Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2016 ãîä » JMS, Vol. 52, No. 1, 2016

JMS, Vol. 52, No. 1, 2016


GEOMECHANICS


FROM THE ALTERNATING-SIGN EXPLOSION RESPONSE OF ROCKS TO THE PENDULUM WAVES IN STRESSED GEOMEDIA. PART IV
V. V. Adushkin and V. N. Oparin

Institute of Geosphere Dynamics, Russian Academy of Sciences,
Leninskii pr. 38, Moscow, 119334 Russia
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: admin@nsc.ru
Novosibirsk Sate University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

The scope of this expert and analytical review encompasses major achievements in the area of nonlinear geomechanics, geophysics, geomonitoring and advanced information technologies with a view to developing the natural and induced emergency prevention and response technology listed among the “national critical technologies” in the Russian Federation. The topical trends of the related R&D activities are basic research in physics and geomechanics of natural and induced failure source formation and growth in rocks and in mines, and creation of multi-layer geoinformation monitoring system for geomechanical and geodynamic safety in Russia. The authors believe that the described R&D activities may be the basis for an international multidisciplinary mega-project in geosciences: Engineering and Creation of the World’s Multi-Layer Geomechanical, Geodynamic and Environmental Safety Geoinformation Monitoring System.

Nonlinear geomechanical and geophysical processes, rock failure, natural and induced disasters, source zones, multi-layer geoinformation monitoring systems, prediction and prevention, geoecology, high-priority basic and applied research and engineering

DOI: 10.1134/S106273911601009X

REFERENCES
1. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Parts I–III, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222, 2013, vol. 49, no. 2, pp. 175–209, 2014, vol. 50, no. 4, pp. 623–645.
2. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., et al., Mekhanicheskii effekt podzemnogo vzryva (Mechanical Effect of Underground Explosion), Moscow: Nedra, 1971.
3. Adushkin, V.V., Kostyuchenko, V.N., Nikolaevskii, V.N., and Tsvetkov, V.M., Mekhanika podzemnogo vzryva (Underground Explosion Mechanics), Moscow: VINITI, 1973.
4. Adushkin, V.V. and Spivak, A.A., Geomekhanika krupnomasshtabnykh vzryvov (Geomechanics of Large-Scale Explosions), Moscow: Nedra, 1993.
5. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Mechanics in Block Rock Masses), Moscow: IKTs Akademkniga, 2003.
6. Adushkin, V.V. and Spivak, A.A., Podzemnye vzryvy (Underground Explosions), Moscow: Nauka, 2007.
7. Adushkin, A.A. and Malovichko, A.A. (Eds.), Vzryvy i zemletryaseniya na territorii Evropeiskoi chasti Rossii (Explosions and Earthquakes in the European Part of Russia), Moscow: GEOS, 2013.
8. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennye protsessy v zemnoi kore (opasnosti i katastrofy) (Induced Processes in the Earth Crust: Hazards and Disasters), Moscow: INEK, 2005.
9. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’–indutsirovannaya i triggernaya (Induced and Trigger Seismicity), Moscow: IDG RAN, 2015.
10. Mel’nikov, N.N. (Ed.), Tekhnogennaya seismichnost’ pri gornykh rabotakh: modeli ochagov, prognoz, profilaktika (Mining-Induced Seismicity: Models of Focuses, Prediction, Prevention), Apatity: GoI KNTs RAN, 2004.
11. Mel’nikov, N.N., Epimakhov, Yu.A., and Abramov, N.N., Nauchnye osnovy intensifikatsii vozvedeniya bol’sheproletnykh sooruzhenii v skal’nom massive (Scientific Basis for Intensified Long-Span Construction in Hard Rocks), Apatity: KNTs RAN, 2008.
12. Mel’nikov, N.N. and Kalashnikov, A.I., Shel’fovye neftegazovye razrabotki: geomekhanicheskie aspekty (Offshore Oil Recovery: Geomechanical Aspects), Apatity: KNTs RAN, 2009.
13. Mel’nikov, N.N., Konukhin, V.P., Naumov, V.A., et al., Nauchnye i inzhenernye aspekty khraneniya i zakhoroneniya radiatsionno opasnykh materialov na Evropeiskom Severe Rossii (Science and Engineering Aspects of Storage and Disposal of Radiation-Hazardous Materials in the Russia’s European North), Apatity: KNTs RAN, 2010.
14. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyaniya massivov gornykh porod (Downhole Geophysical Methods for Diagnostics and Control of Rock Mass Stresses and Strains), Novosibirsk: Nauka, 1999.
15. Kurlenya, M.V., Oparin, V.N., Tapsiev, A.P., and Arshavskii, V.V., Geomekhanicheskie protsessy vzaimodeistviya porodnykh i zakladochnykh massivov pri otrabotke plastovykh rudnykh zalezhei (Geomechanical Processes in Rock Mass and Backfill Interaction in Bedded Orebody Mining), Novosibirsk: Nauka, 1997.
16. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritel’nye pribory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Instrumentation for Modeling and Field Studies of Nonlinear Deformation–Wave Processes in Block Rock Masses), Novosibirsk: SO RAN, 2007.
17. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., Reva, V.N., Badtiev, B.P., Tropp, E.A., and Chanyshev, A.I., Zonal’naya dezintegratsiya gornykh porod i ustoichivost’ podzemnykh vyrabotok (Zonal Disintegration of Rocks and Stability of Underground Openings), Novosibirsk: SO RAN, 2008.
18. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics of Rock Mass in the Upper Part of the Lithosphere: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
19. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seism–Deformation Monitoring of Induced Earthquakes and Rock Bursts), vol. 1, Novosibirsk: SO RAN, 2009.
20. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seism–Deformation Monitoring of Induced Earthquakes and Rock Bursts), vol. 2, Novosibirsk: SO RAN, 2010.
21. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarskii, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Fundamentals of Vibro-Wave Technologies for Enhanced Oil Recovery), Novosibirsk: Nauka, 2010.
22. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale for Presentation of Hierarchies in Rock Sciences), Novosibirsk: Nauka, 2011.
23. Oparin, V.N., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization of the Earth Crust in the Areas under Strong Induced Impact), N. N. Mel’nikov (Ed.), Novosibirsk: SO RAN, 2012.
24. Postanovlenie pravitel’stva RF ot 24.12.2008 no. 988 (RF Government Regulation no. 988 as of December 24, 2008).
25. Oparin, V.N. and Smolyanitskii, B.N., Promote Efficiency of Drilling Equipments in Tunneling and Drilling Rock, Journal of Liaoning Technical University, 2009, vol. 28, no. 3.
26. Smolyanitskii, B.N., Povyshenie effektivnosti i dolgovechnosti impul’snykh mashin dlya sooruzheniya protyazhennykh skvazhin v porodnykh massivakh (Improvement of Operation and Endurance of Pulse-Generating Machines in Long Drilling in Rocks), Novosibirsk: SO RAN, 2013.
27. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. Akad. Nauk, 1979, vol. 247, no. 4.
28. Sadovsky, M.A., Discreteness of Rocks, Fiz. Zemli, 1982, no. 12.
29. Oparin, V.N., Fundamental Problems in Land Improvement under High Induced Impact, Deep Open Pits: Proc. All-Russian Conf. with Int. Participation, Apatity–Saint-Petersburg, 2012.
30. Oparin, V.N., Methodological Principles of Multilayer Geomechanical–Geodynamic Safety Monitoring Systems in Mining Areas with Active Tectonics, Problems and Paths of Innovative Development in the Mining Industry: Proc. 6th Int. Conf., Apatity, 2013.
31. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vol. 50, no. 1, pp. 142–154.
32. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46, no. 6, pp. 666–671.
33. Potapov, V.P., Oparin, V.N., Logov, A.B., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechanical–Geodynamic Control Geoinformation System with Entropy Analysis of Seismic Events (in Terms of Kuzbass), J. Min. Sci., 2013, vol. 49, no. 3, pp. 482–488.
34. Potapov, V.P., Matematicheskoe i informatsionnoe modelirovanie geosistem ugol’nykh predpriyatii (Mathematical and Informational Modeling of Geosystems in Mines), Novosibirsk: SO RAN, 1999.
35. Yee, R., ProWeb 2.0 Mashups: Remixing Data and Web Service, M. Moodie (Ed.), Springer-Verlag, New-York, 2008. 36. Wells, A.J., Grid Applications System Design, Aerbach Publications, New York, 2008.
37. Gebali, F., Algorithm and Parallel Computing, John Willey & Sons, Inc., New Jersy, 2011.
38. Cafaro, M. and Alliso, G. (Eds.), Grids, Clouds and Virtualization, Springer, London, New York, 2011.
39. Peterson, M. (Ed.), On Line Maps with AP and Web Service, Springer, New York, Heidelberg, 2012.
40. Logov, A.B., Oparin, V.N., Potapov, V.P., Schastlivtsev, Yu.L., and Yukina, N.I., Entropy Analysis of Process Wastewater Composition in Mineral Mining Region, J. Min. Sci., 2015, vol. 51, no. 1, pp. 186–196.
41. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Kharlampenkov, I.E., Fractal Analysis of Geodynamic Event Migration Paths in the Kuzbass Area, J. Min. Sci., 2012, vol. 48, no. 3, pp. 474–479.
42. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Kharlampenkov, I.E., Services for Cloud Computing and Seismic Data Processing for Geomechanically and Geodynamically Active Coal Mining Areas in Kuzbass, J. Min. Sci., 2015, vol. 51, no. 3, pp. 609–613.
43. Potapov, V.P., Oparin, V.N., Giniyatullina, O.L., and Kharlampenkov, I.E., Cloud Computing in Seismic Data Processing Based on Voronoi Diagrams Using Google App Engine, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1041–1048.
44. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Schastlivtsev, Yu.L., Studies into the Process of Mine Waste Dump Filling Up by Vegetation Using Remote Sensing Data, J. Min. Sci., 2013, vol. 49, no. 6, pp. 976–982.
45. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Andreeva, N.V., Water Body Pollution Monitoring in Vigorous Coal Extraction Areas Using Remote Sensing Data, J. Min. Sci., 2012, vol. 48, no. 5, pp. 934–940.
46. Oparin, V.N., Potapov, V.P., and Giniyatullina, O.L., Integrated Assessment of the Environment Condition of the High-Loaded Industrial Areas by the Remote Sensing Data, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1079–1087.
47. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., Andreeva, N.V., Schastlivtsev, Yu.L, and Bykov, A.A., Evaluation of Dust Pollution of Air in Kuzbass Coal-Mining Areas in Winter by Data of Remote Earth Sensing, J. Min. Sci., 2014, vol. 50, no. 3, pp. 549–558.
48. Oparin, V.N., Kiryaeva, Ò.À., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Òànaino, A.S., Efimov, V.P., Astrakhantsev, L.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
49. Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N., Nonlinear Deformation–Wave Processes in Different Rank Coal Specimens Loaded to Failure under Varied Temperature, J. Min. Sci., 2015, vol. 51, no. 4, pp. 641–658.
50. Federal Seismology and Earthquake Prediction System, Inform.-Analit. Byull. Spets. Vyp., 1999, no. 1.
51. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no. 1, pp. 1–11.
52. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, J. Min. Sci., 1999, vol. 35, no. 3, pp. 216–230.
53. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part II, J, Min, Sci., 2000, vol. 36, no. 4, pp. 305–326.
54. Oparin, V.N., Initiation and Growth of Disaster Sources in Geotechnical and Natural Systems: Energy-Based Approach, Environmental Strategy of Mining—A New Outlook in Mineral Wealth Development: Proc. All-Russian Sci. Conf. with International Participation, Apatity–Saint-Petersburg, 2014.
55. Mendecki, A., Characteristics of Seismic Hazard in Mines, The 8th Rockburst and Seismicity in Mines Symposium Proceedings: Keynote Lecture, Saint-Petersburg–Moscow, 2013.
56. Potvin, Y. and Wesseloo, J.U., Improving Seismic Risk Management in Hardrock Mines, The 8th Rockburst and Seismicity in Mines Symposium Proceedings: Keynote Lecture, Saint-Petersburg–Moscow, 2013.
57. van Aswegen, G., Forensic Rock Mechanics, Ortlepp Shears and Other Mining Induced Structures, The 8th Rockburst and Seismicity in Mines Symposium Proceedings: Keynote Lecture, Saint-Petersburg–Moscow, 2013.
58. Yakovlev, D.V., Lazarevich, T.N., and Tsirel’, S.V., Natural and Induced Seismic Activity in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 6, pp. 862–872.
59. Lazarevich, T.I. and Polyakov, A.N., Seismic and Geodynamic Mine Safety Monitoring in Kuzbass, Gornaya mekhanika i marksheiderskoe delo (Rock Mechanics and Surveying), Saint-Petersburg: VNIMI, 2009.
60. Mulev, S.N., Bondarev, A.V., and Panin, S.F., Introduction of Seismic Monitoring Systems in Russian Mines, Geodynamics and Stress State of the Earth’s Interior: Int. Sci. Conf. Proc., Novosibirsk: IGD SO RAN, 2013.
61. Prognoz nauchno-tekhnologicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 goda (Forecast of Science and Technology Development in the Russian Federation for the Period to 2030). Available at: http://government.ru/news/9800.
62. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., and Rozenbaum, M.A., USSR Discovery no. 400, Byull. Izobret., 1992, no. 1.
63. Brigada, V.S. and Zinchenko, N.N., Methane Release in Drainage Holes ahead of Coal Face, J. Min. Sci., 2014, vol. 50, no. 1, pp. 60–64.
64. Polevshchikov, G.Ya., Deformation–Wave Processes under Production Face Advance in Coal and Rocks, J. Min. Sci., 2013, vol. 49, no. 5, pp. 715–723.
65. Reuter, M., Krach, M., Kiesling, U., and Veksler, Yu., Zonal Disintegration of Rocks around Breakage Headings, J. Min. Sci., 2015, vol. 51, no. 2, pp. 237–242.
66. Guzev, M.A. and Makarov, V.V., Deformirovanie i razrushenie sil’noszhatykh gornykh porod vokrug vyrabotok (Deformation and Failure of High-Compression Rock Mass around Underground Excavations), Vladivostok: Dal’nauka, 2007.
67. Qian, Q., Zhou, X., and Xia, E., Effects of the Axial In Situ Stresses on the Zonal Disintegration Phenomenon in the Surrounding Rock Masses around a Deep Circular Tunnel, J. Min. Sci., 2012, vol. 48, no. 2, pp. 276–285.
68. Wang, X., Pan, Y., and Zhang, Z., A Spatial Strain Localization Mechanism of Zonal Disintegration through Numerical Simulation, J. Min. Sci., 2013, vol. 49, no. 3, pp. 357–367.
69. Kurlenya, M.V., and Oparin, V.N., Scale Factor of Phenomenon of Zonal Disintegration of Rock, and Canonical Series of Atomic and Ionic Radii, J. Min. Sci., 1996, vol. 32, no. 2, pp. 81–90.
70. Usanov, S.V., Mel’nik, V.V., and Zamyatin, A.L., Monitoring Rock Mass Transformation under Induced Movement, J. Min. Sci., 2013, vol. 49, no. 6, pp. 913–918.
71. Kurlenya, M.V., Oparin, V.N., Akinin, A.A., Yushkin, M.F. et al., On Some Features of Evolution of Harmonic Acoustic Signals in Loading Block Media with a Cylindrical Cavity, J. Min. Sci., 1999, vol. 35, no. 6, pp. 566–586.
72. Kurlenya, M.V. and Sboev, V.M., Dynamic Processes in High Stress and Strain Block Rock Mass, Geofizicheskie metody kontrolya napryazhenii v gornykh porodakh (Geophysical Methods of Stress Control in Rocks), Novosibirsk: IGD SO AN SSSR, 1980.
73. Yakovitskaya, G.E., Metody i tekhnicheskie sredstva diagnostiki kriticheskikh sostoyanii gornykh porod na osnove elektromagnitnoi emissii (Critical State Diagnostics Methods and Equipment Based on Electromagnetic Emission), Novosibirsk: Parallel’, 2008.
74. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
75. Oparin, V.N., Vostrikov, V. I. Usol’tseva, O.M., Tsoi, P.A., and Semenov, V. N. Measuring Equipment and Test Bench to Control Evolution of Acoustic-Deformation and Heat Fields Induced in Solids under Failure by Fluids, J. Min. Sci., 2015, vol. 51, no. 3, pp. 624–633.
76. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., and Krivetskii, A.V., Mechanical–Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
77. Adushkin, V.V., Trigger Seismicity in Kuzbass, Trigger Effects in Geo-Systems: Proc. 3rd All-Russia Workshop, V. V. Adushkin and G. G. Kocharyan (Eds.), Moscow: GEOS, 2015.
78. Lutikov, A.I., Dontsova, G.Yu., and Yunga, S.L., Seismic Aspects of Gorny Altai Earthquake on Sep 27, 2003, MS = 7.3 (Preliminary Analysis Results), Vestn. Otd. Nauk Zemle RAN: E-Zh., 2003, no. 1(21).
79. Ovsyuchenko, A.N., Rogozhin, E.A., Novikov, S.S., Marakhanov, A.V., and Lar’kov, A.S., Nature of Mass Faulting under Seismicity Activation in Central Kuzbass, Vopr. Inzh. Seismol., 2010, no. 37(4).
80. Geologo-promyshlennaya karta Kuznetskogo basseina (masshtab 1:100000) (Geology and Industry Map of the Kuznetsk Basin, Scale 1:100000), Novosibirsk: SNIIGGiMS, 20000.
81. Zemletryaseniya v Rossii v 2005 godu (Earthquakes in Russia in 2005), Obninsk: GS RAN, 2007.
82. Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shevkunova, E.V., and Podkorytova, E.G., Mining-Induced Seismicity at Open-Pit Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013), J. Min. Sci., 2014, vol.50, no. 2, pp. 224–228.
83. Adushkin, V.V., Blasting-Induced Seismicity in Russia’s European Part, Fiz. Zemli, 2013, no. 2.
84. Emanov, A.V., Emanov, A.A., Leskova, E.V., and Kolesnikov, Yu.I., Production Blasts and Induced Seismicity, Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovania (Modern Geodynamics of Rock Mass in the Upper Part of the Lithosphere: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
85. Emanov, A.V., Emanov, A.A., Leskova, E.V., Fateev, A.V., and Semin, A.Yu., Seismicity Activation under Coal Mining in Kuzbass, Fiz. Mezomekh., 2009, vol. 12, no. 1.
86. Bryksin, A.A. and Seleznev, V.S., Mining-Induced Impacts on Seismicity in Kuzbass and the Baikal Lake Area, Geolog. Geofiz., 2012, vol. 53, no. 3.
87. Sanina, I., Gabsatarova, I., Chernykh, O., Riznichenko, O., Volosov, S., Nesterkina, M., and Konstantinovskaya, N., The Mikhnevo Small Aperture Array Enhances the Resolution Property of Seismological Observations on the East European Platform, J. Seismol., 2011, vol. 15, pp. 545–556.
88. Sverkhglubokie skvazhiny Rossii i sopredel’nykh regionov (Ultradeep Boreholes in Russia and Adjacent Territories), Saint-Petersburg: VSEGEI, 1995.
89. Oparin, V.N., Yushkin, V.F., Porokhovskii, N.N., Grishin, A.N., Kulinich, N.A., Rublev, D.E., and Yushkin, A.V., Effect of Large-Scale Blasting on Spectrum of Seismic Waves in a Stone Quarry, J. Min. Sci., 2014, vol. 50, no. 5, pp. 765–877.
90. Polevshchikov, G.Ya., Kiryaeva, T.A., and Plaksin, M.S., Geodynamic Aftereffects of Zonal Disintegration in Coal, Geodynamics and Stress State of the Earth’s Interior: Proc. Sci. Conf. with Int. Participation, Novosibirsk: IGD SO RAN, 2011.


THEORETICAL EXPLANATION OF CONDITIONS FOR SINKHOLES AFTER EMERGENCY FLOODING OF POTASH MINES
A. A. Baryakh, S. Yu. Devyatkov, and N. A. Samodelkina

Mining Institute, Ural Branch, Russian Academy of Sciences,
ul. Sibirskaya 78a, Perm, 614007 Russia
e-mail: bar@mi-perm.ru

The authors discuss conditions for sinkholes in the ground after the active phase of potash mine flooding has been completed. The mathematical modeling shows that interconnected signs of sinkholing are localization of subsidence in a comparatively small area, high gradients of subsidence at the boundaries of this area and occurrence of a solution cavity sufficient to accommodate the caved volume. The research findings are promising in terms of adequate space–time prediction of dynamic failure of strata above flooded mines.

Mine flooding, dissolution of rocks, sinkholes, mathematical modeling, failure

DOI: 10.1134/S1062739116010101 

REFERENCES
1. Shiman, M.I., Predotvrashchenie zatopleniya kaliinykh rudnikov (Potash Mine Flooding Prevention), Moscow: Nedra, 1992.
2. Prugger, F.F. and Prugger, A.F., Water Problems in Saskatchewan Mining—What Can Be Learned from Them? CIM Bulletin, 1991, vol. 84, no. 945.
3. Baryakh, A.A., Samodelkina, N.A., Potapov, A.A., and Konosavskii, P.K., Ground Deformation Prediction under Emergency Flooding of Potash Mines, Proc. 4th Int. Sci. Conf. Theory and Practice of Geomechanics for the Efficiency of Mining and Construction, Varna, Bulgaria, 2010.
4. Shokin, Yu.P., Analysis of Causes of Mine Flooding with Groundwater and Brine in FRG and GDR, Trudy VNIIG, 1969, issue 51.
5. Whyatt, J. and Varley, F., Catastrophic Failures of Underground Evaporite Mines, Proc. 27th Int. Conf. Ground Control in Mining, NIOSH, Spokane Research Laboratory, USA, 2008.
6. Rauche, H., Sinkhole Formation over Flooded Potash Mines—A Case Studies from the Motherland of the Potash Industry, Fall 2000 Meeting San Antonio Proc., Texas, USA, 2000.
7. Krasnoshtein, A.E., Baryakh, A.A., and Sanfirov, I.A., Geotechnical Accidents: Berezniki Potash Mine-1 Flooding, Vestn. PNTs UrO RAN, 2009, no. 2.
8. Baryakh, A.A. and Sanfirov, I.A., Nature of Sinks after Berezniki Mine-1 Flooding, Strategiya i protsessy osvoeniya georesursov: sb. nauch. tr. (Strategy and Processes of Mineral Mining: Collection of Scientific Papers), Perm: GI UrO RAN, 2012.
9. Busch, W., Hebel, H.-P., Schafer, M., Walter, D., and Baryakh, A.A., Undermined Surface Control using Radar Interferometry, Marksheider. Nedropol’z., 2009, no. 2.
10. Samodelkina, N.A., Prediction of Negative Aftereffects of Berezniki Mine-1 Flooding, Strategiya i protsessy osvoeniya georesursov: sb. nauch. tr. (Strategy and Processes of Mineral Mining: Collection of Scientific Papers), Perm: GI UrO RAN, 2013.
11. Devyatkov, S.Yu., Determination of Sinking Conditions on Ground Surface, Strategiya i protsessy osvoeniya georesursov: sb. nauch. tr. (Strategy and Processes of Mineral Mining: Collection of Scientific Papers), Perm: GI UrO RAN, 2013.
12. Baryakh, A.A. and Samodelkina, N.A., Rheological Analysis of Geomechanical Processes, J. Min. Sci., 2005, vol. 41, no. 6, pp. 522–530.
13. Amusin, B.Z. and Lin’kov, A.M., Variable Moduli in Solving Linear–Hereditary Creep Problems, Mekh. Tverd. Tela, 1974, no. 6.
14. Kuznetsov, G.N., Mekhanicheskie svoistva gornykh porod (Mechanical Properties of Rocks), Moscow: Ugletekhizdat, 1947.
15. Baryakh, A.A., Asanov, V.A., and Pan’kov, I.L., Fiziko-mekhanicheskie svoistva solyanykh porod Verkhnekamskogo kaliinogo mestorozhdeniya: ucheb. posob. (Physico-Mechanical Properties of Salt Rocks at the Upper Kama Potash Deposit: Educational Aid), Perm: PTU, 2008.
16. Zienkiewicz, O., Finite Element Method in Engineering Science, McGraw-Hill Inc., USA, 1972.
17. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.
18. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
19. Baryakh, A.A., Asanov, V.A., Samodelkina, N.A., Pan’kov, I.L., and Telegina, E.A., Geomechanical Support of Flooding Protection in Potash Mines, Gornyi Zh., 2013, no. 6.
20. Baryakh, A.A. and Samodelkina, N.A., Water-Tight Stratum Rupture under Large-Scale Mining. Part II, J. Min. Sci., 2012, vol. 48, no. 6, pp. 954–961.


MODERN SEISMICITY IN MINING AREAS IN THE MURMANSK REGION
Yu. A. Vinogradov, V. E. Asming, E. O. Kremenetskaya, and D. V. Zhirov

Geophysical Service, Russian Academy of Sciences,
ul. Fersmana 14, Apatity, 184209 Russia
e-mail: vin@krsc.ru
Geological Institute, Kola Science Center, Russian Academy of Sciences,
ul. Fersmana 14, Apatity, 184209 Russia
e-mail: zhirov@geoksc.apatity.ru

The Murmansk Region in the northeastern Baltic Shield has been for long assumed as aseismic. Initiated in the 1950s, the regular instrumental seismological studies allow new data on the essential increment in seismicity, demonstrated in the maps of the general seismic zoning of the territory of Russia. Powerful mining industry in the Murmansk Region also induces many seismic events. This article analyzes natural and induced seismicity and their cross-effect.

Induced seismicity, seismic event, earthquake, blast, rock burst

DOI: 10.1134/S1062739116010113 

REFERENCES
1. Lovchikov, A.V., Rock Bursts at Lovozero Rare Metal Deposit, Vestn. MGTU, 2008, vol. 1, no. 3.
2. Lovchikov, A.V., Review of the Strongest Rockbursts and Mining-Induced Earthquakes in Russia, J. Min. Sci., 2013, vol. 49, no. 4, pp. 572–575.
3. Vinogradov, A.N., Vinogradov, Yu.A., Kremenetskaya, E.O., and Petrov, S.I., Arrangement and Prospects of Seismological and Infrasound Monitoring in the Western Arctic in the 21st Century, Vestn. KNTs RAN, 2012, no. 4.
4. Panasenko, G.D., Seismicheskie osobennosti severo-vostoka Baltiyskogo shchita (Seismic Features of the Northeastern Baltic Shield), Leningrad: Nauka, 1969.
5. Stepanov, V.V., Geodinamicheskaya opasnost’ promyshlennykh ob’ektov (Seismic Hazard of Industrial Infrastructure), Moscow, 2001.
6. Baranov, S.V., Asming, V.E., Vinogradov, A.N., and Vinogradov, Yu.A., Results of Instrumental Seismic Survey on the Kola Peninsula, Zemletryaseniya i mikroseismichnost’ v zadachakh sovermennoi geodinamiki Vostochno-Evropeiskoi platformy (Earthquakes and Microseismicity in Problems of Modern Geodynamics of the East European Platform), N. V. Sharov, A. A. Malovichko, and Yu.K. Shchukin (Eds.), Book. 1, Petrozavodsk: KNTs, 2007.
7. Kremenetskaya, E., Asming, V., Jevtjugina, Z., and Ringdal, F., Study of Regional Surface Waves and Frequency-Dependent Ms:mb. Discrimination in the European Arctic, Pure Appl. Geophys., 2002, vol. 159.
8. Vinogradov, A.N., Vinogradov, Yu.A., and Evtyugina, Z.A., Joint Seismic and Infrasound Monitoring Methods to Reveal Signals Induced by Surface Explosions, Modern Processing and Interpretation of Seismic Data: Proc. 2nd Int. Seism. School, Obninsk: GS RAN, 2007.
9. Godzikovskaya, A.A., Asming, V.E., and Vinogradov, Yu.A., Retrospektivnyi analiz pervichnykh materialov po seismichnosti Kol’skogo poluostrova i prilegayushchikh territorii v XX veke (Back Analysis of Early Seismicity Data on the Kola Peninsula and Adjacent Areas in the 20th Century), Moscow: GS RAN, 2010.
10. Nikolaeva, S.B., Paleo-Seismo-Deformations in the North-East of the Baltic Shield, Cand. Tech. Sci. Dissertation, Saint-Petersburg, 2001.
11. Mel’nikov, N.N. (Ed.), Seismichonst’ pri gornykh rabotakh (Seismicity on Mining), Apatity: KNTs RAN, 2002.
12. Korchak, P.A., Zhukova, S.A., and Men’shikov, P.Yu., Initiation and Maturation of Seismic Monitoring in the Area of Operation of Apatit, Gornyi Zh., 2014, no. 10 (2207).


ELASTOPLASTIC PROBLEM FOR NONCIRCULAR OPENINGS UNDER COULOMB’S CRITERION
A. G. Protosenya, M. A. Karasev, and N. A. Belyakov

National Mineral Resources University—Mining University,
V.O. 21-aya liniya 2, Saint-Petersburg, 199026 Russia
e-mail: kaf-sgp@mail.ru

An elastoplastic problem is considered for elliptical, arched, square and polygonal cross-section openings on the assumption of Coulomb’s limit equilibrium and varied lateral earth pressure coefficients in intact rock mass. The problem is solved using the method of small parameters and the finite element method. The elastoplastic solutions are obtained for mutually influencing underground openings. The mechanisms of concentration of vertical stresses in a pillar established between mutually influencing openings are determined.

Elastoplastic problem, Coulomb’s condition, underground opening, stress, critical state zone

DOI: 10.1134/S1062739116010125 

REFERENCES
1. Galin, L.A., Elastoplastic Plane Problem, Prikl. Matem. Mekh., 1946, vol. 10, issue 3.
2. Cherepanov, G.P., A Method to Solve Elastoplastic Problems, Prikl. Matem. Mekh., 1963, vol. 27, issue 3.
3. Annin, B.D., Elastoplastic Stress Distribution in Plane with Holes, Dokl. AN SSSR, 1969, vol. 184, no. 2.
4. Perlin, P.I., Elastoplastic Problem Solution for Doubly Connected Zones, Inzh. Zh., 1961, vol. 2, issue 4.
5. Ivlev, D.D. and Ershov, L.V., Metod vozmushchenii v teorii uprugoplastichsekogo tela (Perturbation Method in the Elastoplastic Body Theory), Moscow: Nauka, 1978.
6. Savin, G.N., Raspredelenie napryazhenii okolo otverstii (Stress Distribution at Holes), Kiev: Naukova Dumka, 1968.
7. Annin, B.D. and Cherepanov, G.P., Uprugo-plasticheskaya zadacha (Elastoplastic Problem), Novosibirsk: Nauka, 1983.
8. Annin, B.D., A Plane Elastoplastic Problem under Exponential Flow Condition, Inzh. Zh.: Mekh. Tverd. Tela, 1966, no. 3.
9. Ruppeneit, K.V., Nekotorye voprosy mekhaniki gornykh porod (Some Issues of Rock Mechanics), Moscow: Ugletekhizdat, 1954.
10. Stavrogin, A.N. and Protosenya, A.G., Plastichnost’ gornykh porod (Rock Plasticity), Moscow: Nedra, 1979.
11. Chanyshev, A.I. and Imamutdinov, D.I., Elastoplastic Problem of an Extended Cylindrical Working, J. Soviet Mining, 1988, vol. 24, no. 3, pp. 199–207.
12. Sazhin, V.S., Elastoplastic Stress Distribution around Square, Oval and Arched Cross Section Openings, Osnovaniya, fundamenty i podzemnye sooruzheniya (Footing, Foundations and Underground Structures), Moscow: Stroiizdat, 1967.
13. Protosenya, A.G., Karasev, M.A., and Belyakov, N.A., Numerical Simulation of Rock Mass Limit State Using Stavrogin’s Strength Criterion, J. Min. Sci., 2015, vol. 51, no. 1, pp. 31–37.


EFFECT OF CONTACT CONDITIONS ON LIMITING STATE PARAMETERS, ELASTICITY MODULI AND FAILURE MODES OF ROCK SPECIMENS UNDER COMPRESSION
Yu. A. Kostandov

Vernadsky Crimean Federal University,
pr. Akademika Vernadskogo 4, Simferopol, 295007 Russia
e-mail: yuakos@mail.ru

The study is devoted to effect of contact friction on failure, ultimate stress and moduli of elasticity in rock specimens under compression. It is found that dependence of the listed characteristics on friction coefficient is incremental. The author reveals zones of full contact and slide.

Compression, failure, contact friction coefficient, critical state parameters, contact zone, slide zone

DOI: 10.1134/S1062739116010137 

REFERENCES
1. Guz’, A.N., Osnovy mekhaniki razrusheniya kompozitov pri szhatii (Basic Mechanics of Failure of Composites), Kiev: Litera LTD, 2008.
2. Slepyan, L.I., Mekhanika treshchin (Fracture Mechanics), Leningrad: Sudostroenie, 1990.
3. Kachanov, L.M., Osnovy mekhaniki razrusheniya (Fundamentals of Failure Mechanics), Moscow: Nauka, 1974.
4. Bartenev, G.M., Prochnost’ i mekhanizm razrusheniya polimerov (Strength and Failure Mechanism of Polymers), Moscow: Khimiya, 1984.
5. Vasil’ev, L.M. and Vasil’ev, D.L., Theoretical Ground for Origination of Normal Horizontal Stresses in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 2, pp. 240–247.
6. Baron, L.I., Experimental Estimation of Rock Hardness of Protodyakonov’s Scale by Squeeze Test of Drill Cores, Razrushenie uglei i gornykh porod (Failure of Coals and Rocks), Moscow: Ugletekhizdat, 1958.
7. Gol’dshtein, R.V., Structures in Failure Processes, Izv. RAN, Mekh. Tverd. Tela, 1999, no. 5.
8. Shtaerman, I.Ya., Kontaktnye zadachi teorii uprogosti (Contact Problems of Elasticity Theory), Moscow: Gostekhizdat, 1949.
9. Galin, L.A., Kontaktnye zadachi teorii uprugosti (Contact Problems of Elasticity Theory), Moscow: Gostekhizdat, 1953.
10. Timoshenko, S.P., Kurs teorii uprugosti (Course on Theory of Elasticity), Kiev: Naukova Dumka, 1972.
11. Muzdakbaev, M.M. and Nikiforovskii, V.S., Compression Strength of Materials, Prikl. Matem. Tekh. Fiz., 1978, no. 2.
12. Beisetaev, R.B. and Nikiforovskii, V.S., Strength of Solids under Uniaxial Compression, J. Min. Sci., 1976, vol. 12, no. 3, pp. 244–248.
13. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow: Nauka, 1974.
14. Mirenkov, V.E. and Krasnovsky, A.A., Damage Accumulation in a Piecewise–Homogeneous Rock Block under Compression, J. Min. Sci., 2012, vol. 48, no. 4, pp. 622–628.
15. Aptukov, V.N., Konstantinova, S.A., and Merzlyakov, A.F., Fracturing Behavior of Feather Rock Salt Samples under Compression, J. Min. Sci., 2009, vol. 45, no. 3, pp. 250¬256.
16. Nazarova, L.A. and Nazarov, L.A., Estimation of Pillar Stability Based on Viscoelastic Model of Rock Mass, J. Min. Sci., 2005, vol. 41, no. 5, pp. 399–406.
17. Popov, V.L., Contact Mechanics and Friction: Physical Principles and Applications, Springer-Verlag: Berlin, Heidelberg, 2010, no. 25.
18. Fridriksson, B., Finite Elements Solutions of Surface Nonlinearities in Structural Mechanics with Special Emphasis to Contact and Fracture Mechanics Problems, Corn-put. and Struct., 1976.
19. Fridriksson, Â., Rejdholm, G., and Sjoblom, P., Variational Inequalities in Structural Mechanics with Emphasis on Contact Problems, Finite Elements in Non-Linear Mechanics, 1978, no. 2.
20. Solodovnikov, V.N., Theory of Normal Contact of Solids, Prikl. Mekh. Tekh. Fiz., 2000, vol. 41, no. 1.
21. Aleksandrov, V.M. and Chebakov, M.I., Vvedenie v mekhaniku kontaktnykh vzaimodeistvii (Introduction to the Contact Interaction Mechanics), Rostov-on-Don: TsVVR, 2007.
22. Alekseev, A.E., Nonlinear Laws of Dry Friction in the Contact Problems of the Linear Elasticity Theory, Prikl. Mekh. Tekh. Fiz., 2002, vol. 43, no. 4.
23. Kostandov, Yu.A. and Medvedev, V.S., Analysis of Limiting State of Fractured Brittle Bodies under Uniaxial Compression, Zavod. Lab., 2011, no. 3.
24. Kostandov, Yu.A., Estimation of External and Internal Friction Coefficients of materials, Zavod. Lab., 2011, no. 2.
25. Bazhenov, Yu.M., Tekhnologiya betona: ucheb. posob. (Concrete Technology: Study Guide), Moscow: Vyssh. Shkola, 1987.


GENERATING METHANE ADSORPTION UNDER RELAXATION OF MOLECULAR STRUCTURE OF COAL
A. F. Bulat, S. P. Mineev, and A. A. Prusova

Polyakov Institute of Geotechnical Mechanics, National Academy of Sciences of Ukraine,
ul. Simferopolskaya 2a, Dnepropetrovsk, 49005 Ukraine
e-mail: sergmineev@gmail.com

Transformation of molecular structure of coal under long-term effect of confining pressure due to strain relaxation is estimated numerically. It is found that both under dynamic deformation, as has been determined earlier, and under relaxation of molecular structure of coal, atoms of methyl group and hydrogen remove from aliphatic fringe, join together and form molecules of methane. It is shown that these molecules immediately form sorbing-based connection with coal. Volumes of methane adsorption generated in coal due to strain relaxation of molecular structure of coal are calculated.

Coalbed, transformation of molecular structure of coal, relaxation, methane adsorption, mass transfer, methane volume

DOI: 10.1134/S1062739116010149 

REFERENCES
1. Bulat, A.F., Skipochka, S.I., Palamarchuk, T.A., and Antsiferov, V.A., Metanogeneratsiya v ugol’nykh plastakh (Methane Generation in Coalbeds), Dnepropetrovsk: Lira LTD, 2010.
2. Mineev, S.P., Prusova, A.A., and Kornilov, M.G., Aktivatsiya desorbtsii metana v ugol’nykh plastakh (Methane Desorption Activation in Coalbeds), Dnepropetrovsk: Veber, 2007.
3. Saranchuk, V.I., Airuni, A.T., and Kovalev, K.E., Nadmolekulyarnaya organizatsiya, struktura i svoistva uglya (Supermolecular Arrangement, Structure and Properties of Coal), Kiev: Naukova Dumka, 1988.
4. Bobin, V.A., Strukturnaya transformatsiya gazonasyshchennogo ugol’nogo veshchestva: Dal’neishee razvitie fizicheskoi khimii gazonosnogo ugol’nogo plasta (Structural Transformation of Gas-Saturated Coal Substance: Further Development of Physical Chemistry of Gaseous Coalbed), LAP LAMBERT Academic Publishing, 2004.
5. Kuznetsov, S.V. and Bobin, V.A., Desorption Kinetics during Gasdynamic Phenomena in Collieries, J. Min. Sci., 1980, vol. 16, no. 1, pp. 49–55.
6. Alekseev, A.D., Fizika uglya i gornykh protsessov (Physics of Coal and rock Mass Processes), Kiev: Naukova Dumka, 2010.
7. Mineev, S.P., Svoistva gazonasyshchennogo uglya (Gas-Saturated Coal Properties), Dnepropetrovsk: NGU, 2009.
8. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy metana ugol’nykh plastov (Fundamental and Applied Methods to Deal with Coalbed Methane), Moscow: Akad. Gorn. Nauk, 2000.
9. Tenford, Ch., Physical Chemistry of Macromolecules, New York: Willey, 1961.
10. Kuleznev, V.N. and Shershnev, V.A., Khimiya i fizika polimerov (Chemistry and Physics of Polymers), Moscow: Vyssh. Shkola, 1988.
11. Garkalenko, I.A., Zaichenko, V.Yu., Mikhed’ko, A.F., and Razvalov, N.P., Metodika geofizicheskikh issledovanii skvazhin Donbassa (Procedure of Geophysical Borehole Surveying in Donbass), Kiev: Naukova Dumka, 1971.
12. Glinka, N.L., Obshchaya khimiya (General Chemistry), Leningrad: Khimiya, 1978.
13. Ratner, S.B., Physical Laws in Predicting Serviceability of Engineering Plastics, Plast. Massy, 1990, no. 6.
14. State Standard GOST 2939–63. Gases. Volume Determination Conditions, Moscow: Gosstandart, 1988.
15. Design and Uncertainty for a PVTt Gas Flow Standard, Journal of Research of the National Institute of Standards and Technology, 2003, vol. 108, no. 1.
16. Kuz’michev, V.E., Zakony i formuly fiziki (Laws and Formulas of Physics), Kiev: Naukova Dumka, 1989.
17. Barash, S.Yu., Sily Van-der-Vaal’sa (van der Waals Forces), Moscow: Nauka, 1988.
18. Ettinger, I.L., Fizicheskaya khimiya gazonosnogo ugol’nogo plasta (Physical Chemistry of Gaseous Coalbed), Moscow: Nauka, 1981.
19. Bobin, V.A., Zimokov, V.N., and Odintsev, V.N., Estimating the Intermolecular Repulsion Energy of Sorbate Molecules in Coal Micropores, J. Min. Sci., 1989, vol. 25, no. 5, pp. 441–447.
20. Yavorsky, B.M. and Detlaf, A.A., Spravochnik po fizike (Handbook of Physics), Moscow: Nauka, 1968.
21. Physical Acoustics. Part 1: Principles and Methods, A. Warren P. Mason (Ed.), New York: Academic Press, 1964.
22. Gregg, S.J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, London and New York: Academic Press, 1967.
23. Feit, G.N. and Malinnikova, O.N., Features and Laws of Geomechanical and Physico-Mechanical Processes of Gasdynamic Hazard Source Initiation in Mines, GIAB, 2007, vol. 13, no. 1.
24. Myuller, R.L., Potential Role of Chemical Processes in Coal and Gas Outbursts in Mines, Voprosy teorii vnezapnykh vybrosov uglya i gaza (Issues of Coal and Gas Outburst Theory), Moscow: IGD AN SSSR, 1959.


MINERAL MINING TECHNOLOGY


EFFICIENCY OF CYCLICAL-AND-CONTINUOUS METHOD IN OPEN PIT MINING
V. L. Yakovlev, G. D. Karmaev, V. A. Bersenev, A. V. Glebov, A. V. Semenkin, and I. G. Sumina

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: glebov@igduran.ru

The article reviews in brief application of cyclical-and-continuous method in the conveyor-and-truck haulage in open pit mines. Consumption of materials and power is evaluated as a function of mined rock haulage volumes and depth of crush-and-reload station position in an open pit mine. The change in capital and operational cost to transport ore and hard overburden is studied at varied distances from a crush-and-reload station in open pit to a surface receiving station. Efficiency of the conveyor-and-truck haulage using cyclical-and-continuous method is evaluated. In terms of deep and large mineral deposits, the authors substantiate positions for crush-and-reload stations in large open pit mines.

Cyclical-and-continuous method, crush-and-conveyor unit, conveyor-and-truck haulage, crush-and-reload station, specific cost

DOI: 10.1134/S1062739116010174 

REFERENCES
1. Vasil’ev, V.M., Kombinirovannyi transport na kar’erakh (Combination Transport in Open Pit Mines), Moscow: Nedra, 1975.
2. Karmaev, G.D., Glebov, A.V., and Bersenev, V.A., Design and Operation Practice and Prospects for Cyclical-and-Continuous Method in Open Pit Mines, Gorn. tekhn. Dobycha, transport pererab. Polezn. iskop.: katalog-sprav., 2013, no. 1(11).
3. Yakovlev, V.L., Teoriya i praktika vybora transporta glubokikh kar’erov (Theory and Application of Transport Selection for Deep Open Pit Mines), Novosibirsk: Nauka, 1989.
4. Bersenev, V.A., Karmaev, G.D., Bakhturin, Yu.A., and Sumina, I.G., RF patent no. 2498068, Byull. Izobret., 2013, no. 31.
5. Kuleshov, A.A., Moshchnye ekskavatorno-avtomobil’nye kompleksy kar’erov (Heavy-Duty Shovel-and-Dump Truck Systems in Open Pit Mines), Moscow: Nedra, 1980.
6. Faddeev, B.V., Konveiernyi transport na rudnykh kar’erakh (Conveyor Transport in Open Pit Ore Mines), Moscow: Nedra, 1972.


PREDICTIVE ANALYSIS OF SLOPE STABILITY OF INTERNAL DUMPS IN TAMNAVA–WEST FIELD MINE AFTER FLOODING
B. Petrović, S. Vujić, V. Čebašek, G. Gajić, and D. Ignjatović

Elektroprivreda Srbije (EPS), Kolubara Mining Basin,
Lazarevac, Serbia
e-mail: branko.petrovic@rbkolubara.rs
Mining Institute of Belgrade,
Batajnicki put 2, Belgrade, 11080 Serbia
e-mail: slobodan.vujic@ribeograd.ac.rs
University of Belgrade,
Studentski trg, 1, Belgrade, 11000 Serbia
e-mail: vcebasek@rgf.bg.ac.rs

The article reports the results of estimation of internal dump slope stability in flooded open pit coal mine Tamnava–West Field. The geostatic analysis of stability used methods by Bishop and Morgenstern–Price. The studies confirm that slopes of internal dump are sufficiently stable and sustain stability after drainage of the open pit.

Open pit mine, internal dump, slope stability, geostatic analysis

DOI: 10.1134/S1062739116010186 

REFERENCES
1. Ignjatovic, D., et al., Evaluation of Investment Needed for the Improvement of Mining Equipment on OCM Tamnava–West Field and OCM Veliki Crljeni, University of Belgrade, Belgrade, 2014.
2. Vujic, S., et al., Serbian Mining and Geology in the Second Half of XX Century, Academy of Ångineering Sciences of Serbia, Maticasrpska and the Mining institute of Belgrade, Belgrade, 2014.
3. Mining Basin Kolubara–Branch-Project), Additional Mining Project on OCM Tamnava–West Field, 2012.
4. Mining Basin Kolubara–Branch-Project), Project on Geotechnical Investigations of the Western Final Slopes on OCM Tamnava–West Field in the Area of Retention Dam Kladnica, 2003.
5. Gojkovic, N., et al., Stability of Dump Site on Open Cast Mines, University of Belgrade, Belgrade, 2008.
6. Revuzhenko, A.F., Mechanics of Granular Media: Some Basic Problems and Applications, J. Min. Sci., 2014, vol. 50, no. 5, pp. 819–830.
7. Siemek, J. and Stopa, J., Analytical Model of Water Flow in Coal with Active Matrix, Archives of Mining Sciences, 2014, vol. 59, issue 4.
8. Zuev, L. B. , Barannikova, S.A., Nadezhkin, M.V., and Gorbatenko, V.V., Localization of Deformation and Prognostibility of Rock Failure, J. Min. Sci., 2014, vol. 50, no. 1, pp. 43–49.


PROSPECTS FOR UNDERGROUND LEACHING IN GOLD MINES
A. G. Sekisov, Yu. S. Shevchenko, and A. Yu. Lavrov

Chita Division, Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
ul. Aleksandro-zavodksaya 30, Chita, 672032, Russia
e-mail: sekisovag@mail.ru

The authors describe experiments on pretreatment of ore by injection of explosive gases before underground leaching of gold in mine conditions. It is shown that injection of explosive gases into opening micro-fractures enhances efficiency of underground leaching owing to microstructural transformation of ore containing dispersed gold.

Undergound mine leaching, dispersed gold, explosive gas injection, microstructural transformation

DOI: 10.1134/S1062739116010198 

REFERENCES
1. Geologicheskie issledovaniya i gorno-promyshlennyi kompleks Zabaikal’ya (Geological Exploration and Mining Industry in Transbaikalia), Novosibirsk: Nauka, 1999.
2. Stroitel’stvo i ekspluatatsiya rudnikov podzemnogo vyshchelachivaniya (Construction and Operation of Underground Leaching Mines), Moscow: Nedra, 1987.
3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stress Geomedia. Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.
4. Fazlullin, M.I., Shatalov, V.V., Gurov, V.A., Avdonin, G.I., Smirnova, R.N., and Stupin, V.I., Prospects for Underground Borehole Gold Leaching in Russia, Tsv. Metally, 2002, no. 10.
5. Lunev, L.I., Shakhtnye sistemy razrabotki mestorozhdenii urana podzemnym vyshchelachivaniem (Mine Systems for Uranium Production by Underground Leaching), Moscow: Energoizdat, 1982.
6. Tolstov, E.A., Fiziko-khimicheskie geotekhnologii osvoeniya mestorozhdenii urana i zolota v Kyzylkumskom regione (Physicochemical Geotechnologies for Uranium and Gold Production in Kyzylkum Region), Moscow: MGGU, 1999.
7. Shumilova, L.V., Experimental Testing of the Combined Oxidation Procedure for Gold-Bearing Sulfide Ores and Concentrates, J. Min. Sci., 2009, vol. 45, no. 5, pp. 506–508.
8. Dement’ev, V.E., Druzhina, G.Ya., and Gudkov, S.S., Kuchnoe vyshchelachivanie zolota i serebra (Heap Leaching of Gold and Silver), Irkutsk: Irgiredmed, 2004.
9. Mel’nikov, N.V. and Marchenko, L.N., Energiya vzryvov i konstruktsiya zaryadov (Energy of Explosions and Designs of Charges), Moscow: Nedra, 1964.
10. Tanstyrev, G.D. and Nikolaev, E. N. Cluster Formation under Ion Bombarding of Films of Frozen Polar Substances, Pis’ma ZhETF, 1971, vol. 13.
11. Sekisov, A., Paronyan, A., Kouzin, V., and Lalabekyan, N. USA patent no. 5.942.098, International Class C 25 B 001/00, C 25 C 001/20. Filed 12.04.96.
12. Oparin, V.N., Reznik, Yu.N., Sekisov, A.G., Tapsiev, A.P., Khakulov, V.A., Freidin, A.M., Cheskidov, V.I., and Chechetkin, V.S., RF patent no. 2412350, Byull. Izobret., 2011, no. 5.


IMPROVEMENT OF BOTTOM STRUCTURE OF. A. PRODUCTION BLOCK IN ORE DRAWING USING LOAD–HAUL–DUMPERS
I. V. Sokolov, A. A. Smirnov, Yu. G. Antipin, and K. V. Baranovskii

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: geotech@igduran.ru

High-rate ore drawing with a single drawpoint requires stable structure of the horizon bottom in block caving of ore. Application of load–haul–dumpers (LHD) conditions longer spacing of drawpoints, which worsens quality of ore drawing under caved rock. Adequate structures of trench bottoms of ore drawing levels are developed for LHD systems. Relations are set between the limit spacing of drawpoints along the length of the trench and the height of the caved level to define mutual influence of the drawpoints.

Ore drawing and handling, trench bottom, load–haul–dumpers

DOI: 10.1134/S106273911601020X

REFERENCES
1. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., Baranovskii, K.V., Nikitin, I.V., and Shirokov, M.A., Evaluation of Hybrid Underground Geotechnology for Sarbai Deposit, GIAB, 2013, no. 4.
2. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Sovershenstvovanie geotekhnologii osvoeniya zhelezorudnykh udaroopasnykh mestorozhdenii v uslovii deistviya prirodnykh i tekhnogennykh faktorov (Improvement of Geotechnology for Rockburst-Hazardous Iron Ore Mining under Natural and Induced Impacts), Novosibirsk: Nauka, 2008.
3. Demidov, Yu.V., Svinin, V.S., Belousov, V.V., Sakharov, A.N., and Leont’ev, A.A., Improvement of Trench Design in Production Block Bottom Using Self-Propelled Equipment for Ore Drawing in Block Caving in Apatit Mines, Gornyi Zh., 2008, no. 2.
4. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Baranovskii, K.V., Rational Design of Ore Discharge Bottom in Transition from Open Pit to Underground Mining in Udachny Mine, J. Min. Sci., 2013, vol. 49, no. 1, pp. 90–98.
5. Abramov, V.F., Drozdov, V.S., Baranov, A.O., Fomichev, S.E., Kagan, G.F., and Martirosov, A.M., Enhanced Stability of Production Block Bottoms in Molybdenum Mine, Tsvet. Metall., 1976, no. 19.
6. Abramov, V.F., Lushnikov, V.I., and Bobin, S.A., Improved Design of Production Block Bottoms in Mining Systems with Bottom Drawing of Ore, Gornyi Zh., 1986, no. 5.
7. Skornyakov, Yu.G., Sistemy razrabotki i kompleksy samokhodnykh mashin pri podzemnoi dobyche rud (Mining Systems and Self-Propelled Machines in Underground Ore Mining), Moscow: Nedra, 1986.
8. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., Baranovskii, K.V., Nikitin, I.V., and Shirokov, M.A., RF patent no. 2502871, Byull. Izobret., 2013, no. 36.
9. Malakhov, G.M., Bezukh, R.V., and Petrenko, P.D., Teoriya i praktika vypuska rudy (Ore Drawing Theory and Practice), Moscow: Nedra, 1968.
10. Kulikov, V.V., Vypusk rudy (Ore Drawing), Moscow: Nedra, 1980.
11. Malofeev, D.E., Razvitie teorii ipraktiki vypuska rudy pod obrushennymi porodami (Development of the Theory and Practice of Ore Drawing from under Caved Rocks), Krasnoyarsk: SFU, 2007.
12. Ikonnikov, A.N., Modification of Ore Drawing from Caved Blocks, Izv. vuzov, Gornyi Zh., 1964, no. 11.
13. Ikonnikov, A.N., Karamyshev, V.P., Kuznetsov, V.I., and Lukoyanov, M.A., Ore Particle Motion above Ridges between Orepasses with Isolated Zones of Loosening, Izv. vuzov, Gornyi Zh., 1966, no. 2.


SCIENCE OF MINING MACHINES


PROSPECTS FOR DIRECTIONAL DRILLING IN HARD ROCKS
A. S. Kondratenko, V. V. Timonin, and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondratenko@misd.nsc.ru, timonin@misd.nsc.ru

The study is focused on the existing methods of long directional borehole drilling in hard rocks in high-viscous oil and natural bitumen field development. The authors suggest improving the hard rock mass drilling process by combining percussion–rotary drilling and positioning systems.

Percussion–rotary drilling, hydraulic hammer, borehole trajectory, trenchless technology

DOI: 10.1134/S1062739116010212 

REFERENCES
1. Neverov, S.A. and Neverov, A.A., Geomechanical Assessment of Drawpoint Stability in Mining with Caving, J. Min. Sci., 2013, vol. 49, no. 2, pp. 265–272.
2. Eremenko, A.A., Klishin, V.I., Eremenko, V.A., and Filatov, A.P., Feasibility Study of a Geotechnolgy for Underground Mining at Udachnaya Kimberlite Pipe under the Opencast Bottom, J. Min. Sci., 2008, vol. 44, no. 3, pp. 271–282.
3. Patutin, A.V., Timonin, V.V., Kondratenko, A.S., and Rybalkin, L.A., Integrated Research of Coalbeds in Deep Holes, Fund. Prikl. Vopr. Gorn. Nauk, 2014, vol. 2, no. 1.
4. Rybalkin, L.A., Azarov, A.V., Patutin, A.V., Shilova, T.V., and Serdyukov, S.V., Geomechanical Properties Determination Based on Data Obtained from In-Seam Boreholes Logging, Proceedings of VietRock 2015 International Symposium, Vietnam, Hanoi, 2015.
5. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (Principles of Trenchless Technologies), Moscow: Press-Byuro, 2005.
6. Vaier, G.-J., Horizontal Directional Drilling in Hard Rocks, ROBT, 2011, no. 6.
7. HDD Rock Drilling Methods. URL: http://www.ditchwitch.com/ articles/hdd-rock-drilling-methods. Last visited April 21, 2015.
8. Arkhipenko, A.P. and Fedulov, A.I., Gidravlicheskie udarnye mashiny (Hydraulic Percussion Machines), Novosibirsk: IGD SO AN SSSR, 1991.
9. Hanjin. URL: http://hanjin-db.ru. Last visited April 21, 2015.
10. Lipin, A.A. and Timonin, V.V., Downhole Positive Displacement Hydraulic Percussion Machines, Gornyi Zh., 2006, no. 12.
11. Lipin, A.A., Promising Pneumatic Punchers for Borehole Drilling, J. Min. Sci., 2005, vol. 41, no. 2, pp. 157–161.
12. Timonin, V.V., Russian Federation patent no. 2307911 RF, Byull. Izobret., 2007, no. 28.
13. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.A., Timonin, V.V., Karpov, V.N., and Popelyukh, A.I., Down-Hole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50, no. 5, pp. 929–937.
14. Voitov, M.D. and Uskov, A.V., Directional Drilling for Preliminary Coalbed Degasification, Vestn. KuzGTU, 2010, no. 3.
15. Skoblo, V.Z., Ropyanoi, A.Yu., and Lukht, A.I., Gyro-Orientator Course—A Tool for Gyroscopic Orientation of Deviator in the Course of Drilling, Assots. Bur. Podryad., 2010, no. 3.


RING-TYPE ELASTIC VALVE OPERATION IN AIR HAMMER DRIVE
A. M. Petreev and A. Yu. Primychkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: 808@nn.ru

The article describes bench tests and calculations aimed to determining effect of parameters of ring-type elastic valve on variation of average pressure in the valve clearance. The results allow refinement of the design model of ring-type elastic valve and correction of the elastic ring cross-section based on the determined mechanisms.

Air hammer, elastic valve, design model, valve clearance, average pressure

DOI: 10.1134/S1062739116010224 

REFERENCES
1. Gaun, V.A., USSR author’s certificate no. 848615, Byull. Izobret., 1981, no. 27.
2. Chervov, V.V., Trubitsyn, V.V., Smolyanitsky, B.N., and Veber, I.E., RF patent no. 2105881, Byull. Izobret., 1998, no. 6.
3. Grundomash Research and Production Association, RF patent no. 2232242, Byull. Izobret., 2004, no. 19.
4. Zakharenko, S.E., Gas Leaks through Clearances, Trudy Kalinin LPI, 1953, no. 2.
5. Zakharenko, S.E., Experimental Research into Gas Leakage through Clearances Trudy Kalinin LPI, 1953, no. 2.
6. Sudnishnikov, B.V. and Esin, N.N., Vozdukhoraspredelitel’nye ustroistva pnevmaticheskikh mashin udarnogo deistviya (Air Distribution Units of Pneumatic Percussion Machines), Novosibirsk: IGD SO AN, 1956.
7. Gede, A.P., Effect of Increased Pressure on Valve Capacity, Povyshenie effektivnosti pnevmoudarnykh burovykh mashin (Enhancement of Efficiency of Air Drilling Machines), Novosibirsk: IGD SO AN, 1987.
8. Petreev, A.M. and Primychkin, A.Yu., Influence of Air Distribution System on Energy Efficiency of Pneumatic Percussion Unit of Circular Impact Machine, J. Min. Sci., 2015, vol. 51, no. 3, pp. 562–567.
9. Timonin, V.V., Down-the-Hole Air Hammers for Underground Mining, Gorn. Oborud. Elektromekh., 2015, no. 2.
10. Gaun, V.A., Capacity of Air Distribution System with Elastic Valve, Pnevmaticheskie burovye mashiny (Air Drilling Machines), Novosibirsk: IDG SO AN, 1984.
11. Petreev, A.M., Vorontsov, D.S., and Primychkin, A.Yu., Ring-Shaped Elastic Valve in the Air-Percussion Machines, J. Min. Sci., 2010, vol. 46, no. 4, pp. 416–424.


ENGINEERING AND ANALYSIS OF INDEPENDENT MOVABLE COMPRESSION–VACUUM PERCUSSION SOURCE OF P-WAVES IN SEISMIC SURVEY
A. A. Repin, A. K. Tkachuk, V. N. Karpov, V. N. Beloborodov, A. G. Yaroslavtsev, and A. A. Zhikin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: repin@misd.nsc.ru
Mining Institute, Ural Branch, Russian Academy of Sciences,
ul. Sibirskaya 78a, Perm, 614007 Russia

The experience of engineering a small mobile compression–vacuum machine for seismic prospecting at shallow depths of 100–150 m is described. It is shown that percussion sources are preferable for shallow-depth seismic survey. The article reports laboratory and field testing data. The authors identify ways of further improvement of such machines.

Elastic vibration source, shallow-depth seismic survey, percussion machine

DOI: 10.1134/S1062739116010236 

REFERENCES
1. Detkov, V.A., Excitation of Seismic Waves by Impulse-Forming Non-Explosive Sources, Journal of Siberian Federal University. Mathematics&Physics, 2009, no. 2(3).
2. Shneerson, M.B. (Ed.), Teoriya i praktika nazemnoi nevzryvnoi seismorazvedki (Theory and Practice of Surface Non-Explosive Seismology), Moscow: Nedra, 1988.
3. Chichinin, I.S., Vibratsionnoe izluchenie seismicheskikh voln (Vibration Excitation of Seismic Waves), Moscow: Nedra, 1984.
4. Hill, I.A., Field Techniques and Instrumentation in Shallow Seismic Reflection, Quarterly Journal Engineering Geology, 1992, no. 25.
5. Beloborodov, V.N., Repin, A.A., and Tkachuk, A.K., Design of Long-Stroke Compression–Vacuum Percussion Machine, Fundamental’nye problemy formirovaniya tekhnogennoi sredy (Fundamental Problems of Man-Made Environment Formation), vol. 3, Novosibirsk: IGD SO RAN, 2010.
6. Sanfirov, I.A., Yaroslavtsev, A.G., Fat’kin, K.B., Priima, G.Yu., and Babkin, A.I., Seismic Investigation of Potassium Mining Conditions, Geofiz., 2011, no. 5.
7. Sanfirov, I.A., Baibakova, T.V., and Babkin, I.A., Parameter Support of Multi-Wave Mine Seismoacoustics, Razv. Okhr. Nedr, 2008, no. 12.
8. Sanfirov, I.A., Rudnichnye zadachi seismorazvedki MOGT (Underground Objectives of Seismic Exploration by the Common Depth Point Method), Ekaterinburg: UrO RAN, 1996.
9. Beloborodov, V.N., Tkachuk, A.K., and Karpov, V.N., RF useful model patent no. 147963, Byull. Izobret., 2014, no. 32. 10. Beloborodov, V.N. and Tkachuk, A.K., Method of Experimental Determination of Dynamic Parameters of Percussion Machines, Fundamental’nye problemy formirovaniya tekhnogennoi sredy (Fundamental Problems of Man-Made Environment Formation), vol. 3, Novosibirsk: IGD SO RAN, 2012.


IMPROVEMENT OF CUTTING TOOLS TO ENHANCE PERFORMANCE OF HEADING MACHINES IN ROCKS
S. A. Prokopenko, V. S. Ludzish, and I. A. Kurzina

Tomsk Polytechnic University,
pr. Lenina 30, Tomsk, 654059 Russia
e-mail: sibgp@mail.ru
VostNII Science Center,
ul. Institutskaya 3, Kemerovo, 650002 Russia
Tomsk State University,
pr. Lenina 36, Tomsk, 634050 Russia

The determinants are found and the matrix is developed for rate of wear of heading machine cutting tool. Influence of rock strength on active life of heading machines is assessed. The authors describe field studies into the nature and rate of wear of cutters. The design of multiuse tangential revolving cutter of prolonged operating life is engineered and trialed. It is proposed to enhance rock cutting efficiency using a tool with a cutting wheel.

Mine heading machine, cutter, design, efficiency, wear, strength, rock mass, cutting wheel

DOI: 10.1134/S1062739116010248 

REFERENCES
1. Russia’s Coal Mining Industry 2013 Summary, Ugol’, 2014, no. 3.
2. Mining Tool Company Catalogue, 2009.
3. BETEK Catalog. Available at: http://www.betek.de/ru/productprogramme/ining-tunneling.html. Last visited Mar 17, 2014).
4. Kennametal Catalog, 2006.

5. Modern Equipment for Coal Mines by Sandvik, Gorn. Prom., 2011, no. 2. 6. Cutters for Mining and Road Construction, Sandvik Mining and Sandvik Construction. Available at: http://www.mining.sandvik.com/ SANDVIK/1181/Internet/CIS/S000924.nsf/Alldocs/ C1256D39002. Last visited Jan 12, 2014).
7. Kovalev, V.A., Khoreshok, A.A., Kuznetsov, V.V., Mukhortikov, S.G, and Drozdenko, Yu.V., Operation of Heading Machines in SUEK-Kuzbass Mines, Vestn. KuzGTU, 2013, no. 2.
8. Khoreshok, A.A., Tsekhin, A.M., and Borisov, A.Yu., Effect of Operating Conditions on Design of Cutting Heads of Mining Machines, Gorn. Oborud. Elektromekh., 2012, no. 6.
9. Gabov, V.V., Zadkov, D.A., Lykov, Yu.V., Gurimsky, A.I., and Shpil’ko, S.I., Features of Operation of Heading Machines in Vorkutaugol Mines, Gorn. Oborud. Elektromekh., 2008, no. 12.
10. Krestovozdvizhensky, P.D., Klishin, V.I., Nikitenko, S.M., and Gerike, P.B., Selecting Shape of Reinforcement Insertions for Tangential Swivel Cutters of Mining Machines, J. Min. Sci., 2015, vol. 51, no. 2, pp. 323–329.
11. Prokopenko, S.A., Sushko, A.V., and Kurzina, I.A., New Design of Cutters for Coal Mining Machines, IOP Conference Series: Materials Science and Engineering, 2015, vol. 91.
12. Prokopenko, S.A. and Ludzish, V.S., Problems of Innovative Development in Mining Industry in Russia, Gornyi Zh., 2014, no. 1.
13. Prokopenko, S.A., Ludzish, V.S., Kurzina, I.A., and Sushko, A.V., Results of Mine Trial of Multiuse Picks, Gornyi Zh., 2015, no. 5.
14. Khoreshok, A.A., Mamet’ev, M.E., Tsekhin, A.M., Borisov, A.Yu., Burkov, P.V., Burkova, S.P., and Krestovozdvizhenky, P.D., Proizvodstvo i ekspluatatsia razrushayushchego instrumenta gornykh mashin (Manufacture and Operation of Rock-Breaking Tool of Mining Machines), Tomsk: TPU, 2013.
15. Aksenov, V.V., Lavrikov, S.V., and Revuzhenko, A.F., Numerical Modeling of Deformation Processes in Rock Pillars, Applied Mechanics and Materials, 2014, vol. 682.
16. Gerike, B.L., Qualitative Characteristic of the Process of Fracturing hard Rocks with a Disk Shearing Tool and Their Quantitative Assessment, J. Min. Sci., 1991, vol. 27, no. 2, pp. 114–118.
17. Gerike, B.L., Gerike, P.B., Klishin, V.I., and Filatov, A.P., Modeling Destructive Effect Exerted by Shearing Disks of Heading-and-Winning Machines on a Rock Mass, J. Min. Sci., 2008, vol. 44, no. 5, pp. 497–503.
18. Khoreshok, A.A, Mamet’ev, L.E, Borisov, A.Yu, and Vorob’ev, A.V., The Distribution of Stresses and Strains in the Mating Elements Disk Tools Working Bodies of Roadheaders, IOP Conference Series: Materials Science and Engineering, 2015, vol. 91, article no. 012084.
19. Khoreshok, A.A, Mamet’ev, L.E, Borisov, A.Yu., and Vorob’ev, A.V., Finite Element Models of Disk Tools with Attachment Points on Triangular Prisms, Applied Mechanics and Materials, 2015, vol. 770.
20. Shabaev, O.E., Khitsenko, N.V., and Bridun, I.I., Formirovanie usiliya rezaniya na reztsakh ispolnitel’nogo organa prokhodcheskogo kombaina s uchetom zatupleniya (Formation of Cutting Force on Cutters of a Heading Machine with Regard to Dulling). Available at: http://ea.dgtu.donetsk.ua:8080/jspui/bitstream/123456789/26246/1/shhicbri.pdf. Last visited Mar 20, 2015.


MINERAL DRESSING


CHEMICAL ASPECTS OF MANGANESE REMOVAL FROM MINE WATER AT COPPER–SULFIDE DEPOSITS
V. A. Chanturia, N. L. Medyanik, I. V. Shadrunova, and O. A. Mishurina

Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: shadrunova@mail.ru
Nosov Magnitogorsk State Technical University,
pr. Lenina 38, Magnitogorsk, 455000, Russia
e-mail: chem.@magtu.ru

The key mechanisms of selective recovery of manganese ions from mine water by combination of chemical and electrochemical methods are studied. The authors present efficient parameters of oxidation deposition of ions Mn2+ in electrolysis solutions of active chlorine forms generated in chloride-containing solutions under electric treatment and subsequent removal of dispersed phase manganese from the solutions. The mechanism for generation of dispersed phase manganese by electric treatment of acid mine water at copper–sulfide deposits is offered.

Manganese, electrochemical oxidation, electric coagulation precipitation, active forms of chloride-containing compounds, electric flotation, process parameters

DOI: 10.1134/S1062739116010261 

REFERENCES
1. Trubetskoy, K.N., Chanturia V. A., Kaplunov, D.R., and Ryl’nikova, M.V., Kompleksnoe osvoenie mestorozhdenii i glubokaya pererabotka mineral’nogo syr’ya (Integrated Mineral Development and Processing), Moscow: Nauka, 2010.
2. Medyanik, N.L., Chanturia V. A., and Shadrunova I. V., Quantum-Chemical Method for Selection of a Collecting Agent to Recover Zinc and Copper (II) Cations in Flotation of Mine Waste Waters, J. Min. Sci., 2012, vol. 48, no. 1, pp. 167–176.
3. Chanturia V. A., Medyanik, N.L., and Shadrunova, I.V., Study of Promising Agents for Flotation of Zinc and Copper (II) Ions from Mine and Sewage Water, Tsv. Met., 2011, no. 6.
4. Borneman–Starynkevich, I.D., Khimicheskie analizy i formuly mineralov (Chemical Analysis and Mineral Formula), Moscow: 1969.
5. Medyanik, N.L., Kalugina, N.L., Varlamova, I.A., and Strokan’, A.M., Procedure for Development of Resource-Reproducing Processes for Processing of Hydromineral Mine Waste, Vestn. Nosov MGTU, 2011, no. 1(33).
6. Chanturia, V. A., Shadrunova, I.V., Medyanik, N.L., and Mishurina, O.A., Electric Flotation Extraction of Manganese from Hydromineral Wastes at Yellow Copper Deposits in the South Ural, J. Min. Sci., 2010, vol.46, no. 3, pp. 311–316.
7. Medyanik, N.L. and Mishurina, O.A., RF Useful model patent no 97123 MPK S 02 F 1/463 and C 02 F 1/465 / no. 2010117952/05, Byull. Rospatenta, 2010, no. 24.
8. Kolesnikov V. A., Il’in, V.I., Varaksin, S.O., Kapustin, Yu. I., and Matveeva, E.V., Electro-Chemical Treatment of Industrial Waters, Nauka Proizv., 2004, no. 7.
9. Sontag, G. and Schtrenge, K., Koagulyatsiya i ustoichivost’ dispersnykh sistem (Coagulation and Stability of Dispersion Systems), Leningrad: Khimiya, 1973.
10. Deryagin, B.V., Dukhin, S.S., and Rulev, N.N., Mikroflotatsiya: vodoochistka, obogashchenie (Microflotation: Water Treatment and Enrichment), Moscow: Khimiya, 1986.


EFFECT OF FINE SLIME ON THE CHOICE OF COLUMBIUM ORE PRETREATMENT FLOWSHEETS
G. I. Gazaleeva, E. V. Bratygin, I. A. Vlasov, S. V. Mamonov, A. A. Rogozhin, and A. V. Kurkov

Uralmekhanobr Research and Design Institute for Mineral Dressing and Mechanical Conversion,
ul. Khokhryakova 87, Ekaterinburg, 620144 Russia
e-mail: umbr@umbr.ru
Fedorovsky All-Russian Research Institute of Mineral Raw Materials,
Staromonetnyi per. 31, Moscow, 119017 Russia
e-mail: kurkov@vims-geo.ru

The article presents studies of slime formation in processing of Vishnevogorsk columbium ore. The slime formation criterion is assumed as the presence of size grades less than 50 and 5 µm estimated from modern laser granulometer data. The optimal methods and equipment for grinding are chosen depending on rate of slime formation in final products. The studies use centrifugal and rod mills. The rod mill assures the lowest rate of slime formation. Based on the experimental results, the columbium ore pretreatment flowsheet and special ore disintegration methods have been selected. The flowsheet uses crushing machines ensuring the highest rate selectivity—inertia cone crusher and the lowest rate slime formation during milling—rod mill.

Slime formation ratio, laser granulometer, ore pretreatment, selectivity criterion, columbium ore, milling, screening, flowsheet

DOI: 10.1134/S1062739116010273 

REFERENCES
1. Revnivtsev, V.I., Azbel, E.I., Baranov, E.G., et al., Podgotovka mineral’nogo syr’ya k obogashcheniyu (Pretreatment of Mineral Materials), Moscow: Nedra, 1987.
2. Revnivtsev, V.I., Gaponov, G.V., Zarogatsky, L.P., et al., Selektivnoe razrushenie mineralov (Selective Failure of Minerals), Moscow: Nedra, 1988.
3. Opredelenie ratsional’nogo sposoba izmel’cheniya (Specification of Rational Grinding Process: Instructional Guidelines), Moscow: Fedorovsky Vsesoyuz. Inst. Min. Syr’ya, 1991.
4. Reuter, M., Krakh, M., Kießling, U., and Veksler, Yu., Zonal Disintegration of Rocks around Breakage Headings, J. Min. Sci., 2015, vol. 51, no. 2, pp. 237–242.
5. Gazaleeva, G.I., Tsypin, E.F., and Chervyakov, S.A., Rudopodgotovka, droblenie, grokhochenie, obogashchenie (Ore Pretreatment, Crushing, Screening, Concentration), Ekaterinburg: Ural. Tsentr. Akadem. Obsluzh., 2014.
6. Shadrunova, I.V., Gorlova, O.E., Kolodezhnaya, E.V., and Kutlubaev, I.M., Metallurgical Slag Disintegration in Centrifugal Impact Crushing Machines, J. Min. Sci., 2015, vol. 51, no. 2, pp. 363–368.
7. Khopunov, E.A., Role of Structure and Strength Characteristics of Minerals in Failure and Opening of Mineral Ores, Obogashch. Rud, 2011, no. 1.
8. Olevsky, V.A., Kinematika grokhotov (Screen Kinematics), Leningrad, Moscow: Metallurgizdat, 1941.
9. Gazaleeva, G.I. and Mamonov, S.V., State-of-the-Art and Technological Fine Screening Capability to Process Nonferrous Metal Ores, Izv. Vuzov. Gorny Zh., 2013, no. 1.
10. Mirenkov, V.E., Contact Problems in Rock Mechanics, J. Min. Sci., 2007, vol. 43, no. 4, pp. 370–381.
11. Chanturia, V.A., Vaisberg, L.A., and Kozlov, A.P., Higher Priority Research Areas in Mineral Processing, Obogashch. Rud, 2014, no. 2.
12. Hukki, R.T., The Principles of Comminution: An Analytical Summary, Eng. Min. J., 1975, vol. 176.


WATER EMULSIONS OF DIBUTYL DIXANTOGEN AND THEIR INTERACTION WITH THE SURFACE OF HIGHLY ORIENTED PYROLYTIC GRAPHITE AND SILICON DIOXIDE
A. A. Karacharov, M. N. Likhatskii, and Yu. L. Mikhlin

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
ul. Akademgorodok 50, Bld. 24, Krasnoyarsk, 660036 Russia
e-mail: yumikh@icct.ru

Aqueous micro-emulsions of dibutyl dixantogen as an active compound of commercial flotation agent are produced and analyzed using the methods of dynamic light scattering and zeta potential measurements. It is found that the typical hydrodynamic diameter of dixantogen drops is of the order of 300 nm and their zeta potentials are negative. The effect exerted on properties of hydrophobic (pyrolytic graphite) and hydrophilic (silicon dioxide) surfaces by pretreatment with micro-emulsions is examined using the atomic-force microscopy method and colloid probe (SiO2 micro-sphere). The long-range high-amplitude attraction forces, probably of capillary nature, are revealed between the probe and substrata after the contact with dixantogen for 1 min. It is supposed that these forces are conditioned by the action of gas nano-structures (nano-bubbles, nano-cavities, etc.) initiated on the surface rendered hydrophobic by dixantogen.

Flotation, dibutyl dixantogen, micro-emulsion, adsorption, atomic-force microscopy, dynamic light scattering, zeta potential, capillary forces, gas nano-bubbles

DOI: 10.1134/S1062739116010285 

REFERENCES
1. Abramov, A.A., Flotatsionnye metody obogashcheniya (Mineral Flotation Processes), Moscow: Gornaya Kniga, 2008.
2. Buckley, A.N., Hope, G.A., and Woods, R., Metals from Sulfide Minerals: The Role of Adsorption of Organic Reagents in Processing Technologies, K. Wandelt, S. Thurgate (Eds.), Topics in Applied Physics, vol. 85, Solid–Liquid Interfaces: Macroscopic Phenomena—Microscopic Understanding, Berlin: Springer-Verlag, 2000, vol. 85.
3. Kartio, I., Laajalehto, K., Suoninen, E., Karthe, S., and Szargan, R., Technique for XPS Measurements of Volatile Adsorbed Layers: Application to Studies of Sulfide Flotation, Surf. Interface Anal., 1992, vol. 18.
4. Zhang, Y., Cao, Z., Cao, Y., and .Sun, C., FTIR Studies of Xanthate Adsorption on Chalcopyrite, Pentlandite and Pyrite Surfaces, J. Mol. Struct., 2013, vol. 1048.
5. Vigdergauz, V.E. and Kondrat’ev, S.A., Role of Dixantogen in Froth Flotation, J. Min. Sci., 2009, vol. 45, no. 4, pp. 398–403.
6. Mikhlin, Y.L., Karacharov, A.A., and Likhatskii, M.N., Effect of Adsorption of Butyl Xanthate on Galena, PbS, and HOPG Surfaces as Studied by Atomic Force Microscopy and Spectroscopy and XPS, Int. J. Miner. Proc., In press. DOI:10.1016/j.minpro, 2015, vol. 144.
7. Juncal, L.C., Tobon, Y.A., Piro, O.E., Della Vedova, C.O., and Romano, R.M., Structural, Spectroscopic and Theoretical Studies on Dixantogens: (ROC(S)S)2, with R = n-propyl and isopropyl, New. J. Chem., 2014, vol. 38.
8. Thormann, E., Simonsen, A.C., Hansen, P.L., and Mouritsen, O.G., Interactions between a Polystyrene Particle and Hydrophilic and Hydrophobic Surfaces in Aqueous Solutions, Langmuir, 2000, vol. 24.
9. Hampton, M.A. and Nguyen, A.V., Nano-Bubbles and the Nanobubble Bridging Capillary Force, Adv. Colloid Interf. Sci., 2010, vol. 154.
10. Troncoso, P., Saavedra, J.H., Acuna, S.M., Jeldres, R., Concha F., and Toledo P. G., Nanoscale Adhesive Forces between Silica Surfaces in Aqueous Solutions, J. Colloid Interf. Sci., 2014, vol. 424.
11. Walczyk, W. and Scho?nherr, H., Dimensions and the Profile of Surface Nanobubbles: Tip-Nanobubble Interactions and Nanobubble Deformation in Atomic Force Microscopy, Langmuir, 2014, vol. 30.
12. Tabor, R.F., Grieser, F., Dagastine, R.R., and Chan, D. Y. C., The Hydrophobic Force: Measurements and Methods, Phys. Chem. Chem. Phys., 2014, vol. 16.
13. Lu, Y.-H., Yang, C.-W., Fang, C.-K., Ko, H.-C., and Hwan, I.-S. Interface-Induced Ordering of Gas Molecules Confined in a Small Space, Sci. Rep., 2014, vol. 4. 7189; DOI:10.1038/srep07189.
14. Yang, J., Duan, J., Fornasiero, D., and Ralston, J., Very Small Bubble Formation at the Solid–Water Interface, J. Phys. Chem. B., 2003, vol. 107.


EFFECT OF PSEUDOMONAS JAPONICA BACTERIA ON SELECTION OF SULFIDES
N. K. Algebraistova, A. V. Razvyaznaya, M. I. Teremova, and E. V. Mazurova

Siberian Federal University,
pr. Svobodnyi 97, Krasnoyarsk, 660041 Russia
e-mail: algebraistova@mail.ru
International Research Center for Extreme Body States, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences,
ul. Akademgorodok 50/12, Krasnoyarsk, 660036 Russia
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
ul. Akademgorodok 50, Bld. 24, Krasnoyarsk, 660036 Russia

The industrial-level tests prove efficiency of Pseudomonas Japonica bacteria in production of copper–molybdenum bulk concentrate. Using scanning electron microscopy, it is found that adsorption of Pseudomonas Japonica bacteria takes place at the points of xanthate attachment. The infrared spectroscopy analysis shows that after treatment with the bacteria, C–O and C=S bonds vanish while valence and deformation vibrations in ÑÍ3- and CH2 groups become less intensive, which may be reflective of desorption of xanthate from the mineral surface.

Sulfides, chalcopyrite, molybdenite, xanthate, microorganisms, bacteria, bacterial treatment, scanning electron microscopy, infrared microscopy

DOI: 10.1134/S1062739116010297 

REFERENCES
1. Abramov, A.A., Flotatsionnye metody obogashcheniya (Mineral Flotation Processes), Higher Education Textbook, Moscow: MGGU, 2008.
2. Razvyaznaya, A.V., Algebraistova, N.K., et al., RF patent no. 2481410, Byull. Izobret., 2013, no. 13.
3. Egorov, N.S., Promyshlennaya mikrobiologiya (Commercial Microbiology), Moscow: Vysh. Shk., 1989.
4. Algebraistova, N.K., Razvyaznaya, A.V., Gurevich, Yu.L., and Teremova, M.I., Selection of Copper–Molybdenum Concentrates by Microbiological Processes, Obog. Rud, 2012, no. 4.
5. Razvyaznaya, A.V., Algebraistova, N.K., Gurevich, Yu.L., Teremova, M.I., and Mikhlin, Yu.L., Investigation into Microorganism Effect on Mineral Surface, Zhur. Sib. Fed. Univer. Tekhnika Tekhnologia, 2012, vol. 5, no. 6.
6. Ozhogin, D.O., Ruzhitskii, V.V., and Dubinchuk, V.T., Electronic Microscopy in Technological Evaluation of Finely Disseminated Ores. Available at: http://www.krc.karelia.ru/doc_download.php?id= 1831&table_ name =publ&table_ident=3902).
7. Bellamy, L., The Infra-Red Spectra of Complex Molecules, London, 1954.


ENHANCEMENT OF LOW-GRADE SCHEELITE ORE PROCESSING EFFICIENCY
E. D. Shepeta, L. A. Samatova, I. V. Alushkin, V. B. Shchipchin, and I. G. Korneev

Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: samatova_luiza@mail.ru
Trane Technik,
ul. Severnaya 5, Elektrostal, 144006 Russia

In focus of the study are the results obtained in flotation testing of products of X-ray absorption separation that enhances 4–5 times WO3 content of feed for the next flotation stage. The authors estimate feasibility of reducing yield of original ore screenings (non-gradable size) –6 + 0 mm and its gravity concentration.

Noncommercial scheelite ore, separation concentrates, –6 + 0 mm original ore screenings (non-gradable size), charge material

DOI: 10.1134/S1062739116010309 

REFERENCES
1. Lizunkin, V.M., Tsarev, S.A., and Fedorov, Yu.O., X-Ray Radiometric Separation as a Promising Trend in Improvement of Deposit Development Efficiency, Vestn. ZabGU, 2009, no. 3.
2. Pestov, V.V., Fedorov, Yu.O., Fedorov, M.Yu., and Fedorov, A.Yu., Methodological and Technological Potentialities of X–ray Radiometric Separation, Proc. Int. Sci. Tech. Conf. Scientific Fundamentals and Practice of Processing of Ores and Mining Waste, Ekaterinburg, 2008.
3. Alushkin, I.V., Shchipchin, V.B., Leonov, V.B., Shepeta, E.D., and Samatova, L.A., Prospects of Introduction of X-Ray Absorption Separation of Tungsten Ores from Vostok-2, Obog. Rud, 2015, no. 1.
4. Samatova, L.A., Shepeta, E.D., et al., Poor Scheelite Ores from Primorye Deposits: Mineralogy and Processing Characteristics and Dressing Flowsheets, J. Min. Sci., 2012, vol. 48, no. 3, pp. 565–573.
5. Standart Rossiiskogo geologicheskogo obshchestva. Tverdye negoryuchie poleznye iskopaemye. Tekhnologicheskie metody issledovaniya mineral’nogo syr’ya. Radiometricheskie metody obogashcheniya. STO Ros. Geo 08–009–98 (Solid Nonfuel Minerals. Technological Mineral Investigation Processes. Radiometric Mineral Processing. Standard STO Ros Geo 08–009–98), Moscow: RosGeo, 1998.
6. Trebovaniya k izucheniyu radiometricheskoi obogatimosti mineral’nogo syr’ya pri razvedke mestorozhdenii metallicheskikh i nemetallicheskikh poleznykh iskopaemykh (Requirements for Investigation into Mineral Capacity for Radiometric Processing in the Course of Metallic and Nonmetallic Mineral Exploration), Moscow: Federal Agency for Mineral Resources, RF Ministry of Natural Resources and Environment, 1993.
7. Andy Haslam, Developments in the Tungsten Industry, Australia, 21 ITIA Annual General Meeting Xiamen China, 2008.
8. Shepeta, E.D., Samatova, L.A., and Kondrat’ev, S.A., Kinetics of Calcium Minerals Flotation from Scheelite–Carbonate Ores, J. Min. Sci., 2012, vol. 48, no. 4, pp. 746–753.
9. Shepeta, E.D., Development of Selective Desorption of Collecting Agents from Calcium Mineral Surface and Flotation of Fine-Grain Scheelite Fraction from Tungsten Ore Mined at Vostok-2 Deposit, Cand. Tech. Sci. Thesis, Moscow, 1987.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå