in Mining Residential Areas in the Far East South, Ekol. Promyshl. Rossii, 2008, no. 12, pp. 56–57.
13. Perspektivy osvoeniya ugol’nykh mestorozhdenii Dal’nego Vostoka (Perspectives of Coal Deposit Development in the Far East), vol. 1, Vladivostok: Dal’nevost. Univer., 2004.
14. Polokhin, O.V., Specific Features of Soil and Flora Cover in Technogenically Disturbed Lands in the Primorski Krai, Sovr. Pr. Nauki Obraz., 2013, no. 6, http:// www.science-education.ru/113–10936.
15. Domarenko, V.A., Ekologo–ekonomicheskaya otsenka mestorozhdenii (tverdye poleznye iskopaemye) (Ecological-Economic Assessment of Deposits (Hard Minerals): textbook), Tomsk: TPU, 2007.
16. Metodika opredeleniya ekonomicheskoi effektivnosti rekul’tivatsii narushennykh zemel (Procedure to Estimate Economic Efficiency of Disturbed Land Reclamation), Moscow: Inst. Plan. Normat., 1986.
17. Aleshichev, A.N., Significance of Soils in Recultivation of Raichikhinsky Brown Coal Dumps, AGRO, 2008, nos. 4–6, pp. 79–80.
METHODOLOGICAL APPROACH TO RESTORATION
OF ECOSYSTEM FUNCTIONS IN THE INDUSTRIAL LANDS
N. N. Mel’nikov, S. P. Mesyats, and E. Yu. Volkova
Mining Institute, Kola Science Center, Russian Academy of Science,
ul. Fersmana 24, Apatity, 184209 Russia
e-mail: mesyats@goi.kolasc.net.ru
The methodological approach to rehabilitation of disturbed lands in mining areas in accordance with the evolutionary program of soil formation on mineral substrates by generating biologically active medium has been substantiated and approved based on the data of many-years monitoring at various objects.
Disturbed land, artificial plant formation, bioproductivity, biogenic–humus–accumulation horizon, ecosystem function restoration, area function
DOI: 10.1134/S1062739116020586 REFERENCES
1. Kovda, V.A., Rol’ i funktsii pochvennogo pokrova v biosfere Zemli (Role and Functions of Soil Cover in the Earth’s Biosphere), Pushchino: ONTI NTsBI AN SSSR, 1985.
2. Mesyats, S.P., Restoration of Soil and Environmental Functions of Lands—Conceptual Model of Adaptive Technologies for Disturbed Land Reclamation, Proc. Int. Conf. Anthropogenic and Modern Ecology: Nature and Man, Saint-Petersburg: Gumanistika, 2004.
3. Mesyats, S.P. and Mel’nikov, N.N., A Concept and Engineering Solutions on Mining-Disturbed Land Recovery, Formirovanie osnov sovremennoi strategii prirodopol’zovaniya v Evro-Arkticheskom regione (Basics of Nature Management Strategy for Europe–Arctic Region), Apatity: KNTs RAN, 2005.
4. Kachinsky, N.A., Fizika pochvy (Soil Physics), Moscow: Vyssh. Shk., 1965.
5. Milanovsky, E.Yu. and Shein, E.V., Functions of Amphiphilic Components of Humic Substances in Humus–Structure Formation and Genesis of Soil, Pochvoved., 2002, no. 10.
6. Mesyats, S.P., Rumyantseva, N.S., Volkova, E.Yu., and Chizhikova, N.P., Analysis of Structure and Mineralogy of Young Soil Forming at Tailings Dumps as a Result of Seeded Plant Formation, Proc. 8th Conf. Development of the North and Nature Recovery Challenges, Syktyvkar, 2011.
7. Bakhnov, V.K., Gamzikov, G.P., Il’in, V.B., et al., Metodologicheskie i metodicheskie aspekty pochvovedeniya (Methodology and Procedures of Soil Science), Novosibirsk: Nauka, 1988.
8. Lehninger, A., Biochemistry—The Molecular Basis of Cell Structure and Functions, Worth, 1972.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|