JMS, Vol. 51, No. 6, 2015
GEOMECHANICS
MATHEMATICAL MODELING OF STRESS STATE OF SURROUNDING ROCKS AROUND THE WELL SUBJECTED TO SHEARING AND NORMAL LOAD
IN HYDRAULIC FRACTURING ZONE
A. V. Azarov, M. V. Kurlenya, A. V. Patutin, and S. V. Serdyukov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 4, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru
The authors report the numerical modeling data on stress state of a rock mass in the vicinity of hydraulic fracturing when two closely-spaced intervals of the well are subjected to shearing and normal load. The article shows applicability of such coupled loading in creation of a fracture across an uncased well.
Directional hydraulic fracturing, rock mass, well, hydraulic fracturing tool, shearing and normal load, stress state
DOI: 10.1134/S1062739115060296 REFERENCES
1. Patunin, A.V. and Shilova, T.V., Use of Hydrofracturing to Improve Surface-Underground Thermal-Mine Production of Low-Gravity Oil, Proc. All-Rus. Sci. Conf. Miner’s Renewal–2015, Novosibirsk: IGD SO RAN, 2015.
2. Jeffrey, R., Mills, K., and Zhang, X., Experience and Results from Using Hydraulic Fracturing in Coal Mining, Proc. 3rd Int. Workshop on Mine Hazards Prevention and Control, Brisbane, 2013.
3. Kurlenya M. V., Shilova, T.V., Serdyukov, S.V., and Patutin, A.V., Sealing of Coal Bed Methane Drainage Holes by Barrier Screening Method, J. Min. Sci., 2014, vol. 50, no. 4, pp. 814–818.
4. Kurlenya M. V., Serdyukov, S.V., Shilova, T.V., and Patutin, A.V., Procedure and Equipment for Sealing Coal Bed Methane Drainage Holes by Barrier Shielding, J. Min. Sci., 2014, vol. 50, no. 5, pp. 994–1000.
5. Board, M., Rorke, T., Williams, G., and Gay, N., Fluid Injection for Rock Burst Control in Deep Mining, Proc. 33rd U. S. Symposium on Rock Mechanics, Rotterdam: Balkema, 1992.
6. Lekontsev, Yu.M. and Sazhin, P.V., Directional Hydraulic Fracturing in Difficult Caving Roof Control and Coal Degassing, J. Min. Sci., 2014, vol. 50, no. 5, pp. 914–917.
7. Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., RF patent no. 2522677, Byull. Izobret., 2014, no. 20.
8. Shilova, T.V. and Serdyukov, S.V., Protection of Operating Degassing Wells from Air Flow from Underground Excavations, J. Min. Sci., 2014, vol. 50, no. 5, pp. 1049–1055.
9. Tratner, C.J., On the Elastic Distortion of a Cylindrical Hole by a Localized Hydrostatic Pressure, Quart. Appl. Math, 1946, Vol. 43.
10. Kehle, O.R., The Determination of Tectonic Stresses through Analysis of Hydraulic Well Fracturing, J. Geophys. Research, 1964, vol. 69, no. 2.
A CLASS OF VORTEX FLOWS IN GRANULAR MEDIUM
S. V. Klishin and A. F. Revuzhenko
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 4, Novosibirsk, 630091 Russia
e-mail: sv.klishin@gmail.com
The authors study numerically a problem on vortex flows in bounded domain in granular material using discrete element method. The granular material is composed of spherical particles with the assigned distribution of radii. Dry friction and rolling resistance at particle interfaces are taken into account. The kinematic patterns of granular material specimen deformation are described, and the trajectories of some particles are shown. The article gives values of normal and shear stresses acting at the study domain boundaries from the side of the material.
Granular material, deformation, vortex flow, numerical analysis, discrete element method
DOI: 10.1134/S1062739115060308 REFERENCES
1. Van Dyke, M., An Album of Fluid Motion, 4th edition, Stanford, California: Parabolic Press Inc., 1988.
2. Revuzhenko, A.F., Mechanics of Granular Media, Berlin, Heidelberg: Springer-Verlag, 2006.
3. Stazhevsky, S.B. and Revuzhenko, A.F., Kinematics of the Motion of Loose Materials Relative to Rigid Surfaces, J. Min. Sci., 1975, vol. 11, no. 1, pp. 78–80.
4. Vereshchagin, A.S., Kazanin, I.V., Zinoviev, V.N., Pak, A.Yu., Fomina, A.F., Lebiga, V.A.,
and Fomin, V.M., Mathematical Model of Permeability of Microspheres with Their Dispersed Distribution Accounted, Prikl. Mekh. Tekh. Fiz., 2013, no. 2.
5. Kiselev, S.P., Molecular Dynamics Method in Mechanics of Deformed Solid Body, Prikl. Mekh. Tekh. Fiz., 2014, no. 3.
6. Klishin, S.V., Klishin, V.I., and Opruk, G.Yu., Modeling Coal Discharge in Mechanized Steep and Thick Coal Mining, J. Min. Sci., 2013, vol. 49, no. 6, pp. 932–940.
7. Khan, G.N., Discrete Element Modeling of Rock Failure Dynamics, J. Min. Sci., 2012, vol. 48,
no. 1, pp. 96–102.
8. Fedorov, A.V. and Fedorchenko, I.A., Interaction of Normally Falling Impact Wave with Porous Material Layer Located at Solid Wall, Fiz. Gor. Vzryva, 2010, no. 1.
9. Klishin, S.V. and Revuzhenko, A.F., 3D Discrete Element Approach to Janssen’s Problem, J. Min. Sci., 2014, vol. 50, no. 3, pp. 417–422.
10. Psakhie, S., Shilko, E., Smolin, A., and Astafurov, S., Development of a Formalism of Movable Cellular Automaton Method for Numerical Modeling of Fracture of Heterogeneous Elastic–Plastic Materials, Fracture and Structural Integrity, 2013, no. 24.
11. Johnson, K.L., Contact Mechanics, Cambridge University Press, 1985.
12. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., and Yu, A.B., Rolling Friction in the Dynamic Simulation of Sandpile Formation. Physica A: Statistical Mechanics and Its Applications, 1999,
vol. 269, nos. 2–4.
13. Ai, J., Chen, J.-F., Rotter, M., and Ooi, J.Y., Assessment of Rolling Resistance Models in Discrete Element Simulations, Powder Technology, 2011, vol. 206, no. 3.
14. Revuzhenko, A.F., Klishin, S.V., and Mikenina, O.A., Algorithm for Synthesis of Particle Packages in Terms of Aristotle’s Mechanics, Fiz. Mezomekh., 2014, vol. 17, no. 5.
15. Stoyan, D., Random Systems of Hard Particles: Models and Statistics, Chinese J. Stereol. Image Analysis, 2002, vol. 7, no. 1.
16. Fukumoto, Y., Sakaguchi, H., and Murakami, A., The Role of Rolling Friction in Granular Packing, Granular Matter, 2013, vol. 15, no. 2.
MECHANISM FOR GENERATION OF PEAK LOAD ON UNDER-BIN FEEDERS AT PROCESSING PLANTS
A. A. Kramadzhyan, E. P. Rusin, S. B. Stazhevsky, and G. N. Khan
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: gmmlab@misd.nsc.ru
The authors use physical and DEM modeling to analyze stresses and strains in broken ore discharged from accumulating bins using an apron feeder. It is substantiated that the determinant of the peak load on the feeder and the discharge unit is dilatancy. It is shown that the absolute value of the peak load is conditioned by physico-mechanical characteristics of discharged ore, structural design of a discharge unit and deformation constraint. The article demonstrates possibility of upgrading one of conventional schemes of discharge unit and shows prospects for new designs.
Broken ore, bin, stockpile, under-bin discharge unit, apron feeder, vertical partitions, peak load, flow zone width, dilatancy
DOI: 10.1134/S1062739115060320 REFERENCES
1. Razumov, K.A. and Perov, V.A., Proektirovanie obogatitel’nykh fabrik (Design of Mineral Processing Plants), Moscow: Nedra, 1982.
2. Zenkov, R.L., Grinevich, G.P., and Isaev, V.S., Bunkernye ustroistva (Bin Facilities), Moscow: Mashinostroenie, 1977.
3. Wills, B.A. and Napier-Munn, T.J., Wills’ Mineral Processing Technology: an Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Burlington, Massachusetts, USA: Butterworth-Heinemann (Elsevier), 2006.
4. Dietiker, F.D., Belt Conveyor Selection and Stockpiling and Reclaiming Applications, Mular, A. L. and Bhappu, R. B., eds. Mineral Processing Plant Design, New York, NY, USA: SME, 1980.
5. Kramadzhyan, A.A., Mirenkov, V.E., and Stazhevsky, S.B., Load Pressures on Sub-hopper Feeder with a Traction Motor, J. Min. Sci., 1982, vol. 18, no. 4, pp. 265–273.
6. Issledovanie vliyaniya konfiguratsii bunkera, sposobov ego zagruzki i konstruktsii razgruzochnykh uzlov na ravnomernost’ i polnotu vypuska droblenoi rudy, imeyushchei razlichnye fiziko-mekhanicheskie svoistva (Investigation into Effects of Bin Shape, Loading Techniques and Discharging Facility Design on Regularity and Completeness of Yield of Crushed Ore, Characterized With Different Physical-Mechanical Properties, Leningrad: Mekhanobr, 1983.
7. Normy tekhnologicheskogo proektirovaniya flotatsionnykh fabrik dlya rud tsvetnykh metallov (VNTP 21–86) (Standards for Process Design of Flotation Plants for Non-ferrous Metal Ores (VNTP 21–86)) / Mintsvetmet SSSR, dated on Jan. 1, 1987.
8. Khan, G.N., Asymmetric Rock Mining Sequence in the Vicinity of a Goaf, Fiz. Mezomekh., 2008,
vol. 11, no. 1.
9. Cundall, P.A., Strack, O. D. L., A Discrete Numerical Model of Granular Assemblies, Geotechnique, 1979, Vol. 29.
10. Klishin, S.V., Mikenina, O.V., and Revuzhenko, A.F., Deformation of Granular Material around a Rigid Inclusion, J. Min. Sci., 2014, vol. 50, no. 2, pp. 229–234.
11. Hartford, C.E., Orlando, A.D., and Carson, J.W., Feeder or Conveyor: What’s the Difference and Why Does It Matter?, Australian Bulk Handling Review, March/April, 2013.
12. Roberts, A.W., Recent Developments in Feeder Design and Performance, Levy, A. and Kaiman, H. (Eds.), Handbook of Conveying and Handling of Particulate Solids, vol. 10 (Handbook of Powder Technology), Amsterdam, New York, NY, USA: Elsevier, 2001.
13. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanism for Granular Material Deformation under Large Shears, J. Min. Sci., 1977, vol. 13, no. 3.
14. Rosko, K., Deformation in Soil Mechanics, Mekhanika: period. sb. inostr. statei (Mechanics: Periodical Collection of Foreign Articles), 1971, no. 3.
15. Boboryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Uniform Shear of Granular Material. Localization of Deformation, J. Min. Sci., 1983, vol. 19, no. 5, pp. 372–376.
16. Revuzhenko, A.F. and Stazhevsky, S.B., The Inclusion of Dilatancy into the Basic Reference Formulas of the Mechanics of Granular Media, J. Min. Sci., 1986, vol. 22, no. 4, pp. 232–235.
17. Revuzhenko, A.F., Stazhevsky, S.B., Shemyakin, E.I., New Methods of Calculating Load on Supports, J. Min. Sci., 1976, vol. 12, no. 3, pp. 249–265.
18. Stazhevsky, S.B., Selecting the Shape and Bracing for Excavation, J. Min. Sci., 1986, vol. 22,
no. 5, pp. 350–355.
19. Drescher, A. and de Josselein de Jong, G., Photoelastic Verification of a Mechanical Model for the Flow of a Granular Material, J. Mech. Phys. Solids, 1972, vol. 20, no. 5, pp. 337–351.
EFFECT OF DEFORMATION PROPERTIES OF DISCONTINUITIES
ON INTENSITY OF INDUCED SEISMICITY SOURCES IN ROCKS.
PART II: LABORATORY AND NUMERICAL EXPERIMENTS
A. M. Budkov, G. G. Kocharyan, A. A. Ostapchuk, and D. V. Pavlov
Institute of Geosphere Dynamics, Russian Academy of Sciences,
Leninskii pr. 38, Bld. 1, Moscow, 119334 Russia
Moscow Institute of Physics and Technology,
Institutskii per. 9, Dolgoprudny, 141700 Russia
e-mail: geospheres@idg.chph.ras.ru
Variations in strength and stress state of rocks fail to explain the difference observed in efficiency of seismic radiation from separate sources within the limits of the same mine field. The laboratory and numerical experiments show that insignificant variation in ultimate strength of a fracture and, thus, different shear fracture stiffness results in radical change in the seismic event efficiency. The experimentally obtained relations between the key parameters should be taken into account in geomechanical modeling of large-scale objects.
Induced seismicity, seismic radiation efficiency, tectonic shocks, fracture stiffness, laboratory and numerical experiment
DOI: 10.1134/S1062739115060332 REFERENCES
1. Besedina, A.N., Kishkina, S.B., and Kocharyan, G.G., Effect of Deformation Properties of Discontinuities in Mining Induced Seismicity Sources in Rocks. Part I: In-Situ Observations, J. Min Sci., 2015, vol. 51, no. 4, pp. 707–717.
2. Oparin, V.N., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization in the Earth Crust Areas under High Industrial Impact), N. N. Mel’nikov (Ed.), Novosibirsk: SO RAN, 2012.
3. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., Miroshnichenko, N.A., and Vasil’eva, E.V., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J. Min Sci., 2011. vol. 47, no. 6, pp. 707–713.
4. Kocharyan, G.G., Markov, V.K., Ostapchuk, A.A., and Pavlov, D.V., Mesomechanics of Shear Resistance along a Filled Crack, Phys. Mes., 2014, vol. 17, no. 2.
5. Dieterich, J., Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res., 1979, vol. 84, no. B5.
6. Ruina, A., Slip Instability and State Variable Friction Laws, J. Geophys. Res., 1983, vol. 88, no. 6.
7. Scholz, C.H., Earthquakes and Friction Laws, Nature, 1998, vol. 391, doi:10.1038/34097.
8. Kocharyan, G.G., Kishkina, S.B., Novikov, V.À., and Ostapchuk, À.À., Slow Slip Events: Parameters, Conditions of Occurrence, and Future Research Prospects, Geodynamics & Tectonophysics, 2014,
vol. 5 (4).
9. Kanamori, H. and Hauksson, E., A Slow Earthquake in the Santa Maria Basin, California, Bulletin of the Seismological Society of America, 1992, vol.82.
10. Kocharyan, G.G., Fault Zone Stiffness as a Geomechanical Factor Controlling the Radiation Efficiency of Earthquakes in the Continental Crust, Dokl. Nauk Zeml., 2013, vol. 452, no. 1.
ROCK FAILURE
MODELING EVOLUTION OF DAMAGE IN ROCK SPECIMENS
UNDER LOADING
L. A. Nazarov, L. A. Nazarova, P. A. Tsoi, and L. V. Tsibizov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: leonid@misd.nsc.ru
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
Based on the integrated analysis of micro-strains obtained using white light speckle-photography method in Brazilian Test of rock specimens and analytically calculated elastic fields of stresses and strains, the authors show that there exist significant correlation dependences between the damage in a certain domain of a rock specimen and the level of the external load. Given a verified geomechanical model describing properly evolution of stresses in a rock specimen, this fact offers pre-requisites for estimation of damage in different areas of a rock specimen by monitoring condition only in one of such areas.
Laboratory experiment, rock specimen, Brazilian Test, speckle-photography, deformation, damage, correlation analysis
DOI: 10.1134/S1062739115060356 REFERENCES
1. McGarr, A., Simpson, D., and Seeber, L., Case Histories of Induced and Triggered Seismicity, International Handbook of Earthquake and Engineering Seismology, 2002, vol. 81A.
2. Li, T.B. and Xiao, X.P., Comprehensive Integrated Methods of Rockburst Prediction in Underground Engineering, Advance in Earth Science, 2008, vol. 23(5).
3. Zhenbi, L., Baiting, Zh., Microseism Monitoring System for Coal and Gas Outburst, Int. J. Computer Sci. Issues, 2012, vol. 9, issue 5, no. 1.
4. Urbancic, T.I. and Trifu, C.I., Recent Advances in Seismic Monitoring Technology at Canadian Mines, J. Appl. Geophysics, 2000, vol. 45.
5. Zakharov, V.N., Seismoakusticheskoe prognozirovanie i kontrol’ sostoyaniya i svoistv gornykh porod pri razrabotke ugol’nykh mestorozhdenii (Seismo-Acoustic Prediction and Monitoring of State and Properties of Rocks in Coal Mining), Moscow: IGD. A. A. Skochinskogo, 2002.
6. Kuksenko, V.S., Diagnosis and Forecasting of Failure of Large-Scale Objects, Fiz. Tverd. Tela, 2005,
vol. 47, no. 5.
7. Gor, A.Yu., Kuksenko, V.S., Tomilin, N.G., and Frolov, D.I., Concentration Threshold for Failure
and Prediction of Rock Bursts, J. Min. Sci., 1989, vol. 25, no.3, pp 237–242.
8. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization in the Earth Crust Areas under High Industrial Impact), Novosibirsk: SO RAN, 2012.
9. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003, Part I: Seismic Regime, J. Min. Sci., 2004, vol. 40, no. 4, pp. 321–338.
10. Mogi, K., Experimental Rock Mechanics, London: Taylor and Francis, 2007.
11. Shkuratnik, V.L. and Nikolenko, P.V., Using Acoustic-Emission Memory of Composites in Critical Stress Control in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 4, pp. 544–549.
12. Shkuratnik, V.L., Filimonov, Yu.L., and Kuchurin, S.V., Acoustic-Emissive Memory Effect in Coal Samples under Triaxial Axial-Symmetric Compression, J. Min. Sci., 2006, vol. 42, no. 3, pp. 203–209.
13. Dyad’kov, P.G., Mel’nikova, V.I., Nazarov, L.A., Nazarova, L.A., and San’kov, V.A., Increase of Seismotectonic Activity in the Baikal Region in 1989–95: Results of Experimental Observations and Numerical Modeling of Changes in the Stress-Strain State. Geology and Geophysics, 1999, vol. 40, no. 3.
14. Vallejous, J.A. and MacKinnon, S.D., Correlation between Mining and Seismicity for Re-Entry Protocol Development, Int. J. Rock Mech. Min. Sci., 2010, vol. 48.
15. Lin’kov, A.M., Numerical Modeling of Seismic and Aseismic Events in Geomechanics, J. Min. Sci., 2005, vol. 41, no. 1, pp. 14–26.
16. Al Heib, M., Numerical and Geophysical Tools Applied for the Prediction of Mine Induced Seismicity in French Coalmines, Int. J. of Geosciences, 2012, vol. 3, no. 4A.
17. Besedina, A.N., Kabychenko, N.V., and Kocharyan, G.G., Low-Magnitude Seismicity Monitoring in Rocks, J. Min. Sci., 2013, vol.49, no. 5, pp. 691–703.
18. Cai, M., Kaiser, P.K., Morioka, H., et al., FLAC/PFC Couple Numerical Simulation of AE in Large-Scale Underground Excavations, Int. J. Rock Mech. Min. Sci., 2007, vol. 44, no.6, pp. 550–564.
19. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., et al., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 707–713.
20. Razumovsky, I.A., Interferentsionno-opticheskie metody mekhaniki deformiruemogo tela, (Interference-and-Optical Methods in Deformable Solid Body Mechanics), Moscow: MGTU. N. E. Baumana, 2007.
21. Larsson, L., Sjodahl, M., and Thuvander, F., 3-D Microscopic Displacement Field Measurements Using Digital Speckle Photography, Optics and Lasers in Engineering, 2004, vol. 4, no. 5.
22. Choi, S. and Shah, S.P., Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation, Experimental Mechanics, 1997, vol. 37, no. 3.
23. Jacobson, L. and Enqvist, B., Deformation Measurement on Rock Specimen during Brazilian Test
Using White Light Speckle Photography, Building Technology and Mechanics Boras, SP Technical Notes, 2004, vol. 38.
24. Nguyena, T. L., Halla S. A., Vacherb, P., Viggianib, G., Fracture Mechanisms in Soft Rock: Identification and Quantification of Evolving Displacement Discontinuities by Extended Digital Image Correlation, Tectonophysics, 2011, vol. 503, nos. 1–2.
25. GOST 21153.3–85. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii (Rocks. Processes for Determination of Ultimate Strength under Uniaxial Tension), Moscow: Gos. Komitet SSSR Stand., 1985.
26. GOST 10180–90 Betony. Metody opredeleniya prochnosti po kontrol’nym obraztsam: Mezhgosudarstvennyi standart (Concretes. Processes for Determination of Strength on Reference Specimens: Interstate Standard), Moscow: Standartinform, 2006.
27. GOST 21153.2–84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii (Rocks. Processes for Determination of Ultimate Strength under Uniaxial Tension), Moscow: Gos. Komitet SSSR Stand., 1984.
28. Jaeger, J.C. and Cook, N. G. W., Theory and Application of Curved Jacks for Measurement of Stresses, State of Stress in the Earth’s Crust, W. R. Judd (Ed.) New York: Elsevier, 1964.
29. Hondros, G., The Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete, Austr. J. Appl. Sci.,
1959, vol. 10.
30. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Fundamental Problems of Mathematical Elasticity Theory), Moscow: Nauka, 1966.
31. Gomez, J.T., Shukla, A., and Sharma, A., Static and Dynamic Behavior of Concrete and Granite in Tension with Damage, Theor. Appl. Fracture Mechanics, 2001, vol. 36.
32. Lavrov, A.V., Shkuratnik, V.L., and Filimonov, Yu.L., Akustoemissionnyi effekt pamyati v gornykh porodakh (Acoustic-Emission Effect of Memory in Rocks), Moscow: Mosk. Gos. Tekh. Univer., 2004.
33. Suknev, S.V. and Novopashin, M.D., Gradient Approach to Rock Strength Estimation, J. Min. Sci., 1999, vol. 35, no. 4, pp. 381–386.
3D MODELING OF FRACTURE GROWTH IN SOLID
UNDER THE PENETRATION OF RIGID WEDGE
E. N. Sher and V. P. Efimov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ensher@sibmail.ru
The authors have undertaken experimental and theoretical modeling of fracture growth under the penetration of rigid wedge in brittle rock. The test specimens were made of organic glass to facilitate measurement of size and shape of a fracture. The wedge loading was executed quasi-statically on a testing machine and dynamically by a drop wedge. The scheme developed in the framework of the theory of elasticity for the theoretical description of the fracture growth process accounts for the finite size of the wedge cutting point and the influence of free surface. The theoretical and experimental shapes of fractures are compared.
Fracture, blow, wedge, solid, rock, free surface, elasticity theory, experiment
DOI: 10.1134/S1062739115060368 REFERENCES
1. Basheev, G.V., Efimov, V.V., and Martynyuk, P.A., Calculation Model of Rock Breaking with a Wedge Shaped Impact Tool, J. Min. Sci., 1999, vol. 35, no. 5, pp. 494–501.
2. Basheev, G.V., Calculated Scheme of Rock Lump Splitting off under the Impact of Wedge beneath a Bench, J. Min. Sci., 2004, vol. 40, no. 5, pp. 490–502.
3. Mattis, A.R., Cheskidov, V.I., Labutin, V.N., Zaitsev, G.D., Sher, E.N., Martynyuk, P.A., Basheev, G.V., Zaitseva, A.A., Gorodilov, L.V., Kudryavtsev, V.G., et al., Bezvzryvnye tekhnologii otkrytoi dobychi tverdykh poleznykh iskopaemykh (Explosion-Free Open Mineral Mining Techniques), V. N. Oparin (Ed.), Novosibirsk: SO RAN, 2007.
4. Sher, E.N. and Mikhailov, A.M., Modeling the Axially Symmetric Crack Growth under Blasting and Hydrofracturing near Free Surface, J. Min. Sci., 2008, vol. 44, no. 5, pp. 473–481.
5. Crouch, S. and Starfield, A., Boundary Element Methods in Solid Mechanics, London: George Allen and Unwin, 1983.
6. Peach, Ì. and Koehler, J.S., The Forces Exerted on Dislocations and the Stress Fields Produced by Them, Physical Review, 1950, vol. 80, no. 3.
7. Sher, E.N. and Chernikov, A.G., Calculation of Parameters of Radial Fracture System, Induced by Column Explosive Charge in Brittle Rocks, Proc. Int. Conf. Geodynamics and Stress State of the Earth Interior, Novosibirsk: IGD SO RAN, vol. 2, 2015.
8. Novozhilov, V.V., Obligatory and Sufficient Criterion for Brittle Strength, Prikl. Matem. Mekh., 1969,
vol. 33, issue 2.
SCIENCE OF MINING MACHINES
BASIC TRENDS IN DEVELOPMENT OF DRILLING EQUIPMENT
FOR ORE MINING WITH BLOCK CAVING METHOD
V. A. Eremenko, V. N. Karpov, V. V. Timonin, N. G. Barnov,
and I. O. Shakhtorin
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: eremenko@ngs.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements,
ul. Veresaeva 15, Moscow, 121357 Russia
The authors have determined the causes of drop in performance of induced block caving using fans of blastholes 105 mm in diameter and single blastholes 250 mm in diameter, as well as the sources of increased drilling cost and expansion of start-up time of production blocks in Abakan underground mine. Alternatives of improvement in drilling efficiency under current conditions are discussed.
Mining system, block caving, powder factor, blasthole diameter, drilling rig, air hammer, high air pressure, compression plant, drill bits, reamers, volumetric drilling velocity
DOI: 10.1134/S106273911506037X
REFERENCES
1. Bronnikov, D.M., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep-Level Ore Mining), Moscow: Nedra, 1982.
2. Trubetskoy, K.N., Gornye nauki: osvoenie i sokhranenie nedr zemli (Mining Sciences: Development and Protection of the Earth Entrails), Moscow: Akad. Gorn. Nauk, 1997.
3. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Sovershenstvovanie geotekhnologii osvoeniya zhelezorudnykh udaroopasnykh mestorozhdenii v usloviyakh deistviya prirodnykh i tekhnogennykh faktorov (Improvement of Geotechnologies for Rockburst-Hazardous Iron Ore Mining under Natural and Induced Effects), Novosibirsk: Nauka, 2008.
4. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
5. Eremenko, V.A., Lobanov, E.A., Kotlyarov, A.A., Lushnikov, V.N., and Malovichko, D.N., New Process for Reduced Seismic Effect of Mass Ore Breaking in Development of Rockburst-Hazardous Deposits, Gorny Zh., 2012, no. 9.
6. Eremenko, V.A., Karpov, V.N., Filatov, A.P., Kotlyarov, A.A., and Shakhtorin, I.O., Development of the System of Ore Blasting onto Preblasted Rock Mass in Mining of Rockburst-Hazardous Deposits, Gorny Zh., 2014, no. 1.
7. Eremenko, V.A., Esina, E.N., and Semenyakin, E.N., Development of On-line SSS Monitoring in a Rock Mass, Gorny Zh., 2015, no. 8.
8. Karpov, V.N., Problems on Mining of Underlying Levels in Russian Mines and Ways of Their Solving, Marksheid. Nedropol’z., 2013, no. 3.
9. Emel’yanov, P.M., Esin, N.N., Zinov’ev, A.A., Semenov, L.I., and Suksov, G.I., Mashiny dlya bureniya skvazhin pogruzhnymi molotkami v podzemnykh usloviyakh (Machines for Underground Hole Drilling by Downhole Hammers), Novosibirsk: SO AN SSSR, 1965.
10. Repin, A.A., Alekseev, S.E., and Popelyukh, A.I., Enhancing Reliability of Parts of Percussion Machines, J. Min. Sci., 2012, vol. 48, no. 4, pp. 669–674.
11. Karpov, V.N. and Shcheptev, E.N., Underground Application of Air-Percussion Reamers of Boreholes, Conf. with Participation of Foreign Scientists on Fundamental Problems of Geo-Environment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.
12. Repin, A.A. and Alekseev, S.E., RF patent no. 94616, Byull. Izobret., 2012, no. 15.
13. Lipin, A.A. and Zabolotskaya, N.N., RF patent no. 2463431, Byull. Izobret., 2012, no. 28.
14. Timonin, V.V. and Lipin, A.A., Downhole Air Hammers for Underground Mining of Rockburst Deposits, Proc. 2nd Scientific–Practical Conf. Geodynamics and Modern Processes for Rockburst-Hazardous Mining in Honor of the 70th Anniversary of Tashtagol Division, Tashtagol: Evraz, 2011.
15. Timonin, V.V., Downhole Air Hammers PP 110 EN for Underground Mining, The 65th Scientific and Practical Conference Sib. Gos. Avtomob.–Dorozh. Akadem. SIBADI, Modernization and Innovative Development of Architectural-Construction and Road-Transport Complexes of Russia: Fundamental and Applied Research, Omsk: SIBADI, 2011.
16. Sudnishnikov, B.V., Esin, N.N., and Tupitsin, K.K., Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deistviya (Analysis and Design of Air Percussion Machines), Novosibirsk: Nauka, 1985.
17. Timonin, V.V., Downhole Air Hammers, Gorn. Oborud. Elektromekh., 2015, no. 2.
18. Lyukhanov, V.V. and Alferov, S.B., Use of Drill Instrument and Other Equipment of Machine Engineering Holding”, Gorn. Prom., 2010, no. 4.
19. http://www.mash-hold.ru/.
20. http://www.oaokmo.ru/.
21. Baiborodov, Ya.N., Development of Parameters of Location of Concentrated Parallel-Contiguous Explosive Charges of Increased Diameter in Ore Mining in Terms of Abakan Deposit, Cand. Tech. Sci. Thesis, Novosibirsk: IGD SO RAN, 2011.
22. Lyukhanov, V.V. and Alferov, S.B., Machine-Building Holding: Modernization of Drill Rig BP-100S in Terms of Gaisky Mining and Processing Integrated Works, Gorn. Prom., 2013, no. 3.
23. Lyukhanov, V.V. and Alferov, S.B., High-Pressure Compressed Air Drilling Facilities Manufactured by the Machine-Building Holding, Gorn. Prom., 2014, no. 4.
24. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh, A.I., Timonin, V.V., and Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50,
no. 5, pp. 929–937.
25. Repin, A.A., Alekseev, S.E., Timonin, V.V., and Karpov, V.N., Analysis of the Compressed Air Distribution in Down-the-Hole Hammer, Proc. 23rd Int. Sci. Symp. Miner’s Week-2015, 2015.
26. Belyaev, N.A., Pnevmoudarnye rasshiriteli skvazhin (Air Percussion Reamers), Novosibirsk: IGD SO RAN SSSR, 1987.
27. Repin, A.A., Alekseev, S.E., Mastering of Design of Downhole Air Percussion Reamers, Naukoemkie tekhnologii razrabotki i ispol’zovaniya mineral’nykh resursov (Science-Intensive Processes of Mineral Mining and Use), V. N. Fryanov (Ed.), Novokuznetsk, 2011.
28. Karpov, V.N., State-of-the-Art Drill Machinery for Prevention and Liquidation of Underground Accidents, Proc. 19th Int. Sci.-Pract. Conf., Kemerovo: KGTU, 2011.
29. http://www.machines-roger.ca/en/.
30. Kochetov, V.A. and Glazkov, V.N., Borehole Drill UBS-150, Gorny Zh., 2009, no. 12.
31. http://www.miningandconstruction.sandvik.com/.
32. http://www.atlascopco.ru/.
SUBSTANTIATION OF TYPE AND PARAMETERS OF DOWNHOLE AIR HAMMER WITH. A. VIEW TO INCREASE SMALL DIAMETER HOLE DRILLING VELOCITY
V. I. Klishin, D. I. Kokoulin, B. Kubanychbek, S. E. Alekseev,
and I. O. Shakhtorin
Institute of Coal, Siberian Branch, Russian Academy of Sciences,
Leningradskii pr. 10, Kemerovo, 650065 Russia
e-mail: vklishin@icc.kemsc.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: repin@misd.nsc.ru
The article substantiates the need of designing a rotary–percussion drilling tool to drill holes
40–60 mm in diameter and to 50 m long. The drilling rig with a downhole air hammer has been designed and manufactured. The authors have carried out analytical and experimental research to determine drilling velocity in different rocks of varying hardness.
Drill hole, blow energy, rotation, rock hardness, drilling velocity, downhole air hammer
DOI: 10.1134/S1062739115060381 REFERENCES
1. Klishin, V.I., Lekontsev, Yu.M., and Klishin, S.V., Development of Process and Equipment for Directed Hydrofracturing in Stone Production, Nauka, Oborud. Tekhn., 2009, no. 1.
2. Klishin, V.I., Adaptatsiya mekhanizirovannykh krepei k usloviyam dinamicheskogo nagruzheniya (Adaptation of Powered Support to Dynamic Loading Conditions), Novosibirsk: Nauka, 2002.
3. Klishin, V.I., Kokoulin, D.I., and Fokin, Yu.S., Development of Drilling Equipment for Coal Mines, Ugol’, 2007, no. 4.
4. Klishin, V.I., Kokoulin, D.I., Kubanychbek, B., and Gurtenko, A.P., Development of Drill Rigs for Coal Mines. Mine of Tomorrow, Proc. 6th Int. Sci.-Pract Conf., Perm, 2010.
5. Klishin, V.I., Repin, A.A., Kokoulin, D.I., Alekseev, S.E., Kubanychbek, B., and Shakhtorin, I.O., Development of Drill Equipment to Make Small-Diameter Holes in Hard Rocks, Perspektivy innovatsionnogo razvitiya ugol’nykh regionov Rossii (Prospects for Innovative Development in Coal Mining Regions in Russia), Prokop’evsk, 2014.
6. Klishin, V.I., Fokin, Yu.S., Kokoulin, D.I., and Repin, A.A., RF patent no. 2282009, Byull. Izobret., 2003, no. 23.
7. Klishin, V.I., Repin, A.A., Kokoulin, D.I., and Kubanychbek, B., Development of Special Drill Machines to Drill 45 mm Holes in Hard Rocks, Teoriya mashin i rabochikh protsessov (Theory of Machines and Working Processes), Bishkek: 2013.
8. Repin, A.A., Kokoulin, D.I., Kubanychbek, B., Alekseev, S.E., and Shakhtorin I. O., Tests of Rotary–Percussion Drilling Machine to Make Small–Diameter Holes at Brassboard, Fundamental’nye i prikladnye voprosy gornovedov: Rezhimy bureniya i vybor burovykh mashin (Fundamental and Applied Issues of Mining Experts: Drilling Modes and Drilling Equipment Selection), Moscow: Nedra, 1986.
9. Medvedev, I.F., Rezhimy bureniya i vybor burovykh mashin (Modes of Drilling and Choice of Drilling Machines), Moscow: Nedra, 1986.
10. Tsaritsyn, V.V., Burenie gornykh porod (Rock Drilling), Kiev: Gostekhizdat USSR, 1959.
11. Repin, A.A., Alekseev, S.E., Popelyukh A. I., and Teplykh, A.M., Influence of Non–metallic Inclusions on Endurance of Percussive Machines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 798–806.
12. Repin, A.A., Alekseev, S.E., and Popelyukh A. I., Enhancing Reliability of Parts of Percussion Machines, J. Min. Sci., 2012, vol. 48, no. 4, pp. 669–674.
13. Repin, A.A., Smolyanitsky, B.N., Alekseev, S.E., Popelyukh A. I., Timonin, V.V., and Karpov, V.N., Downhole High-Pressure Air Hammers for Open Pit Mining, J. Min. Sci., 2014, vol. 50,
no. 5, pp. 929–928.
14. Esin, N.N., Metodika issledovaniya i dovodki pnevmaticheskikh molotkov (Procedure for Testing and Optimization of Air Hammers), Novosibirsk: SO AN SSSR, 1965.
DETERMINATION OF OPERABILITY CONDITIONS FOR RING–SHAPED ELASTIC VALVE IN AIR HAMMER WITH VARIABLE STRUCTURE
OF IMPACT CAPACITY
V. V. Chervov and A. V. Chervov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: chervov@misd.nsc.ru
Under consideration is the principal diagram of a percussive tool with a ring–shaped elastic valve installed in the air distribution system: the valve closes when contacting the housing and opens under action of elastic forces. The operability conditions and basic design parameters of the valve are determined. The authors characterize contact interaction between the ring–shaped valve and the side slide surface when the valve is closing. The balance of forces affecting the ring–shaped valve is shown.
Elastic valve, contact deformation, compressed air, pressure, elastic forces, contact angle, cross–section
DOI: 10.1134/S1062739115060393 REFERENCES
1. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., et al., Sources for Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, J. Min. Sci., 2008, vol. 44, no. 5, pp. 490–496.
2. Danilov, B.B. and Smolyanitsky, B.N., Methods to Gain Better Efficiency of Driving Steel Pipes into the Ground by the Pneumatic Hammers, J. Min. Sci., 2005, vol. 41, no. 6, pp. 566–572.
3. Smolyanitsky, B.N., Chervov, V.V., Trubitsyn, V.V., et al., New Pneumatic Percussion Machines for Special Construction Operations, Mekhanizat. Stroit., 1997, no. 7.
4. Chervov, V.V., Control of Air Feed to Back-Stroke Chamber of the Pneumatic Impact Device, J. Min. Sci., 2003, vol. 39, no. 1, pp. 64–71.
5. Chervov, V.V., Impact Energy of Pneumatic Hammer with Elastic Valve in Back-Stroke Chamber, J. Min. Sci., 2004, vol. 40, no. 1, pp. 74–83.
6. Chervov, V.V., Trubitsyn, V.V., Smolyanitsky, B.N., and Weber I. E., RF patent no. 2105881, Byull. Izobret., 1998, no. 6.
7. Chervov, V.V., Smolyanitsky, B.N., Trubitsyn, V.V., Chervov, A.V., and Tishchenko, I.V., RF patent no. 2462575, Byull. Izobret., 2012, no. 6.
8. Gastaev, V.A., Kratkii kurs soprotivleniya materialov (Concise Course on Material Resistance), Moscow: Nauka, 1977.
9. Anur’ev, V.I., Spravochnik konstruktora mashinostroitelya (Design and Mechanical Engineer’s Manual), vol. 1. Edition 5, Moscow: Mashinostroenie, 1979.
10. Kondakov, L.A., Uplotneniya i uplotnitel’naya tekhnika: spravochnik (Consolidation and Consolidating Machinery: Manual), Moscow: Mashinostroenie, 1986.
11. Chervov, V.V. and Chervov, A.V., Temperature of Compressed Air and Exhaust in Air Hammer with Elastic Ring Valve, Fund.-Prikl. Vopr. Gorn. Nauk, 2014, vol. 2, no. 1.
12. Smolyanitsky, B.N. and Chervov, V.V., Enhancement of Energy Carrier Performance in Air Hammers in Underground Construction, J. Min. Sci., 2014, vol. 50, no. 5, pp. 918–928.
SUBSTANTIATION OF PARAMETERS AND ESTIMATION OF STRENGTH
FOR BASIC STRUCTURAL UNITS OF AXIAL TUNNEL FAN
N. A. Popov, A. M. Krasyuk, E. Yu. Russky, and I. V. Lugin
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: popov@misd.nsc.ru
The authors determine basic parameters for elements of axial tunnel fan VO-21(t) with direct annular diffuser. The algorithm is proposed for calculating aerodynamic parameters of the axial fan using ANSYS CFX software, which allows modeling, computation and analysis of effect exerted by various parameters of the fan air section on the fan aerodynamics. It is found that it is possible to reduce the fan impeller metal consumption and inertia moment by redistributing normal inertia force of blades from the boss to the disks. The admissible impeller velocity is related with the thickness of the impeller disks.
Axial tunnel fan, direct annular diffuser, fan and blades geometry, aerodynamic parameters, inertia and mass characteristics, impeller, blade dynamics and strength
DOI: 10.1134/S1062739115060415 REFERENCES
1. SNiP 32–02–203: Metropoliteny (Subways), Moscow: Gosstroi Rossii, 2004.
2. Brusilovsky, I.V., Aerodinamicheskie skhemy i kharakteristiki osevykh ventilyatorov TsAGI (Aerodynamic Diagrams and Axial Fan Specifications, Central Aerohydrodynamic Institute), Moscow: Nedra, 1978.
3. Brusilovsky, I.V., Aerodinamika osevykh ventilyatorov (Aerodynamics of Axial Fans), Moscow: Mashinostroenie, 1984.
4. Brusilovsky, I.V., Aerodynamics and Acoustics of Axial Fans, Trudy TsAGI, 2004, issue 2650.
5. Durbin, P.A. and Medic, G., Fluid Dynamics with a Computational Perspective, Cambridge University Press, ISBN: 052185017, 2007.
6. Kutler, P.A., Perspective of Theoretical and Applied Computational Fluid Dynamics, AIAA Paper,
1983, N0037.
7. Baturin, O.V., Matveev, V.N., Shablii, L.S., Popov, G.M., and Kolmakova, D.A., Issledovanie rabochego protsessa v stupeni osevogo kompressora s pomoshch’yu universal’nogo programnogo kompleksa ANSYS CFX (Investigation into Axial Fan Operation Using ANSYS CFX Software), Samara: SGAU, 2011.
8. Launder, B.E., An Introduction to the Modeling of Turbulence, VKI Lecture Series 1991–02, 1991.
9. Schlichting, H., Boundary-Layer Theory, McGraw-Hill Inc., 1979.
10. Nichols, R., Algorithm and Turbulence Model Requirements for Simulating Vortical Flows, AIAA-2008–0337, 2008.
11. Krasyuk, A.M. and Russky, E.Yu., RF patent no. 2484310 RU MPKF 04 D, Byull. Izobret., 2012, no. 16.
12. Krasyuk, A.M. and Russky, E.Yu., Dynamics and Strength of Dual Plate Blades of Axial Fans, Gorn. Oborud. Elektromekh., 2009, no. 7.
13. Krasyuk, A.M. and Russky, E.Yu., Air Disturbance Effect on Stress–Strain State of Crucial Rotor Components in Main Fan Facility, GIAB, 2014, no. 1.
14 Krasyuk, A.M., Russky, E.Yu., and Popov, N.A., Estimating Strength of High-Loaded Impellers of Large-Size Mine Axial Fans, J. Min. Sci., 2012, vol. 48, no. 2, pp. 314–321.
15. Krasyuk, A.M., Kosykh, P.V., and Russky, E.Yu., Influence of Train Piston Effect on Subway Fans, J. Min. Sci., 2014, vol. 50, no. 2, pp. 362–370.
STRESS DISTRIBUTION IN ATTACHMENTS OF DISC CUTTERS IN HEADING DRIVAGE
L. E. Mamet’ev, A. A. Khoreshok, A. M. Tsekhin, and A. Yu. Borisov
Gorbachev Kuzbass State Technical University,
ul. Vesennyaya 28, Kemerovo, 650000 Russia
e-mail: bau.asp@rambler.ru
The authors substantiate new engineering designs for selective heading machines and cutter–loaders fitted with screw–type cutters. It is proposed to use biconical and conical disc tools and their attachment units to polygonal prisms to equip both bits of heading machines and screw cutters of cutter–loaders to cut structurally heterogeneous rock mass. It is recommended to practice reverse–mode operation of universal radial–type drill bits fitted with disk tools mounted on triangular prisms with a view to widen the front of loading to be imposed on sidewalls. The presented data on modeling stress state of disk tools and variants of their attachments to polygonal prisms show the mechanisms of loading of related parts in the course of rock cutting.
Face rocks, heading machine, tool, drill bit, prism, attachment, disk tool, modeling, stress state
DOI: 10.1134/S1062739115060427 REFERENCES
1. Demura, V.N., Artem’ev, V.B., Yasyuchenya, S.V., Kopylov, K.N., Yutyaev, E.P., Meshkov, A.A.,
Lupii, M.G., Feofanov, G.L., Technological Preparation and Mining Diagrams for SUEK-Kuzbass Mines (Album), Biblioteka gornogo inzhenera. Podzemnye raboty (Mining Engineer Library.
Underground Mining), Moscow: Gornoe Delo Kimmeriisky Tsentr, 2014.
2. Khoreshok, A.A., Mamet’ev, L.E., Borisov, A.Yu., Mukhortikov, S.G., Modernization of Longitudinal–Axial Bit Design of Selective Heading Machines, Gorn. Oborud. Elektromekh., 2010, no. 5.
3. Khoreshok, A.A., Mamet’ev, L.E., Kuznetsov, V.V., Borisov, A.Yu., and Vorob’ev, A.V., Stress Distribution in Disk Tool Attachment Joints at Bits of Heading Machines, Vestn. KuzGTU, 2012, no. 6.
4. Nesterov, V.I., Mamet’ev, L.E., Khoreshok, A.A., and Borisov, A.Yu., Heading–Machine Tool
Designed to Integrate Ore Breaking and Lump Crushing with Broken Ore Loading Operations, Vestn. KuzGTU, 2012, no. 3.
5. Khoreshok, A.A., Mamet’ev, L.E., Borisov, A.Yu., Mukhortikov, S.G., and Vorob’ev, A.V., Development of Reversing Heading–Machine Bits, Equipped with Disc Tools Mounted at Removable Triangular Prisms, Gorn. Oborudov. Elektromekh., 2013, no. 9.
6. Mamet’ev, L.E., Khoreshok, A.A., Borisov, A.Yu., and Vorob’ev, A.V., Modernization of Design for Disc Tool Attachment on Heading Machine Bits, Vestn. KuzGTU, 2014, no. 1.
7. Mamet’ev, L.E., Khoreshok, A.A., Tsekhin, A.M., and Borisov, A.Yu., Dust Suppression Devices for Reversing Heading Machine Bits, Vestn. KuzGTU, 2014, no. 3.
8. Mamet’ev, L.E. and Borisov, A.Yu., Updating of Mounting and Demounting of Disc Tool Attachments on Heading Machine Bits, Vestn. KuzGTU, 2014, no. 4.
9. Mamet’ev, L.E., Khoreshok, A.A., Borisov, A.Yu., Improvement of Cutting Capacity of Axial Bit Heading Machines, Vestn. KuzGTU, 2014, no. 5.
10. Krestovozdvizhensky, P.D., Klishin, V.I., Nikitenko, S.M., and Gerike, P.B., Selecting Shape of Reinforcement Insertions for Tangential Swivel Cutters of Mining Machines, J. Min. Sci., 2015, vol. 51, no. 2, pp. 323–329.
11. Gerike, B.L., Gerike, P.B., Klishin, V.I., and Filatov, A.P., Modeling Destructive Effect Exerted by Shearing Disks of Heading-and-Winning Machines, J. Min. Sci., 2008, vol. 44, no. 5, pp. 497–503.
12. Gerike, B.L., Filatov, A.P., Gerike, P.B., and Klishin, V.I., Concept of Rock Breaking Working Element of an Underground Kimberlite Ore Mining Machine, J. Min. Sci., 2006, vol. 42, no. 6, pp. 610–616.
13. Gerike, P.B. and Belikov, M.A., Modeling of Disc Cutting Instrument Interaction with Rock Mass, J. Min. Sci., 2003, vol. 39, no. 2, pp. 162–167.
14. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structure Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
15. Oparin, V.N., Danilov, B.B., and Smolyanitsky, B.N., “Underground Rocket” Design Principles, J. Min. Sci., 2010, vol. 46, no. 5, pp. 536–545.
16. Buyalich, G.D., Buyalich, K.G., and Voevodin, V.V., Radial Deformations of Working Cylinder of Hydraulic Legs Depending on Their Extension, IOP Conference Series: Materials Science and Engineering, 2001, vol. 91, no. 1.
17. Buyalich, G.D., Anuchin, A.V., and Dronov, À.À., The Numerical Analysis of Accuracy of Hydraulic Leg Cylinder in Modeling Using Solid Works Simulation, Appl. Mechanics Mater., 2015, vol. 770.
18. Buyalich, G.D. and Buyalich, K.G., Comparative Analysis of the Lip Seal in Hydraulic Power Cylinder, Appl. Mechanics Mater., 2015, vol. 770.
19. Buyalich, G.D. and Buyalich, K.G., Modeling of Hydraulic Power Cylinder Seal Assembly Operation, Mining 2014: Taishan Academic Forum—Project on Mine Disaster Prevention and Control: Chinese Coal in the Century: Mining, Green and Safety, China, Qingdao, 17–20 October 2014, Amsterdam–Paris–Beijing: Atlantis Press, 2014.
20. Buyalich, G.D., Aleksandrov, B.A., Antonov, Yu.A., and Voevodin, V.V., Increasing the Resistance of Powered Support Brackets, J. Min. Sci., 2000, vol. 36, no. 5, pp. 487–492.
MINERAL MINING TECHNOLOGY
SELECTION OF EFFICIENT FLOW SHEETS FOR INITIAL CUTTING IN TOP-DOWN MINING IN INTERNATSIONALNY MINE
V. D. Baryshnikov and L. N. Gakhova
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: vbar@misd.nsc.ru
Using numerical modeling of rock mass stress–strain state to estimate and predict stability of structural elements of a mining system in combination with the in situ observation data on deformation of rocks in sidewalls, roofs and floors of underground excavations, the authors perform geomechanical analysis of overcutting scenarios in top-down mining in Internatsionalny Mine, ALROSA. Various overcutting flow sheets are considered, and the optimal sequence of overcutting towards higher stability of stopes is determined.
Room-and-pillar method, stope, stress, failure
DOI: 10.1134/S1062739115060440 REFERENCES
1. Vremennaya tekhnologicheskaya instruktsiya po primeneniyu sloevoi sistemy razrabotki s tverdeyushchei zakladkoi na rudnike “Internatsional’nyi” (Temporary Guidelines on Slice Mining with Cemented Backfilling in Internatsionalny Mine), Mirny: Yakutniproalmaz, 2004.
2. Baryshnikov, V.D., Gakhova, L.N., and Kramskov, N.P., Stress State of Ore Mass in the Ascending Slice Mining System, J. Min. Sci., 2002, vol. 38, no. 6, pp. 608–611.
3. Baryshnikov, V.D. and Gakhova, L.N., Geomechanical Conditions of Kimberlite Extraction in Terms of Internatsionalnaya Kimberlite Pipe, J. Min. Sci., 2009, vol. 45, no. 2, pp. 137–145.
4. Baryshnikov, V.D., Gakhova, L.N., and Latynin, V.V., Geomechanics of Initial Cutting in Top-Down Slice Mining with Cemented Backfilling, GIAB, 2010, no. 7.
5. Mathews, K.N., Hoek, E., Wyllie, D.C., and Stewart, S. B. V., Prediction of Stable Excavation Spans for Mining at Depths below 1,000 Meters in Hard Rock, Golder Associates Report to Canada Centre for Mining and Energy Technology (CAANMET), Ottawa, Canada, 1980.
6. Barton, N., Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses, Proc. Workshop on Norwegian Method of Tunneling, New Delhi, 1993.
7. Laubscher, D.N., A Geomechanics Classification System for the Rating of Rock Mass in Mini Design, J. S. Afr. Min. Metall., 1990, vol. 90, no. 10.
8. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1989.
9. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Experimental-and-Analytical Method for Assessing Stability of Stopes, J. Min. Sci., 2012, vol. 48, no. 4, pp. 609–615.
10. Baryshnikov, V.D., Baryshnikov, D.V., Gakhova, L.N., and Kachal’sky, V.G., Practical
Experience of Geomechanical Monitoring in Underground Mineral Mining, J. Min. Sci., 2014, vol. 50,
no. 5, pp. 855–864.
ANALYSIS OF LONGWALL FACE OUTPUT IN SCREW-TYPE CUTTER–LOADER-AND-SCRAPER CONVEYOR SYSTEM IN UNDERGROUND MINING OF FLAT-LYING COAL BEDS
A. A. Ordin and A. A. Metel’kov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru
Giprougol Ltd,
ul. Trikotazhnaya 41a, Novosibirsk, 630015 Russia
The article gives the analysis of basic mechanisms in variation of output of longwall face versus its length in the cutter–loader and scrape conveyor system in underground mining of flat-lying coal beds. Based on the analysis of interaction between cutter–loader and scrape conveyor, the dependence between the maximum output of longwall face and the longwall length is determined.
Coal bed, longwall face length, cutter–loader, scrape conveyor, production output
DOI: 10.1134/S1062739115060452 REFERENCES
1. Sturgul, J.R., Optimum Life of Mine: Declining Production Case, Int. J. Mining Engineering, 1985, no. 3.
2. Li, Z., A Theoretical Approach to Determination of Mine Life and Design Capacity, Int. J. Surf. Mining, 1989, vol. 3.
3. Fuentes, S.S., Going to an Underground Mining Method, Proc. Mass Min. Conf. Santiago, Chile, 2004.
4. Dimitrakopoulos, R., Stochastic Optimization for Strategic Mine Planning: A Decade of Developments, J. Min. Sci., 2011, vol. 47, no. 2, pp. 138–150.
5. Rocchi, L., Carter, P., and Stone, P., Sequence Optimization in Longwall Coal Mining, J. Min. Sci., 2011, vol. 47, no. 2, pp. 151–157.
6. Maleev, G.V., Gulyaev, V.G., Boiko, N.G., et al., Proektirovanie i konstruirovanie gornykh mashin i kompleksov (Engineering and Design of Mining Machines and Machine Sets), Moscow: Nedra, 1988.
7. Aleksandrov, B.A., Kozhukhov, L.F., Antonov, Yu.A., et al., Gornye mashiny i oborudovanie podzemnykh razrabotok (Underground Mining Machines and Equipment), Kemerovo: KuzGTU, 2006.
8. Korovkin, Yu.A., Savchenko, P.F., and Burakov, V.A., Productivity of Fully Mechanized Longwall Faces Equipped under Leasing–Investment Projects, Ugol’, 2001, no. 5.
9. Plotnikov, V.P., Formula for Capacity of Cutter–Loaders with Screw-Type, Drum or Crown Cutting Head, Ugol’, 2009, no. 9.
10. Kos’minov, E.A., Remezov, A.V., Ordin, A.A., and Klishin, V.I., Automated Search of Efficient Capacity in Fully Mechanized Longwall Face, Ugol’, 1997, no. 10.
11. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
12. Ordin, A.A., Zyryanov, S.A., Nikol’sky, A.M., et al., Basic Calculation Principles for Fully Mechanized Longwall Face Capacity Based on Technology Factors in Proza-3.0, Proc. Int. Sci.-Pract. Conf. High Technologies of Mineral Mining and Use, Novokuznetsk, 2012.
13. Ordin, A.A., Nikol’sky, A.M., and Metel’kov, A.A., Modeling and Optimization of Preparatory Work and Stoping in a Coal Mine Panel, J. Min. Sci., 2013, vol. 49, no. 6, pp. 941–949.
14. Kondrashin, Yu.A., Koloyarov, V.K., Yastremsky, S.I., et al., Rudnichnyi transport i mekhanizatsiya vspomogatel’nykh rabot: katalog-spravochnik (Mine Transport and Auxiliary Work Mechanization: Reference Catalogue), Moscow: Gornaya Kniga, 2010.
15. Evnevich, A.V., Transportnye mashiny i kompleksy (Transport Machines and Machine Sets), Moscow: Nedra, 1975.
UTILIZATION OF ELASTIC ENERGY OF ROCK MASS
AS. A. SOURCE OF RENEWABLE ENERGY
M. V. Ryl’nikova, L. I. Manevitch, V. A. Eremenko, and V. V. Smirnov
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: eremenko@ngs.ru
Semenov Institute of Chemical Physics, Russian Academy of Sciences,
ul. Kosygina 4, Moscow, 119991 Russia
The authors investigate modes and parameters of mining operations with a view to create conditions for transmission of geotechnologically produced kinetic energy of rocks to electric generators. The features of application of energy-harvesting equipment in underground mining of hard minerals are discussed. The low-frequency energy trap designed to entrap elastic energy of rock mass oscillations operates in a wide range of amplitudes and frequencies of rock mass vibration, and is composed of three nonlinear oscillators having preset mass and elastic characteristics.
Rock mass energy, energy trap, oscillations, resonance, stress–strain state, seismic energy of dynamic events, block, crosscut, vibro haul-and-load facilities
DOI: 10.1134/S1062739115060464 REFERENCES
1. Trubetskoy, K.N., Kaplunov, D.R., Ryl’nikova, M.V., et al., Mineral Mining and Processing Industry Sustainability Conditions in Russia, GIAB, 2015, no. 2.
2. Kaplunov, D.R., Ryl’nikova, M.V., and Radchenko, D.N., Utilization of Renewable Energy Sources in Hard Mineral Mining, J. Min. Sci., 2015, vol. 51, no. 1, pp. 111–117.
3. Manevitch, L.I., New Approach to Beating Phenomenon in Coupled Nonlinear Oscillatory Chains, Arch. Appl. Mech., 2007, 77(5).
4. Manevitch, L.I. and Smirnov, V.V., Resonant Energy Exchange in Nonlinear Oscillatory Chains and Limiting Phase Trajectories: From Small to Large System, Advanced Nonlinear Strategies for Vibration Mitigation and System Identification CISM Courses and Lectures, 2010, vol. 518.
5. Kikot’, I.P. and Manevitch, L.I., Coupled Oscillators on Elastic Basis under Conditions of Acoustic Vacuum, Nelinein. Dinam., 2014, vol. 10, no. 3.
6. Ryl’nikova, M.V., Eremenko, V.A., and Esina, E.N., Conditions of Energy Concentration Zones in Rocks, GIAB. Scientific Monograph (Special Issue), Moscow: Gornaya Kniga, 2014.
7. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P.,
Rozenbaum, M.A., and Tropp, E.A., Zonal Disintegration of Rocks around Underground Mines, Part III: Theoretical Concepts, J. Min. Sci., 1987, vol. 23, no. 1, pp. 1–6.
8. Mendecki, A.J., Seismic Monitoring in Mines, London: Chapman and Hall, 1997.
9. Eremenko, V.A., Gakhova, L.N., and Semenyakin, E.N., Formation of Higher Stress Zones and Cluster of Seismic Events in Deep Mining in Tashtagol, J. Min. Sci., 2012, vol. 48, no. 2, pp. 269–275.
10. Khalturin, V.I., Rautian, T.G., and Richards, P.G., The Seismic Signal Strength of Chemical Explosions, Bulletin of the Seismological Society of America, 1998, vol. 88, no. 6.
11. Ukazaniya po bezopasnomu vedeniyu rabot na mestorozhdeniyakh Gornoi Shorii, sklonnykh i opasnykh po gornym udaram (Safety Guidance for Rockburst-Hazardous Mining in Gornaya Shoria), Novosibirsk–Novokuznetsk, 2015.
12. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Sovershenstvovanie geotekhnologii osvoeniya zhelezorudnykh udaroopasnykh mestorozhdenii v usloviyakh deistviya prirodnykh i tekhnogennykh faktorov (Improvement of Geotechnology for Rockburst-Hazardous Iron Ore Deposits under Natural and Induced Effects), Novosibirsk: Nauka, 2008.
13. Manevitch, L.I. and Smirnov, V.V., Localized Nonlinear Excitations and Interchain Energy Exchange in the Case of Weak Coupling, Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, J. Awrejcewicz (Ed.), Springer Science, 2009.
14. Smirnov, V.V., Shepelev, D.S., and Manevitch, L.I., Energy Exchange and Transition to Localization in the Asymmetric Fermi-Pasta-Ulam Oscillatory Chain, Eur. Phys. J. B, 2013, vol. 86, no. 10.
RESOURCE-SAVING TECHNOLOGY FOR UNDERGROUND MINING
OF HIGH-VALUE QUARTZ IN KYSHTYM
I. V. Sokolov, A. A. Smirnov, Yu. G. Antipin, K. V. Baranovsky,
and A. A. Rozhkov
Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: geotech@igduran.ru
The article presents the applied research on formation of science-and-technology basis for commercial introduction of a technology that ensures cardinal reduction in loss in underground mining at unique Kyshtym quartz deposit. Based on the theoretical analysis of the minimum quartz loss criterion, the authors determine rational variants of combined mining and quartz breaking by planar charge system for in–situ experimentation.
Quartz deposit, underground technology, loss and dilution, combination mining system, drilling-and-blasting
DOI: 10.1134/S1062739115060476 REFERENCES
1. Sokolov, I.V., Antipin, Yu.G., and Baranovsky, K.V., Underground Geotechnical Studies to Mine Ore Body of Medium Thickness and Inclined Strike in Kyshtym of Granular-Type Quartz Deposit, Izv. Vuzov. Gorny Zh., 2013, no. 2.
2. Sokolov, I.V., Kornilkov, S.V., Sashurin, A.D., et al., Foundation of Scientific and Technological Backup for Introduction of Complex Geoprocess for Mining and Processing of High-Value Quartz, Gorny Zh., 2014, no. 12.
3. Kalmykov, V.N., Ryl’nikova, M.V., Mannanov, R.Sh., and Emel’yanenko, E.A., Search for Technological Solutions to Stabilize Mine Workings in Metasomatically Transformed Rocks, GIAB, 2001, no. 4.
4. Filippov, P.A. and Freidin, A.M., Development of Ore Metal Provision for Metallurgy Industry in West Siberia, J. Min. Sci., 2012, vol. 48, no. 4, pp. 700–708.
5. Zakusin, G.A., Improvement of Efficiency in Mining of Inclined Medium-Thickness Iron Ore Deposits, Cand. Tech. Sci. Thesis, Sverdlovsk: Sverd. Gorn. Inst., 1984.
6. Volkov, Yu.V., Sokolov, I.V., and Kamaev, V.D., Vybor system podzemnoi razrabotki rudnykh mestorozhdenii Urala (Search for Underground Mineral Mining Systems for Ural Deposits), Ekaterinburg: UrO RAS, 2002.
7. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Sokolov, R.I., Effect of Recovery Factors on Performance of Underground Ore Mining, Izv. Vuzov. Gorny Zh., 2012, no. 3.
8. Typical Procedure for Standardization of Hard Mineral Loss in Mining, Sbornik rukovodyashchikh materialov po okhrane nedr. Gosgortekhnadzor SSSR (Mineral Wealth Protection Code. The USSR Service for Mining and Industry Supervision), Moscow: Nedra, 1973.
9. Branch Instruction on Evaluation, Standardization and Account for Loss and Dilution of Mineral Ores at Mines of Nonferrous Metal Ministry, the USSR, Sbornik instruktivnykh materialov po okhrane i ratsional’nomu ispol’zovaniyu poleznykh iskopaemykh (Collection of Instructions on Protection and Comprehensive Utilization of Mineral Resources. Ministry of Nonferrous Metals, the USSR), Moscow: Nedra, 1977.
10. Otraslevaya instruktsiya po opredeleniyu, uchetu i normirovaniyu poter’ rudy pri razrabotke zhelezorudnykh, margantsevykh i khromitovykh mestorozhdenii na predpriyatiyakh MCHM SSSR (Branch Instruction on Evaluation, Standardization of Ore Loss in Mining of Iron Ore, Manganese and Chromite Deposits, Ferrous Metallurgy Ministry, USSR), Belgorod: VIOGEM, 1975.
11. Rules of Protection of Earth Entails. (PB 07–601–03), approved by RF Federal Service for Mining and Industry Supervision, June 18, 2003, Moscow: GUP NTTs BP, 2003, issue no.11.
12. Pokrovsky, G.I. and Fedorov, I.S., Deistvie udara i vzryva v deformiruemykh sredakh (Effect of Impact and Blasting in Deformable Media), Moscow: AN SSSR, 1957.
13. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., et al., Mekhanicheskii effekt podzemnogo vzryva (Mechanical Effect of Underground Blasting), Moscow: Nedra, 1971.
14. Belin, V.A. and Kryukov, G.M., Results of Development of Blast Rock Breaking Theory, Vzryv. Delo, 2011, nos. 105/62.
15. Baum, F.A., Orlenko, L.P., Stanyukovich, K.P., Chelyshev, V.P., and Shekhter, B.I., Fizika vzryva (Physics of Explosion), Moscow: Nauka, 1975.
16. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Fundamental Problems of Mathematical Theory of Elasticity), Moscow: Nauka, 1966.
17. Shvedov, K.K. and Dremin, A.N., Parameters of Industrial Blasting Detonation and their Comparative Estimate), Vzryv. Delo, 1976, nos. 76/33.
18. Kucheryavy, F.I., Rock Mass Stress around Isotropic Point under Simultaneous Blasting of Two Borehole Charges, Vzryv. Delo, 1964, nos. 55/12.
19. Kucheryavy, F.I., Drukovanny, M.F., and Gaek, Yu.V., Korotkozamedlennoe vzryvanie na kar’erakh (Millisecond Delay Blasting in Quarries), Moscow: Gosgortekhizdat, 1962.
20. Drukovanny, M.F., Metody upravleniya vzryvom na kar’erakh (Processes for Blasting Control in Quarries), Moscow: Nedra, 1973.
21. Senuk, V.M. and Smirnov, A.A., Interaction in Charge Batch in Fractured Medium, Trudy IGD MChM SSSR, Sverdlovsk: IGD MChM SSSR, 1969, issue 22.
22. Senuk, V.M., Smirnov, A.A., and Komarichev, V.G., Laboratory and Field Test Data on Interaction
Character of Column Charges in Solid Medium, Trudy IGD MChM SSSR, Sverdlovsk: IGD MChM SSSR, 1970, issue 26.
23. Senuk, V.M., Blasting Impulse from an Explosion and Conditions for its Greater Utilization in Crushing Hard Rock Masses in Blasting, J. Min. Sci., 1979, vol. 15, no. 1, pp. 22–27.
24. Gorinov, S.A., Efficiency of Flat Charge Batches to Break Heavily Jointed Ores in Underground Mining, Izv. Vuzov. Gorny Zh., 1985, no. 7.
25. Zubrilov L. E., Gorinov, S.A., Smirnov, A.A., et al., Ore Breaking by Flat Charge Batches at Yuzhnaya Mine, Izv. Vuzov. Gorny Zh., 1985, no. 9.
26. Gorinov, S.A. and Smirnov, A.A., Effect of Blasting by Flat Charge Batch, GIAB, 2001, no. 4.
27. Senuk, V.M., Komarichev, V.G., and Kostyuk G. I., On Volley Interaction, Trudy IGD MChM SSSR, Sverdlovsk: IGD MChM SSSR, 1966, issue 11.
EFFICIENCY OF CORE SAMPLERS IN MEASUREMENT OF METHANE EMISSION IN COAL BEDS
O. V. Tailakov, V. P. Tatsienko, A. N. Kormin, and A. I. Smyslov
Gorbachev Kuzbass State Technical University,
ul. Vesennyaya 28, Kemerovo, 650000 Russia
Institute of Chemistry of Coal, Siberian Branch, Russian Academy of Sciences,
Leningradskii pr. 10, Kemerovo, 650065 Russia
e-mail: tov@kuzstu.ru
Currently coal is extracted from highly gaseous beds using preliminary degassing. To estimate efficiency of measures aimed to reduce residual gas content of coal beds, an original approach is offered based on measuring methane content of coal samples taken directly in a mine using deep horizontal holes. The authors describe the purpose-designed core sampler and the methane drainage efficiency estimates obtained using the core sampler.
Gas content, coal, open-type core sampler, methane desorption, lost methane volume estimation, coal mine
DOI: 10.1134/S1062739115060488 REFERENCES
1. Dmitriev, A.M., Problemy gazonosnosti ugol’nykh mestorozhdenii (Gas Content Problems in Coal Deposits), Moscow: Nedra, 1982.
2. Kravtsov, A.I., Gazonosnost’ ugol’nykh basseinov i mestorozhdenii SSSR (Gas Content of Coal Basins and Coal Deposits in the USSR), Vol. 3: Genesis and Regularities of Natural Gases in Coal Basins and Deposits in the USSR, Moscow: Nedra, 1980.
3. Instruktsiya po opredeleniyu i prognozu gazonosnosti ugol’nykh plastov i vmeshchayushchikh porod pri geologorazvedochnykh rabotakh (Instruction for Gas Content Estimation and Prediction in Coal Seams and Host Rocks in Geological Exploration), Moscow: Nedra, 1977.
4. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyaniya massivov gornykh porod (Downhole Geophysical Processes for Diagnostics and Control of Stress–Strain State in a Rock Mass) Novosibirsk: Nauka, 1999.
5. Vasil’chikov, M.N., Experience in Estimation of Gas Content in Coal Seams in Central Donbass Basin by Sampling in Underground Mine Workings, Trudy IGD Skochinskogo, 1984, no. 225.
6. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., On Relation of Linear Block Dimensions of Rock to Crack Opening in the Structural Hierarchy of Masses, J. Min. Sci., 1993, vol. 29, no. 3, pp. 3–10.
7. Vasyuchkov, Yu.F., Diffusion of Methane in Carbofossils Seams, Khim. Tverd. Topl., 1976, no. 4.
8. Baklashov, I.V. and Kartoziya, B.A., Mekhanika podzemnykh sooruzhenii i konstruktsii krepei (Mechanics of Underground Structures and Supports), Moscow: Nedra, 1992.
9. Yarovoi, I.M., Beskrovny, V.I., Maslenko, N.K., and Chukaev, I.P., Investigation into Methane Content by Core and Gas Samplers DGI in Mines of West Donbass, Bezopasn. Truda Prom., 1967, no. 2.
10. Dostovernost’ kernovykh prob i vybor diametrov skvazhin pri razvedke mestorozhdenii VPO Soyuzgeotekhnika, Vsesoyuznyi nauchno-issledovatel’skii institut metodiki i tekhniki razvedki (Representativeness of Core Samples and Selection of Borehole Diameter in Mineral Exploration.VPO Soyuzgeotekhnika, All-Union Research Institute of Exploration Technology and Equipment), Leningrad: Nedra, 1982.
11. Ponomarev, P.P. and Kaulin, V.A., Otbor kerna pri kolonkovom geologorazvedochnom burenii (Core Sampling in Core Exploration Drilling), Leningrad: Nedra, 1989.
12. Novikov, G.P., Belkin, O.K., Klyuev, L.K., et al., Spravochnik po bureniyu skvazhin na ugol’ (Borehole Drilling in Coal Exploration. Manual), Moscow: Nedra, 1988.
13. Tekhnicheskaya instruktsiya po provedeniyu geofizicheskikh issledovanii v skvazhinakh (Downhole Geophysical Survey Instruction), Moscow: Nedra, 1985.
14. Khodot, V.V., Yanovskaya, M.F., Premysler, Yu.S., et al., Fizika–khimiya gazodinamicheskikh yavlenii v shakhtakh (Physics and Chemistry of Gas-Dynamic Phenomena in Mines), Moscow: Nauka, 1973.
15. Kovalev, Yu.M. and Kuznetsov, S.V., Filtration of Gas in a Coal Seam Being Worked in the Presence of Diffusion Desorption, J. Min. Sci., 1974, vol.10, no. 6, pp. 716–719.
SELECTING SUPPORT FOR PREPARATORY DRIVES IN THE INFLUENCE ZONE OF STOPING IN TALNAKH MINES
A. P. Tapsiev and V. A. Uskov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: atapsiev@misd.nsc.ru
The article sets methodological basis for selecting support for preparatory drives in copper–nickel ore mining by Transpolar Division of Norilsk Nickel. The authors present a case study of selecting support for preparatory drive in the influence zone of top-down multi-slice breast stoping.
Room-and-pillar mining, entry stope, stresses, failure
DOI: 10.1134/S106273911506049X
REFERENCES
1. Oparin, V.N., Tapsiev, A.P., Bogdanov, M.N., Badtiev, B.P., Kulikov, V.M., and Uskov, V.A., Sovremennoe sostoyanie, problemy i strategiya razvitiya gornogo proizvodstva na rudnikakh Noril’ska (The Current Situation, Problems, Mining Development Strategy in Norilsk Mines), Novosibirsk: SO RAN, 2008.
2. RTPP–009–2004. Reglament tekhnologicheskikh proizvodstvennykh protsessov po primeneniyu sloevoi sistemy razrabotki s zaklagkoi vyrabotannogo prostranstva tverdeyushchimi materialami i raspolozheniem ochistnykh vyrabotok v zashchitnykh zonakh pri vyemke sul’fidnykh rud na rudnikah ZF OAO GMK Noril’skii nikel’ (Procedures for Slicing Mining with Cemented Backfill and Stoping in Protection Zones in Sulfide Ore Mining in Norilsk Nickel Mines), Norilsk: Noril’skii nikel’, 2005.
3. Rekomendatsii po krepleniyu, podderzhaniyu i okhrane razvedochnykh, kapital’nykh, podgotovitel’nykh, nareznykh i ochistnykh vyrabotok na rudnikakh Oktyabr’skii, Taimyrskii i Komsomol’skii ZF OAO GMK Noril’skii nikel’ (Recommendations on Support, Maintenance and Protection of Exploration, Permanent, Development and Production Drives and Access Roads in Oktyabrsky, Taimyrsky and Komsomolsky Mines, Polar Division, Norilsk Nickel), Norilsk, 2011.
4. Metodika rascheta parametrov krepleniya nareznykh i podgotovitel’nykh vyrabotok vne zony vliyaniya i v zone vliyaniya ochistnykh rabot dlya rudnikov ZF OAO GMK Noril’skii nikel’ (Procedure for Calculation of Support Parameters in Temporary and Development Drives Inside and Outside the Stoping Influence Zones in Mines, Polar Division, Norilsk Nickel), Novosibirsk: IGD SO RAN, 2012.
5. Uskov, V.A., Rock Stability Characteristic Based on Displacement Rate of Working Contour, J. Min. Sci., 1999, vol. 35, no. 6, pp. 594–597.
6. Trushko, V.L., Protosenya, A.G., Matveev, P.F., and Sovmen, Kh.M., Geomekhanika massivov i dinamika vyrabotok glubokikh rudnikov (Rock Mass Geodynamics and Dynamics of Mine Workings in Deep Mines), Saint-Petersburg: SPGGU, 2000.
7. Badtiev, B.P., Anokhin, A.G., Marysyuk, V.P., Nagovitsyn, Yu.N., and Tapsiev, A.P., Perfection of Bottom-Up Slicing Mining with Backfilling in Production of Cupriferrous Ores, Tsv. Met., 2007, no. 7.
8. Tapsiev, A.P. and Uskov, V.A., Support Design Criteria for Mine Workings in the Zone of Influence of Stoping in Zapolyarny Mine, J. Min. Sci., 2014, vol. 50, no. 4, pp. 680–689.
9. Tapsiev, A.P., Freidin, A.M., Uskov, V.A., Anushenkov, A.N., Filippov, P.A., Neverov, A.A., and Neverov, S.A., Resource-Saving Geotechnologies for Thick Gently Dipping Complex Ore Deposits in the Norilsk Region, J. Min. Sci., 2014, vol. 50, no. 5, pp. 904–913.
10. Nagovitsin, Yu.N., Kisel’, A.A., Tapsiev, A.P., and Uskov, V.A., Criteria for Selection of Type and Calculation Parameters of Horizontal Working Supports in Norilsk Mines, Gorny Zh., 2015, no. 6.
SELECTION OF LOAD–HAUL–DUMP MACHINES FOR HARD MINERAL MINING IN DIFFICULT MINING AND GEOLOGICAL CONDITIONS
V. A. Solomennikov and V. I. Cheskidov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru
In focus is selection of load–haul–dump machines for hard mineral mines. The authors offer substantiation procedures for tuck-and-shovel systems of mining in difficult ground conditions. In terms of Kyrgaisky Sredni open-cut located in the Erunakovo coal district in Kuzbass, using the Lerchs–Grossman algorithm, the principles and sequence of forming efficient application domains for different specification trucks and shovels within a mine field are presented.
Open-cut mining, truck-and-shovel systems, block model, Lerchs–Grossman algorithm, application domain
DOI: 10.1134/S1062739115060502 REFERENCES
1. Mariev, P.L., Kuleshov, A.A., Egorov, A.N., and Zyryanov, I.V., Kar’ernyi avtotransport: sostoyanie i perspektivy (Open-Pit Motor Vehicle Transport: State and Perspectives), Saint-Petersburg: Nauka, 2004.
2. Shchadov, M.I. and Efimov, V.N., Mining-and-Transport Equipment Assessment, Its Re-Equipment as Base of Effective Open Coal Mining Development in Kuzbass, Gorn. Oborud. Elektromekh., 2008, no. 7.
3. Molotilov, S.G., Cheskidov, V.I., and Norri, V.K., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers, Part I, J. Min. Sci., 2008,
vol. 44, no. 4, pp. 376–385.
4. Molotilov, S.G., Norri, V.K., Cheskidov, V.I., and Botvinnik, A.A., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers, Part II: Engineering Capacity Calculation, J. Min. Sci., 2009, vol. 45, no. 1, pp. 43–58.
5. Molotilov, S.G., Cheskidov, V.I., Norri, V.K., Botvinnik, A.A., and Il’bul’din, D.Kh., Methodical Principles for Planning the Mining and Loading Equipment Capacity for Open Cast Mining with the Use of Dumpers, Part III: Service Capacity Determination, J. Min. Sci., 2010, vol. 46, no. 1, pp. 38–49.
6. Shchadov, M.I., Anistratov, K.Yu., and Fedorov, A.V., Process for Open-Pit Machinery Structuring at Operating Mining Entity, Gorn Prom., 2009, no. 5.
7. Kuleshov, A.A., Moshchnye ekskavatorno-avtomobil’nye kompleksy kar’erov (Heavy-Duty Truck-and-Shovel Open Mining Systems), Moscow: Nedra, 1980.
8. Kuleshov, A.A., Proektirovanie i ekspluatatsiya kar’ernogo avtotransporta (Design and Exploitation of Open-Pit Auto Transport Machinery): Handbook, Part II, Saint-Petersburg: SPGGI, 1995.
9. Zemskova, N.A., Otchet po rezul’tatam geologorazvedochnykh rabot na uchastke nedr Kyrgaiskii
Srednii, Severo-Taldinskii i Taldinskii kamennougol’nykh mestorozhdenii (Report on Geological Exploration at Kyrgaisky Sredni, Severo-Taldinsky and Taldinsky Coal Deposits), Novokuznetsk: Geobur-Service, 2013.
10. Lerchs, H. and Grossmann I. F., Optimum Design of Open-Pit Mines, Transactions, Canadian Institute of Mining and Metallurgy, 1965, vol. LXVIII.
STRUCTURING OF COMPLEX COAL DEPOSITS WITH RESPECT TO QUALITY
N. V. Goncharova
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru
The procedure is proposed for structuring complex coal deposits with respect to quality indexes using ArcGIS with a view to substantiate rational trends in mineral use. The article reports the research on assorting Elginsk black coal reserves in South Yakutia based on volatile content, plastic layer thickness, coal grades, process groups and subgroups.
GeoInformation System, digital modeling, complex structure coal deposits, coal quality
DOI: 10.1134/S1062739115060514 REFERENCES
1. Metodicheskie rekomendatsii po primeneniyu klassifikatsii zapasov mestorozhdenii i prognoznykh resursov tverdykh poleznykh iskopaemykh. Ugli i goryuchie slantsy, FGU ”Gosudarstvennaya komissiya po zapasam poleznykh iskopaemykh” (Guidelenes on Application of Classification of Mineral Reserves and Predicted Hard Mineral Resources. Coals and Slate Coals. Government Commission for Mineral Resources) Moscow: MPI RF, 2007.
2. GOST 25543–2013, Moscow: Standartinform, 2014.
3. GOST R 51586–2000, Moscow: Izd. Standartov, 2000.
4. GOST R 51588–2000, Moscow: Izd. Standartov, 2000.
5. GOST R 51587–2000, Moscow: Izd. Standartov, 2000.
6. Freidina, E.V., Botvinnik, and A.A., Dvornikova, A.N., Coal Quality Control in the Context of International Standards ISO 9000–2000, J. Min. Sci., 2008, vol. 44, no. 6, pp. 585–599.
7. http://www.rosugol.ru/e–store/coal_information.php.
8. Freidina, E.V., Botvinnik, A.A., and Dvornikova, A.N., Basic Principles of Coal Classification by Useful Quality, J. Min. Sci., 2011, vol. 47, no. 5, pp. 593–605.
9. http://www.gkz–rf.ru/index.php?option=com_content&view=article&id=181: 2013–11–28–12–29–03&catid=42:news-news&Itemid=1.
10. http://www.portalero.ru/drugoe/statya_geoinformacionnye_ sistemy_v.html.
11. Kornilkov, S.V., Rybnikova, L.S., and Rybnikov, P.A., Concept of Integrated Ural’s Mineral and Waste Use Ginformation System, Izv. Vuzov. Gorny Zh., 2013, no. 8.
12. Ruban, A.D., General Design of Degassing Process in Underground Coal Mining and Gas Production, GIAB, Special Issue no. 1, Miner’s Week–2011 Proceedings, Moscow: MGGU, 2011.
13. Grib, N.N., Syas’ko, A.A., Kachaev, A.V., Evaluation of Coal Deposit Resources by Using Geoinformation Technologies, Sovrem. Naukoem. Tekhnol., 2011, no. 1.
14. Kondratova, N.N., GIS Technologies in Mapping of Exploration and Exploitation of Coal Deposits in Far East Federal District, Proc. 4th Conf. Young Scientists and Specialists “Geology, Exploration and Complex Evaluation of Hard Mineral Deposits, Moscow: 2012.
15. Dranishnikov, P.S., Kuvashkina, T.A., and Konkin, E.A., GIS Technologies in Estimation of Mineral Deposit Reserves, GIAB, 2004, no. 4.
16. Antipova, A.P., GIS Technologies in 3D Modeling of Coal Seams to Estimate Coal Reserves of the West Coal-Bearing Border Area of South Yakutsk Basin, Proc. 5th Conf. Young Scientists and Specialists with Foreign Participants in Honor of the 150th Anniversary of V. A. Obruchev “Geology, Exploration and Integrated Evaluation of Hard Mineral Reserves,” Moscow: Vsesoyuzn. Inst. Min. Syr’ya, 2013.
17. GOST 10101–86, Moscow: Izd. Standartov, 1986.
18. Dvornikova, A.N. and Dubynina N. V., Compiling of Geological Information Database to Monitor Fossil Coal Grade, GIAB, 2003, no. 7.
19. Tekhniko–ekonomicheskoe obosnovanie promyshlennogo osvoeniya El’ginskogo mestorozhdeniya (Feasibility Studies of Commercial Exploitation of Elginsk Deposit), Stage 1, Fundamentals, Book 2, Mining and Transport, Novosibirsk: Sibgiproshakht, 1993.
MINERAL DRESSING
SURFACE COMPOSITION AND ROLE OF HYDROPHILIC DIAMONDS
IN FOAM SEPARATION
V. A. Chanturia, G. P. Dvoichenkova, O. E. Koval’chuk, and A. S. Timofeev
Institute of Integrated Development of Mineral Resources—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: dvoigp@mail.ru
ALROSA Research and Exploration Company,
Chernyshevskoe shosse 16, Mirny, 678174 Russia
The article presents new test results on structural and chemical properties of mineral formations on the surface of natural hydrophilic diamonds using Raman, X-ray phase and Auger spectroscopy methods. Analysis of morphological features of nano formations involved scanning electron microscope Jeol-5610 and analyzer INCA. Based on the studies into phase composition of diamonds non-recovered in the circuit of kimberlite ore processing, two types of mineral formations are discovered on their surface: micro-formations as silicate nature globules less than 1 µm in size and silicate nano films more than 5 nm thick. The tests detect also presence of layered talc silicates that make diamond surface hydrophilic.
Hydrophilic behavior, mineral formations, nano formations, diamond, spectroscopy, admixtures
DOI: 10.1134/S1062739115060538 REFERENCES
1. Goryachev, B.E., Tekhnologiya almazosoderzhashchikh rud (Diamond-Bearing Ore Processing), Moscow: MISIS, 2010.
2. Chanturia, V.A. and Goryachev, B.E., Processing of Diamond-Bearing Kimberlites, Progressivnye tekhnologii kompleksnoi pererabotki mineral’nogo syriya (Advanced Complex Mineral Material Processing Technologies), Moscow: Ruda Metally, 2008.
3. Chanturia, V.A., Dvoichenkova, G.P., Trofimova, E.A., et al., Advanced Methods for Intensification of Processing and Recleaning of Diamond-Bearing Materials of –5 mm Class, Gorny Zh., 2011, no. 1.
4. Kurenkov, I.I., O svoistvakh poverkhnosti almaza v svyazi s izvlecheniem iz rud (Surface Properties of Diamonds in Beneficiation Processes), Moscow: AN SSSR, 1957.
5. Chanturia, V.A., Trofimova, E.A., Dikov, Yu.P., Dvoichenkova, G.P., Bogachev, V.I., and Zuev, A.A., Relation between Surface and Processing Properties of Diamonds in Kimberlite Beneficiation, Gorny Zh., 1998, nos. 11, 12.
6. Chanturia, V.A., Trofimova, E.A., Dikov, Yu.P., Bogachev, V.I., Dvoichenkova, G.P., and Minenko, V.G., Mechanism for Passivation and Activation of Diamond Surface in Diamond-Bearing Ore Processing, Obog. Rud, 1999, no. 3.
7. Dyukarev, V.P., Kalitin, V.T., Makhrachev, A.F., Zuev, A.V., Chanturia, V.A., Dvoichenkova, G.P., Trofimova, E.A., and Bychkova, G.M., Development and Introduction of Electrochemical Water Preparation in Diamond-Bearing Kimberlite Processing, Gorny Zh., 2000, no. 7.
8. Chanturia, V.A., Trofimova, E.A., Dvoichenkova, G.P., Bogachev, V.I., Minenko, V.G., and Dikov, Yu.P., Theory and Practice of Electrochemical Water Preparation to Intensify Diamond-Bearing Kimberlite Processing, Gorny Zh., 2005, no. 4.
9. Strickland-Constable, R.F., Kinetics and Mechanism of Crystallization, London: Academic Press, 1968.
10. Dvoichenkova, G.P., Mineral Formations on Natural Diamond Surface and Their Destruction Using Electrochemically Modified Mineralized Water, J. Min. Sci., 2014, vol. 50, no. 4, pp. 788–799.
11. Holmberg, K., Jonsson, B., Kronberg, B., Lindman, B., Surfactants and Polymers in Aqueous Solution, NJ: John Willey and Sons Ltd., 2003.
ANALYSIS OF MATERIAL COMPOSITION AND DISSOCIATION POTENTIAL
OF MINERALS IN MINE WASTE TO ASSESS PRODUCTIVITY OF LITHIUM CONCENTRATES
T. S. Yusupov, V. P. Isupovb, A. G. Vladimirov, V. E. Zagorsky,
E. A. Kirillova, L. G. Shumskaya, S. S. Shatskaya, and N. Z. Lyakhov
Institute of Integrated Mineral Development—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: yusupov@igm.nsc.ru
Institute of Chemistry of Solid and Mechanochemistry, Siberian Branch, Russian Academy of Sciences,
ul. Kutateladze 18, Novosibirsk, 630128 Russia
e-mail: isupov@solid.nsc.ru
Tomsk State University,
ul. Lenina 36, Tomsk, 634050 Russia
e-mail: Vladimir@igm.nsc.ru
Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences,
ul. Favorskogo 1a, Irkutsk, 664033 Russia
e-mail: viczag@igc.irk.ru
Considering lack of lithium, the authors believe it is advisable to analyze dressability of spodumene concentrates from mine wastes, specifically from tailings of Transbaikal Mining-and-Processing Integrated Works. The analysis includes mineral chemical, and grain-size compositions of raw material, as well as the capacity of spodumene to be separated and recovered. These characteristics make the basis for developing the dressing technology and process flowsheet for the indicated type of technogenic (i.e. resulted from production activities) deposits.
Mine waste materials, spodumene, lithium oxide, separability, dressability, electromagnetic separation, heavy liquids
DOI: 10.1134/S106273911506054X
REFERENCES
1. Mohr, S.H., Mudd, G.M., and Giurc, D., Lithium Resources and Production: Critical Assessment and Global Projections, Minerals, 2012, vol. 2.
2. Moores, S., Between a Rock and a Salt Lake, Industrial Minerals, 2007, no. 477.
3. Vladimirov, A.G., Lyakhov, N.Z., Zagorsky, V.E., et al., Lithium Bearing Spodumene Pegmatite Deposits in Siberia, Khim. Interes. Ustoich. Razvit., 2012, vol. 20, no. 1.
4. Garrett, D., Handbook of Lithium and Natural Calcium Chloride: their Deposits, Processing, Uses and Properties, Elsevier Academic Press, 2004.
5. Zheng, M. and Liu, X., Hydrochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China, Aquatic Geochemistry, 2009, vol. 15.
6. Kotsupalo, N.P. and Ryabtsev, A.D., Khimiya i tekhnologiya polucheniya soedinenii litiya iz litienosnogo gidromineral’nogo syr’ya (Chemistry and Process for Production of Lithium Compounds from Lithium-Bearing Hydromineral Raw Materials), Novosibirsk, Geo, 2008.
7. Chanturia, V.A., Innovations in Processes for Dressing of Complex Mineral Raw Materials, Geology, 2008, no. 6.
8. Kurkov, A.V. and Kotova, V.M., Modern State and Main Trends in Comprehensive Processing of Rare Metal Raw Materials, Gorny Zh., 2007, no. 2.
9. Yusupov, T.S., Kirillova, E.A., and Lebedev, M.P., Tribochemical Treatment of Feldspathic–Quartz Ore in Froth Separation, J. Min. Sci., 2013, vol. 49, no. 2, pp. 290–295.
10. Vaisberg, L.A. and Zagoratskii, L.P., Foundations of Optimal Mineral Disintegration, J. Min. Sci., 2003, vol. 39, no. 1, pp. 87–93.
11. Bocharov, V.A., and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh (Mineral Processing), Moscow: Ruda Metally, 2007.
ANALYSIS OF DIFFERENT-TYPE MECHANICAL EFFECTS ON SELECTIVITY
OF MINERAL DISSOCIATION
T. S. Yusupov, I. I. Baksheeva, and V. I. Rostovtsev
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
email: yusupov@igm.nsc.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
The authors have tested effect of mechanical impact type and energy on selectivity of spodumene ore breakage in a disintegrator and in vibratory and ball mills in terms of pegmatite with lithium content of 0.1%. It is shown that the highest efficiency of mineral dissociation is achieved in disintegration by free impact. Analysis of grain-size distribution and chemical composition and the X-ray study also reveal advantage of the disintegration process, which allows higher content and recovery of lithium in concentrate at reduced sliming.
Ore, mineral associations, milling, disintegrator, vibrating milling, ball mill, content, recovery, concentrate, slime, collision velocity
DOI: 10.1134/S1062739115060552 REFERENCES
1. Chanturia, V.A., Perspectives of Mining Industry Development in Russia, Gorny Zh., 2007, no. 2.
2. Revnivtsev, V.I., Selektivnoe razrushenie mineralov (Selective Disintegration of Minerals), Moscow: Nedra, 1988.
3. Vaisberg, L.A., Krupa, P.T., and Baranov, V.F., Principal Trends in Ore Disintegration Advance in XXI century, Obog. Rud, 2002, no. 3.
4. Yusupov, T.S., Advance in Disintegration Processes Based on Selective Ore Grinding, Proc. Int. Conf. Fundamental Problems of Geo-Environment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2012.
5. Aktsessornye mineraly izverzhennykh porod (Accessory Minerals in Effusive Rocks), Moscow:
Nauka, 1963.
6. Yusupov, T.S., Isupov, V.P., Vladimirov, A., et al., Analysis of Material Composition and Dissociation Potential of Minerals in Mine Waste to Assess Productivity of Lithium Concentrates, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1242–1247.
7. Widatallah, H.M. and Berry, F.J., The Influence of Mechanical Milling and Subsequent Calcination on the Formation of Lithium Ferrites, J. Solid State Chem., 2002, vol. 164(2).
8. Shandurova, I.V., Ozhogina, E.T., Kolodezhnaya, E.V., and Gorlova, O.E., Slag Disintegration Selectivity, J. Min. Sci., 2013, vol. 49, no. 5, pp. 831–838.
9. Garkavi, M.S. and Khripacheva, I.S., Blended Cements of Centrifugal-Impact Milling Based on Damped Slag, Stroit. Mater., 2010, no. 8.
10. Golik, V.I., Komachshenko, V.I., and Drebenstedt, K., Mechanochemical Activation of the Ore and Coal Tailings in the Desintegrators, Bergbau, 1047. DOI: 10. 1007/978–3-319–02678–7_107, Springer International Publishing Switzerland, 2013.
11. Bocharov, V.A. and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh (Mineral Processing Technology), vol. 1, Moscow: Ruda Metally, 2007.
12. Berger, G.S., Flotiruemost’ mineralov (Floatability of Minerals), Moscow: Gosgortekhizdat, 1962.
NOBLE AND RARE METALS IN CAUSTOBIOLITHS AND PROSPECTS
OF THEIR RECOVERY
T. N. Aleksandrova, A. V. Aleksandrov, N. V. Nikolaeva, and A. O. Romashev
National Mineral Resources University—Mining University,
V.O. 21-ya liniya 2, Saint-Petersburg, 199106 Russia
e-mail: alexandrovat10@gmail.com
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
Under discussion is recoverability of noble and rare metals from caustobioliths (shale, natural bitumen, etc.). The presented mineralogical and technological analyses of samples show higher content of valuable microelements in some of them. All tested samples contain various rank carbon. Depending on the type of the raw material, the research follows one of three lines: stage-wise diagnostic sorption leaching, flotation with pre-milling in amino acetic acid and magnetic concentration. Based on the examination of scattered carbon substance in caustobioliths, it is supposed that concentrations of metals are asphaltene fractions of bitumoids (bitumen-like substance). The research results show prospect of using this nonconventional coal-bearing raw material as a source of noble and rare metals.
Caustobioliths, carbonic substance, sorption leaching, flotation, magnetic concentration, strategic metals
DOI: 10.1134/S1062739115060564 REFERENCES
1. Chanturia, V.A., Contemporary Problems of Mineral Beneficiation in Russia, J. Min. Sci., 1999, vol. 35, no. 3, pp. 314–328.
2. Mamaev, Yu.A., Yatlukova, N.G., Aleksandrova T. N., and Litvinova, N.M., On Gold Extraction from Rebellious Ores, J. Min. Sci., 2009, vol. 45, no. 2, pp. 187–193.
3. Aleksandrova T. N., Gurman, M.A., and Kondrat’ev, S.A., Some Approaches to Gold Extraction from Rebellious Ores on the South of Russian Far East, J. Min. Sci., 2011, vol. 47, no. 5, pp. 684–694.
4. Shpirt, M.Ya. and Rashevsky, V.V., Mikroelementy goryuchikh iskopaemykh (Microelements in Combustible Minerals), vol. 5, book 4, Moscow: Kuchkovo pole, 2010.
5. Sazonov, V.N., Koroteev, V.A., Ogorodnikov, V.N., Polenov, Yu.A., and Velikanov, A.Ya., Gold in “Black Shales” in the Ural, Litosfera, 2011, no. 4.
6. Buryak, V.A., Mikhailov, B.K., and Tsymbalyuk, N.V., Genesis, Morphology, and Perspectives of Gold- and Platinum-mineralization of Black Shale Occurrences, Rud. Met., 2002, no. 6.
7. Khanchuk, A.I., Didenko, A.N., Rasskazov, I.Yu., Berdnikov, N.V., and Aleksandrova T. N., Graphite Shales as a Perspective Noble Metal Resource in the Far East in Russia, Vestn. DVO RAN, 2010, no. 3.
8. Yakutseni, S.P., Rasprostranyonnost’ uglevodorodnogo syr’ya obogashchennogo tyazhelymi elementami i primesyami. Otsenka ekologicheskikh riskov (Occurrence of Hydrocarbonaceous Raw Materials, Enriched with Heavy Impurity Elements. Estimation of Ecology Risks), Saint-Petersburg: Nedra, 2005.
9. Sukhanov, A.A. and Petrova, Yu.E., Resource Base of Associated Components of Heavy Oils in Russia, Oil-Gas Geology. Theory and Practice, 2008, vol. 3, no. 2. Available at: http://www.ngtp.ru/rub/9/23 _2008.pdf (Last visited: Dec 12, 2011).
10. Iskritskaya, N.I., Makarevich, V.N., and Bogoslovsky, S.A., Development of Heavy Oil Resource Potential in the Russian Federation, Proc. Int. Sci.-Pract. Conf. Devoted to the Tatneft 60th Anniversary: Innovations and Processes for Exploration, Recovery and Processing of Oil and Gas, Kazan: FEN, 2010.
11. Gouzhy, Ye., Recovery of Vanadium from LDSslag, a State-of-the-Art Report, Report JK 88031, 2006–04–05, www.jernkontoret.se.
12. Talwani, M., The Orinoco Heavy Oil Belt in Venezuela (or Heavy Oil to the Rescue?).
Available at: http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2819 (Last visited: Sep 25, 2015).
13. Raja, B.V., Vanadium Market in the World, Steelworld, 2007, no. 13 (2).
14. U. S. Geological Survey, Mineral Commodity Summaries, 2015.
15. Aleksandrova T. N., Romashev, A.O., and Yanson, U.M., Investigation into Feasible Recovery of Rare Elements from Black-Shale Rocks, GIAB, 2015, no. 4.
16. Khanchuk, A.I., Rasskazov, I.Y., Aleksandrova, T.N., and Komarova, V.S., Natural and Technological Typomorphic Associations of Trace Elements in Carbonaceous Rocks of the Kimkan Noble Metal Occurrence, Far East, Russian J. Pacific Geology, 2012, vol. 6, no. 5.
GOLD MINERAL FLOTATION VERSUS PREPARATION CONDITIONS
IN. A. COMPLEXING AGENT BELONGING TO DITHIAZINANES
V. A. Chanturia, T. A. Ivanova, I. G. Zimbovsky, A. A. Bondarev,
and V. L. Komarovsky
Institute of Integrated Mineral Development–IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020, Russia
e-mail: tivanova06@mail.ru, zumbofff@gmail.com
Svyatogor JSC,
ul. Kirova 2, 624330 Krasnoural’sk, Russia
To gain the efficient and optimized application of agents MTH and ETH belonging to dithiazinanes to float gold from complex ores the investigation was undertaken on complexing conditions in water environment and at pyrite surface with manually attached gold (FeS2Au) prior to flotation tests. The microscopic and spectral analysis of (FeS2Au) surface after contact with MTH and ETH show the presence of organic S- and N-containing compounds. It is found that selective gold recovery from a gold-bearing material in flotation with MTH and ETH is conditioned by a number of factors that accelerate formation of poorly soluble compounds at the surface of gold particles. The analysis includes the contact time, optimal medium alkalinity, formation of an oxidized film at Au0 particle surface, introduction of modifying agents as additional ligands as well as mechano-chemical acceleration of the complexing. Mechano-chemical treatment with feeding a low soluble agent into a mill before flotation of copper-sulfide gold-bearing ore enabled to higher gold recovery into rough and intermediate flotation concentrates by 15.9 and 4% respectively. In this case Au content in tailings was lowered by 0.15 g/t as compared to flotation experiments with butyl xanthate and its combinations with ETH.
Mineral, flotation, gold ores, adsorption, collectors, artificial covering, gold, complexing, micro- and nano-size particles, electron microscopy
DOI: 10.1134/S1062739115060688 REFERENCES
1. Aleev, R.S., Dal’nova, Yu.S., Alekseenko, R.I., et al., RF patent, no. 2102508, publ. 20.01.1998.
2. Chanturia, V.A., Ivanova, T.A., Dal’nova, Yu.S., Nedosekina, T.V., Gapchich, A.O., and Zimbovsky, I.G., RF Application no. 2012110118/03(015150.
3. Chanturia, V.A., Nedosekina, T.V., and Gapchich, A.O., Improving Gold Flotation Selectivity by Using New Collecting Agents, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1031–1038.
4. Ivanova, T.A., Chanturia, V.A., and Zimbovsky, I.G., New Experimental Evaluation Techniques for Selectivity of Collecting Agents for Gold and Platinum Flotation from Fine-Impregnated Noble Metal Ores, J. Min. Sci., 2013, vol. 49, no. 5, pp. 785–794.
5. Niatshina, Z.T., Murzakova, N.N., Vasil’eva, I.V., Rakhimova, E.B., Akhmetova, V.R.,
and Ibragimov, A. G., Efficient Method for a Synthesis of N-substituted Dithiazinanes via Transamination of N-methyl-1,3,5-Dithiazinane with Arylamines and Hydrazines, ARKIVOC, 2011 (Vlll), 2011,
Vol. 141–148, Issue 8, Commemorative Issue in Honor of Prof. M. Dzhemilev on His 65th Anniversary.
6. Afonin, M.V., Simanova, S.A., Dal’nova, Yu.S., et al., Complexing of Platinum (II) and (IV) at Sorption Recovery with Sulfur- and Sulfur-Nitrogen-Bearing Hetero-chain Sorbents, 8th Chernyavskaya Conf. Chemistry, Analytics, and Technology of Platinum Metals, Moscow: 2006, Part 1.
7. Murinov, Yu.A., Maistrenko, V.I., and Afzaletdinova, V.G., Ekstraktsiya metallov S-, N-organicheskimi soedineniyami (Metal Extraction with S, N-Organic Compounds), Moscow: Nauka, 1993.
8. Busev, A.I. and Evsikov, A.I., Influence of Extra Ions on Complexing, Vesti MGU, Series 2, Chemistry, 1969, no. 5.
9. Stadnichenko, A.I., Koshcheev, S.V., and Borodin, A.I., Oxidation of Massive Gold Surface and X-ray Photoelectronic Spectroscopy Examination of Oxygen States in Oxide Layer Composition, Vesti MGU, Series 2, Chemistry, 2007, vol. 48, no. 6.
10. Fisher, E.I., Fisher, V.L., and Miller, A.D., Experimental Investigation into the Character of Interaction between Natural Organic Acids and Gold, Sov. Geol., 1974, no. 7.
11. Vashurina, I.Yu., Pogorelova, A.S., and Kalinnikov, Yu.A., Natural Gumic Acids as a Mean to Intensify Adsorption-Diffusion Processes, Khim. Khim. Tekhn., 2003, vol. 46, issue 1.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|