Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2015 ãîä » JMS, Vol. 51, No. 4, 2015

JMS, Vol. 51, No. 4, 2015


GEOMECHANICS


NONLINEAR DEFORMATION–WAVE PROCESSES IN VARIOUS RANK COAL SPECIMENS LOADED TO FAILURE UNDER VARIED TEMPERATURE
V. N. Oparin, T. A. Kiryaeva, O. M. Usol’tseva, P. A. Tsoi, and V. N. Semenov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 4, Novosibirsk, 630091 Russia
Novosibirsk State University,
ul. Pirigova 2, Novosibirsk, 630090 Russia
e-mail: coalmetan@mail.ru

Aiming to build up a phenomenological basis for the theory of interaction between geomechanical, thermal and physicochemical processes in methane-bearing coal in Kuzbass, the authors performed a set of laboratory bench tests on uniaxial stiff loading of various rank coal specimens. The pressure versus temperature dependences are obtained for coal specimens with granite gaskets using high-precision scanning computerized thermal imager. It is shown that temperature changed in coal specimens subjected to loading to failure is connected with volatile content and internal energy relaxation of methane in Kuzbass coal. Using jointly thermal imaging and laser measuring equipment ALMEC-tv for high-precision and detail control of deformation–wave processes in loaded coal specimens by speckle-method, it has for the first time been proved that nonlinear pendulum-type movements of structural elements are possible in coal specimens with varied temperature field, which is of fundamental importance for actualization of previously ignored mass and gas exchange processes in high-stress coal beds of different grade composition under mining,

Connections, temperature field, deformation–wave processes, ranks, specimens, Kuzbass coal deposits, stress–strains state, volatile yield, limit internal energy

DOI: 10.1134/S1062739115040003 

REFERENCES
1. Avgushevich, I.A., Bronovets, T.M., Eremin, I.V., et al., Analiticheskaya khimiya i tekhnicheskii analiz uglya (Analytical Chemistry and Technical Analysis of Coal), Moscow: Nedra, 1987.
2. Alekseev, A.D., Airuni, A.T., Zverev, I.V. et al., Property of an Organic Matter in Coal to Form Meta-Stable Single-Phase Systems with Gas by the Type of Solid Solutions, Dipl. Nauch. Otkryt., 1994, no. 9.
3. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktisya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeisviya (Destruction and Self-Organization of the Earth Crust in the Areas under Heavy Production), Novosibirsk: SO RAN, 2012.
4. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
5. Dyrdin, V.V., Smirnov, V.G., and Shepeleva, S.A., Parameters of Methane Condition during Phase Transition at the Outburst-Hazardous Coal Seam Edges, J. Min. Sci., 2013, vol. 49, no. 6, pp. 908–912.
6. Smirnov, V.G., Estimate of Potential Crack Formation in Coal under Outburst Hazard Conditions, GIAB, 2013, no. 5.
7. Smirnov, V.G., Manakov, A.Yu., and Dyrdin, V.V., Activation Energy of Origination and Decomposition of Methane Hydrides in Natural Coal Pores, Vestn. KuzGTU, 2014, no. 3.
8. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
9. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
10. Oparin, V.N. and Kiryaeva, T.A., Genetic Causes of Fire and Outburst Hazard in Kuzbass Coal, GIAB, 2015, no. 3.
11. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.
12. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, vol. 49, no. 2, pp. 175–209.
13. Oparin, V.N., Pendulum Waves and “Geomechanical” Temperature, Proc. 2nd Sino-Russian Joint Scientific-Technical Forum on Deep-Level Rock Mechanics and Engineering, Novosibirsk: IGD SO RAN, 2012.
14. Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and a Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp 1–7.
15. Polevshchikov, G.Ya. and Kiryaeva, T.A., Gas–Dynamic Stability of Coal–Methane Substance, GIAB, Special Issue 7, Kuzbass 1, 2009.
16. Skritskii, V.A., Endogennye pozhary v ugol’nykh shakhtakh, priroda ikh vozniknoveniya, sposoby predotvrashcheniya i tusheniya (Spontaneous Fires in Coal Mines, Nature, Prevention and Extinguishing Methods), Kemerovo: Kuzbassvuzizdat, 2006.
17. Malinnikova, O.N., Outburst Hazard and Temperature Connection in Coal, Deformation and Failure of Materials with Defects and Dynamic Events in Rocks and in Mines: Proc. 16th Academician Khristianovich’s International School, Simferopol, 2006.
18. Kovchavtsev, A.P., Thermal Imager: It’s Better to See It Once, Nauka iz Perv. Ruk, 2012, no. 5.
19. Sheinin, V.I., et al., Diagnostics of Fast Cyclic Changes of Stresses in Rocks by the Data of Infrared Radiometry, Fiz. Zemli, 2001, no. 4.
20. Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conductivity), Moscow: Vyssh. shkola, 1967.
21. Dortman, N.B., Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (Physical Properties of Rocks and Minerals), Moscow: Nedra, 1984.
22. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale for Presentation of Hierarchies in the Science on Rocks), Novosibirsk: Nauka, 2011.
23. Oparin, V.N. and Tanaino, A.S., A New Method to Test Rock Abrasiveness Based on Physico-Mechanical and Structural Properties of Rocks, J. Rock Mech. Geotech. Eng., 2015, http: // dx.doi.org / 10/1016 / j. jrmge. 2014. 12. 004.
24. Landau, L.D. and Lifshits, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: GIFML, 1965.
25. Kiryaeva, T.A., Razrabotka metoda gazodinamicheskoi aktivnosti ugol’nykh plastov po geologorazvedochnym dannym na primere Kuzbassa (Gas-Dynamic Activity Method for Coal Beds Based on Geological Exploration Data in Terms of Kuzbass), Saarbrucken, Germany: LAP LAMBERT Academic Publishing GmbH & Co, 2011.
26. Kiryaeva, T.A., Evaluation of Methane Resources in Kuzbass in the Context of New Ideas on Methane Occurrence in Coal Beds, J. Min. Sci., 2012, vol. 48, no. 5, pp. 825–831.
27. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stresses and Strains in Artificial Geomaterials under Uniaxial and Biaxial Loading, Vestn. Inzh. Shkoly DVFU, 2014, no. 3(20).
28. Oparin, V.N., Usoltseva, O.M., Tsoi, P.A., and Semenov, V.N., Evolution of Stress–Strain State in the Structural Heterogeneities of Geomaterials under Uniaxial and Biaxial Loading, J. Applied Mathematics and Physics, 2014., No. 2.
29. Kurlenya, M.V. and Oparin, V.N., Sign-Variable Reaction of Rocks to Dynamic Impact, J. Min. Sci., 1990, vol. 26, no. 4, pp. 291–300.
30. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Basis for Oil Recovery Enhancement in Vibro Wave Technologies), Novosibirsk: Nauka, 2010.
31. Oparin, V.N., Energy Criterion of Volumetric Rock Destruction, Miner’s Week-2009 Proc., Moscow: MGGU, 2009.
32. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003, Parts I–III, J. Min. Sci., 2004, vol. 40, nos. 4–6, respectively; Part IV, J. Min. Sci., 2005, vol. 41, no. 1.


STRESS REDISTRIBUTION IN DEEP OPEN PIT MINE ZHELEZNY AT KOVDOR IRON ORE DEPOSIT
A. A. Kozyrev, I. E. Semenova, V. V. Rybin, and I. M. Avetisyan

Mining Institute, Kola Science Center, Russian Academy of Sciences,
ul. Fersmana 24, Apatity, 184209 Russia
e-mail: innas@goi.kolasc.net.ru

The full-scale measurements of initial stresses and numerical modeling of stresses in rock mass enclosing deep open pit mine Zhelezny under planning at Kovdor Mining-and-Processing Integrated Work are presented in the article. The authors have located hazardous areas in pit wall rock mass and validated stability conditions for pit walls with steeply sloped benches.

Geomechanics, stress state, pit wall stability, mathematical modeling, open pit mineral mining method

DOI: 10.1134/S1062739115040015 

REFERENCES
1. Brawner, C.O., Recent Lessons That Have Been Learned in Open-Pit Mine Stability, Mining Engineering, 1986, vol. 38, no. 8.
2. Stewart, A., Wessels, F., and Bird, B., Design, Implementation, and Assessment of Open Pit Slopes at Palabora over the Last 20 Years, Slope Stability in Surface Mining–Littleton, Colorado, USA, SME, 2001.
3. Dyukarev, V.P., Lazutin, E.S., Yurin, N.N., and Il’bul’din, D.Kh., Open Pit Mining at Aikhal and Yubileinaya Kimberlite Pipes, Problemy otkrytoi razrabotki glubokikh kar’erov Mirnyi-91 (Problems of Open Pit Mining at Mirny-91), Udachny, 1991, vol. 1.
4. Galust’yan, E.L., Design Improvement for Non-Working Pitwall, Gorny Zh., 1996, nos. 1 and 2.
5. Kozyrev, A.A., Rybin, V.V., Bilin, A.L, Fokin, V.A., and Melik-Gaikazov, I.V., Design Substantiation for Stable Pitwalls in Hard Tectonic-Stress Rock Mass, Gorny Zh., 2010, no. 9.
6. Kozyrev, A.A., Kaspar’yan, E.V., and Rybin, V.V., Basic Methodical Approach to Use of New Design Pitwalls, Problems and Trends of Rational and Safe Exploitation of GeoResources: Proc. All-Russian Conf. with Int. Participation Devoted to the 50th Anniversary of the Mining Institute, Kola Science Center, RAS, Apatity–Saint-Petersburg, 2011.
7. Zoteev, V.G. and Zoteev, O.V., On the Need to Update the Regulatory-and-Methodical Basis for Geomechanical Support of Mining, Gorny Zh., 2010, no. 1.
8. Yakovlev, A.V. and Ermakov, N.I., Ustoichivost’ bortov rudnykh kar’erov pri deistvii tektonicheskikh napryazhenii v massive (Stability of Ore Pitwalls under Tectonic Stresses), Ekaterinburg: IGD UrO RAN, 2006.
9. Eremenko, A.A., Seryakov, V.M., and Filatov, A.P., Estimate of the Rock Mass Stress State in the Course of Mining the Reserves Subjacent the Open Pit Bottom at the Udachnaya Pipe, J. Min. Sci., 2007, vol. 43, no. 4, pp. 361–369.
10. Kozyrev, A.A., Panin, V.I., and Semenova, I.E., Geodynamic Risk Control in Khibiny Apatite Mines, GIAB, 2010, no. 12.
11. Turchaninov, I.A., Markov, G.A., Ivanov, V.I., and Kozyrev, A.A., Tektonicheskie napryazheniya v zemnoi kore i ustoichivost’ gornykh vyrabotok (Tectonic Stresses in the Earth Crust and Stability of Excavations), Leningrad: Nauka, 1978.
12. Turchaninov, I.A. and Markov, G.A., Abnormally High Stress State of Rock Mass and Its Registration in Underground Mining, Fizicheskie usloviya i razvitie tekhnologii gornogo proizvodstva (Physical Conditions and Technological Development in Mining), Leningrad: Nauka, 1973.
13. Kozyrev, A.A., Semenov, I.E., Rybin, V.V., and Avetisyan, I.M., Numerical Investigation of Stress–Strain State Based on In Situ Measurements in Rocks around a Large Open Pit Mine, GIAB, 2011, no. 11.


DETERMINING KINETIC PARAMETERS OF. A. BLOCK COAL BED GAS BY SOLVING INVERSE PROBLEM BASED ON DATA OF BOREHOLE GAS MEASUREMENTS
L. A. Nazarova, L. A. Nazarov, A. L. Karchevsky, and M. Vandamme

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: larisa@misd.nsc.ru
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 4, Novosibirsk, 630090 Russia
Universite Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR,
F-77455 Marne-la-Vallee, France

In the framework of the developed and implemented nonlinear geomechanical model of a coal bed having block structure, describing gas inflow, the authors propose the method for quantitative estimate of gas content as well as diffusion and mass exchange coefficients based on solution of inverse problems using pressure measurements taken in shut-in borehole in the “pressure drop” mode. Besides the main function, the set problem had an auxiliary objective function with the less number of arguments. Numerical experiments with synthetic input data yield that the auxiliary objective function has a number of local minimums. The authors also put forward a technique of finding global minimum that provides the set problem solution.

Coal and rock mass, degassing, gas content, diffusion coefficient, inverse problem

DOI: 10.1134/S1062739115040027 

REFERENCES
1. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy metana ugol’nykh plastov (Basic and Applied Methods to Solve Issues Connected with Coalbed Methane), Moscow: Akad. Gorn. Nauk, 2000.
2. Puchkov, L.A., Slastunov, S.V., and Kolikov, K.S., Izvlechenie metana iz ugol’nykh plastov (Coalbed Methane Recovery), Moscow: MGGU, 2002.
3. Seidle, J., Fundamentals of Coalbed Methane Reservoir Engineering, PennWell Books, 2011.
4. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V. et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization of the Earth Crust in the Areas Exposed to Heavy Industrial Impact), Novosibirsk: SO RAN, 2012.
5. Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V. F., Deformirovanie sredy i seismicheskii protsess (Deformation and Seismic Process in a Medium), Moscow: Nauka, 1987.
6. Kocharyan, G.G. and Spivak, A.A., Hierarchy of Structural and Dynamic Characteristics of the Earth Crust, Geoekologiya, 2002, no. 6.
7. Odintsev, V.N., Modeling of Methane Release from Intact Coal, J. Min. Sci., 2005, vol. 41, no. 5, pp. 407–415.
8. Shi, Q. and Durucan, S., A Bidisperse Pore Diffusion Model for Methane Displacement Desorption in Coal by CO2 Injection, Fuel, 2003, vol. 82.
9. Connell, L.D., Coupled Flow and Geomechanical Processes during Gas Production from Coal Seams, Int. J. Coal Geology, 2009, vol. 79, issues 1 and 2.
10. Brochard, L., Vandamme, M., and Pellenq, R.J.-M., Poromechanics of Microporous Medium, J. Mechanics and Physics of Solids, 2012, vol. 60.
11. Nazarov, L.A. and Nazarova, L.A., Some Geomechanical Aspects of Gas Recovery from Coal Seams, J. Min. Sci., 1999, vol. 35, no. 2, pp. 135–145.
12. Prognoznyi katalog shakhtoplastov Kuznetskogo ugol’nogo basseina s kharakteristikoi gorno-geologicheskikh i gornotekhnichsekikh faktorov za 1995 i 2000 gg. (Prognostic Catalog of Kuznetsk Coal Basin Coalbeds with Characteristic of Geological and Mining Factors for 1995 and 2000), Moscow: IGD Skochinskogo, 1991.
13. Lunarzewski, L., Gas Emission Prediction and Recovery in Underground Coal Mines, Int. J. Coal Geology, 1998, vol. 35.
14. Kuznetsov, S.V. and Krigman, R.N., Prirodnaya pronitsaemost’ ugol’nykh plastov i metody ee opredeleniya (Natural Permeability of Coal Beds and the Determination Methods), Moscow: Nauka, 1978.
15. Khristianovich, S.A. and Kovalenko, Yu.F., Measurement of Gas Pressure in Coal Seam, J. Min. Sci., 1988, vol. 24, no. 3, pp. 181–1999.
16. Aminian, K. and Rodvelt, G., Evaluation of Coalbed Methane Reservoirs, Coal Bed Methane: From Prospect to Pipeline, Amsterdam, Boston: Elsevier, 2014.
17. Saghafi, A., Coal Reservoir Parameters Regulating Gas Emission into and from Coal Mines, Coal 2009, N. Aziz (Ed.), University of Wollongong & the Australian Institute of Mining and Metallurgy, 2009.
18. Tarantola, A., Inverse Problems: Theory and Methods for Model Parameter Estimation, SIAM, 2005.
19. Nazarov, L.A. and Nazarova, L. A. Determination of the Filtration Properties and Stresses in a Coal seam, by Solving the Inverse Problem, J. Min. Sci., 2000, vol. 36, no. 2, pp. 106–113.
20. Nazarova, L.A., Nazarov, L.A., Karchevsky, A.L., and Vandamme, M., Diffusive properties and Storage capacity of Coalbed by Hole Pressure Measurement Data Based on Inverse Problem Solution, Sib. Zh. Industr. Matem., 2014, vol. 17, no. 1.
21. Nazarova, L.A., Nazarov, L.A., Polevshchikov, G.Ya., and Romin, R.I., Inverse Problem Solution for Estimating Gas Content and Gas Diffusion Coefficient of Coal, J. Min. Sci., 2012, vol. 48, no. 5, pp. 781–788.
22. Nazarova, L.A., Nazarov, L.A., Rodin, R.I., and Vandamme, M., Estimation of Stresses and Properties of Coal–Rock Mass Based on Inverse Problem Solution, 13th ISRM Congress Proceedings, 2015.
23. Wittke, W., Rock Mechanics, Berlin, Heidelberg, New York: Springer–Verlag, 1990.
24. Vengerov, I.R., Teplofizika shakht i rudnikov. Matematicheskie modeli (Mine Thermophysics. Mathematical Models), vol. 1, Donetsk: NORD-Press, 2008.
25. Khristianovich, S.A., Fundamentals of Seepage Theory, J. Min. Sci., 1989, vol. 25, no. 5, pp. 397–412.
26. Praktikum po osvoeniyu tekhnologii GIS: ucheb. posob. stazherov ZAO PGO Tyumenpromgeofizika (Practical Course of GIS Technologies: Tyumenpromgeofizika Trainees’ Educational Aid), Megion, 2002.
27. Harpalani, S.B. and Chen, G., Estimation of Change in Fracture Porosity of Coal with Gas Emission, Fuel, 1995, 74(10).
28. Seidle, J.R. and Huitt, L.G., Experimental Measurement of Coal Matrix Shrinkage due to Gas Desorption and Implications for Cleat Permeability Increases, Int. Meet. Petroleum Eng., Beijing, China, 1995.
29. Czerw, K., Zietek, J., and Wagner, M., Methane Sorption on Bituminous Coal—Experiments on Cuboid-Shaped Samples Cut from Primal Coal Lumps, Mineral Resources Management, 2010, vol. 26, no. 2.
30. Espinoza, D.N., Vandamme, M., Pereira, J.-M., et al., Measurement and Modeling of Adsorptive–Poromechanical Properties of Bituminous Coal Cores Exposed to CO2: Adsorption, Swelling Strains, Swelling Stresses and Impact on Fracture Permeability, Journal of Coal Geology, 2014, vols. 134–135.
31. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977.
32. Musin, K.M., Singatullina, R.R., Khusainov, V,M., et al., Estimate of Jointing Parameters of Tatarstan Rock Reservoirs Based on Data from Oriented Cores and Downhole Imagers, Neft. Khoz-vo, 2013, no. 7.
33. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Panov, A.V., Stress and Strain Assessment of Rocks Based on Inverse Problem on Displacement Measurement at Free Boundaries, Sib. Zh. Industr. Matem., 2012, vol. 15, no. 4.


CALCULATING STRESSES IN SUPPORT AND SIDEWALL ROCKS IN STAGEWISE FACE DRIVAGE IN LONG EXCAVATIONS
V. M. Seryakov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: a.i.chanyshev@gmal.com

The issues of calculation of stresses and strains in the elements of support and in rock mass in stagewise drivage of a production face are under discussion. In order to take into account the sequence of mining and support installation, it is required to solve problems on extra stresses due to small cross-section drivage. Geomechanical estimation of support and rocks used the method based on single formation of stiffness matrix to describe rock mass prior to mining start. Sequential drivage of excavations and change of mechanical properties in the calculation system are modeled using initial stress procedure. The author calculates two scenarios of mining with stagewise face drivage under conditions of elastic deformation of rocks and support and analyzes behavior of stress redistribution in elements of support being installed in stages. It is shown that mining sequence considerably influences stresses in the support elements upon the drivage completion. The scenario of mining with initial installation of sideways support elements results in increased tensile stresses in the support as against the scenario when the underroof space is first mined out and supported.

Rocks, stresses, strains, cross-section, support elements, face drivage stages, stress state calculation, stiffness matrix, tension zones

DOI: 10.1134/S1062739115040039 

REFERENCES
1. Kartoziya, B.A., Fedunets, B.I., Shuplik, M.N., et al., Shakhtnoe i podzemnoe stroitel’stvo: uchebnik dlya vuzov (Mine and Underground Construction: University Textbook), Moscow: Gornaya kniga, 2003.
2. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii v primerakh i zadachakh (Mechanics of Underground Structures: Examples and Problems), Moscow: Nedra, 1989.
3. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1994.
4. Protosenya, A.G., Dolgy, E.I., and Ogorodnikov, Yu.N., Shakhtnoe i podzemnoe stroitel’stvo v primerakh i zadachakh (Mine and Underground Construction: Examples and Problems), Saint-Petersburg: Gorn. Inst. Plekhanova, 2003.
5. Bulychev, N.S., Fotieva, N.N., and Strel’tsov, E.V., Proektirovanie i raschet krepi kapital’nykh gornykh vyrabotok (Planning and Design of Support for Permanent Mine Workings), Moscow: Nedra, 1986.
6. Baklashov, I.V. and Kartoziya, B. A. Mekhanika podzemnykh sooruzhenii i konstruktsii krepei (Mechanics of Underground Structures and Supporting Structures), Moscow: Nedra, 1992.
7. Nasonov, I.D., Fedyukin, V.A., and Shuplik, M.N., Tekhnologiya stroitel’stva podzemnykh sooruzhenii (Underground Construction Technology), Moscow: Nedra, 1992.
8. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Mining-Induced Geomechanical Fields of Stresses), Novosibirsk: Nauka, 2005.
9. Baimbetov, M.O. and Seryakov, V.M., Effect of the Order of Performing Clean-Up and Fill Operations on the Stress–Strain State of a Deposit, J. Min. Sci., 1984, vol. 20, no. 4, pp. 254–260.
10. Seryakov, V.M., Mathematical Modeling of Stress–Strain State in Rock Mass during Mining with Backfill, J. Min. Sci., 2014, vol. 50, no. 5, pp. 847–854.
11. Zienkiewicz, O., Finite Element Method in Engineering Science, McGraw-Hill, 1972.
12. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan, E. V. Osnovy mekhaniki gornykh porod (Basics of Rock Mechanics), Leningrad: Nedra, 1989.


DETERMINATION OF ULTIMATE PITWALL PARAMETERS IN AXISYMMETRIC RIGID-PLASTIC MODEL OF ROCKS
A. I. Chanyshev and G. M. Podyminogin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: a.i.chanysgev@gmail.com

The authors describe mathematical model for estimation of cone-type pitwall stability in the framework of rigid-plastic model of rock mass deformation, with finding maximum pit depth allowable in terms of safety.

Stability, pitwall, open pit, rock mass, rigid-plastic model, pit depth

DOI: 10.1134/S1062739115040040 

REFERENCES
1. Drucker, D.C. and Prager, W., Soil Mechanics and Plastic Analysis for Limit Design, Quarterly of Applied Mathematics, 1952, vol. 10, no. 2.
2. Sokolovsky, V.V., Teoriya plastichnosti (Theory of Plasticity), Moscow: Vysshaya shkola, 1969.
3. Berezantsev, V.G., Solving of Axially Symmetrical Problem on Limit Equilibrium of a Medium Possessing Internal Friction and Cohesion, Inzhenernyi sbornik (Engineering Collection), 1951, vol. X.
4. Nadai, A., Plasticity, McGraw-Hill, 1931.
5. Novozhilov, V.V., Plastic Loosening, Prikl. Matem. Mekhan., 1965, vol. 29, no. 4.
6. Chanyshev, A.I., Constitutive Dependences of Rocks in the Pre- and Post-Limit Deformation Stages, J. Min. Sci., 2002, vol. 38, no. 5, pp. 434–439.
7. Stavrogin, A.N. and Protosenya, A.G., Plastichnost’ gornykh porod (Plasticity of Rocks), Moscow: Nedra, 1979.
8. Kachanov, L.M., Osnovy teorii plastichnosti (Principles of the Plasticity Theory), Moscow: Nauka, 1969.
9. Sokolovsky, V.V., Statika sypuchei sredy (Statics of Granular Medium), Moscow: GIFML, 1960.
10. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Slope Stability of Pitwalls and Dumps), Moscow: Nedra, 1965.
11. Galust’yan, E.L., Geomekhanika otkrytykh gornykh rabot (Open Pit Mining Geomechanics), Moscow: Nedra, 1992.
12. Demin, A.M., Ustoichivost’ otkrytykh gornykh vyrabotok i otvalov (Stability of Open Pit Mines and Dumps), Moscow: Nedra, 1973.
13. Popov, I.I., Shpakov, P.S., and Poklad, G.G., Ustoichivost’ gornykh otvalov (Stability of Dumps), Alma-Ata, Nauka, 1987.
14. Korn, G and Korn, T. Spravochnik po matematike: dlya nauchnykh rabotnikov i inzhenerov (Manual on Mathematics for Researchers and Engineers), Moscow: Nauka, 1973.
15. Podyminogin, G.M. and Chanyshev, A.M., Estimate of Maximum Permissible Height of Pit Wall Based on a Rigid-Plastic Model, J. Min. Sci., 2015, vol. 51, no. 3, pp. 448–455.


NUMERICAL MODELING OF WAVEFIELDS OF MICROSEISMIC EVENTS IN UNDERGROUND MINING
M. V. Kurlenya, A. S. Serdyukov, A. V. Azarov, and A. A. Nikitin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kurlenya@misd.nsc.ru
Trofimuk Institute of Petroleum-Gas Geology and Geophysics,
Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia

The article describes modeling procedure and calculation of wave fields in microseismicity monitoring in anisotropic medium. The research findings are intended for testing of processing algorithms for data of seismic observations in underground mining.

Microseismic monitoring, geodynamic processes, mathematical modeling, numerical methods, anisotropic medium, seismic moment trend

DOI: 10.1134/S1062739115040052 

REFERENCES
1. Malovichko, D.A., Analysis of Mechanisms of Events in the Upper Kama Potash Mines, Cand. Phys.-Math. Sci. Dissertation, Moscow, 2004.
2. Kurlenya, M.V., Serdyukov, A.S., Duchkov, A.A., and Serdyukov, S.V., Wave Tomography of Methane Pockets in Coal Bed, J. Min. Sci., 2014, vol. 5, no. 4, pp. 617–622.
3. Metodicheskie ukazaniya po sozdaniyu sistem kontrolya sostoyaniya gornogo massiva i prognoza gornykh udarov kak elementov mnogofunktsional’noi sistemy bezopasnosti ugol’nykh shakht (Instructional Guidelines on Rock Mass Control and Rockburst Prediction Systems as Components of Multifunctional Coal Mine Safety Systems), Saint-Patersburg: VNIMI, 2012.
4. Serdyukov, S.V., Azarov, A.V., Dergach, P.A., and Duchkov, A.A., Equipment for Microseismic Monitoring of Geodynamic Processes in Undeground Hard Mineral Mining, J. Min. Sci., 2015, vol., 51, no. 3, pp. 634–640.
5. Yaskevich, S.V., Grechka, V.Yu., and Duchkov, A.A., Processing Microseismic Monitoring Data, Considering Seismic Anisotropy of Rocks, J. Min. Sci., 2015, vol. 51, no. 3, pp. 477–486.
6. Loginov, G.N. and Yaskevich, S.V., Methods of Assessing Precision of Location of Hypocenters in Microseismic Monitoring of Hydraulic Fracturing, Geosciences. State-of-the-Art: Proc. 1st Al-Russia Youth Conf., Novosibirsk, 2015.
7. Loginov, G.N. and Yaskevich, S.V., Polarization Analysis Accuracy in Microseismicty Monitoring, Proc. Int. Conf. Mathematical Modeling Analysis and Identification Methods, devoted to the 85th Anniversary of A. S. Alekseev, Novosibirsk, 2013.
8. Bortnikov, P.B. and Mainagashev, S.M., Inverse Problems in Microseismic Monitoring, Informatsionnye tekhnologii i obratnye zadachi ratsional’nogo prirodopol’zovaniya (Information Technologies and Inverse Problems in Rational Nature Management), Khanty-Mansiysk: YuNIIT, 2005.
9. Chebotareva, I.Ya., Seismic Emission Tomography Algorithm for Weak Space Correlation of Sigbak, Vestn. MGOU, Series: Natural Sciences, 2011, vol. 1.
10. Witten, B., Artman, Â., and Podladtchikov, I., Source Location Using Time?Reverse Imaging, Geophysical Prospecting, 2010, vol. 58, no. 5.
11. Witten, B. and Artman, B., Signal-to-Noise Estimates of Time-Reverse Images, Geophysics, 2011, vol. 76, no. 2.
12. Grechka, V. and Yaskevich, S., Azimuthal Anisotropy in Microseismic Monitoring: A Bakken Case Study, Geophysics, 2014, vol. 79, no. 1.
13. Skazka, V.V., Serdyukov, S.V., and Serdyukov, A.S., Modleing Microseismic Noise in Block Rock Masses, Vestn. BFU, 2013, no. 4.
14. Pe, Z., Fu, L.Y., Sun, W., Jiang, T., and Zhou, B., Anisotropic Finite-Difference Algorithm for Modeling Elastic Wave Propagation in Fractured Coalbeds, Geophysics, 2012, vol. 77, no. 1.
15. Kurlenya, M.V., Serdyukov, A.S., Serdyukov, S.V., and Cheverda, V.A., Seismic Approach to Location of Methane Accumulation Zones in a Coal Seam, J. Min. Sci., 2010, vol. 46, no. 6, pp. 621–629.
16. Thomsen, L., Weak Elastic Anisotropy, Geophysics, 1986, vol. 51, no. 10.
17. Aki, K. and Richards, P.G., Quantitative Seismology, University Science Books, Sausalito, CA, 2002, vol. 1.
18. Virieuxm, J., P–SV Wave Propagation in Heterogeneous Media: Velocity–Stress Finite–Difference Method, Geophysics, 1986, vol. 51, no. 4.
19. Bohlen, T., Parallel 3-D Viscoelastic Finite Difference Seismic Modeling, Computers & Geosciences, 2002, vol. 28, no. 8.
20. Coutant ,O., Virieux, J., Zollo, A., Numerical Source Implementation in à 2D Finite Difference Scheme for Wave Propagation, Bulletin of the Seismological Society of America, 1995, vol. 85, no. 5.
21. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4.


ANALYSIS OF TIME-TO-TIME VARIATION OF LOAD ON INTERCHAMBER PILLARS IN MINES OF THE UPPER KAMA POTASH SALT DEPOSIT
A. A. Baryakh, S. Yu. Lobanov, and I. S. Lomakin

Mining Institute, Ural Branch, Russian Academy of Sciences,
ul. Sibirskaya 78a, Perm, 614007 Russia
e-mail: bar@mi-perm.ru

The procedure to estimate growth in load exerted on interchamber pillars with time is based on mathematical modeling of stresses and strains in structural elements of room-and-pillar mining method and on roof rock failure criteria. The calculation results illustrate a real time scale of variation in strength of rocks and the associated partial collapse of a parting and failure of edges of interchamber pillars when their height is increased.

Pillars, roof, mathematical modeling, loading, failure, long-term strength

DOI: 10.1134/S1062739115040064 

REFERENCES
1. Shiman, M.I., Predotvrashchenie zatopleniya kaliynykh rudnikov (Prevention of Flooding in Potassium Mines), Moscow: Nedra, 1992.
2. Krasnoshtein, A.E., Baryakh, A.A., and Sanfirov, I.A., Mine Accidents: Flooding of Berezniki Potassium Mine 1, Vestn. Perm. Nauch. Tsentra, 2009, no. 2.
3. Yudin, R.E., Marakov, V.E., Sivkov, E.S., et al., Stress Control in the Pillars and Roofs of Stopes in Mines of the Upper Kama Potash Salt Deposit, Kontrol’, prognozirovanie i upravlenie sostoyaniem porod v kaliynykh rudnikakh (Rock Mass Monitoring, Prediction and Control in Potassium Mines), Leningrad: VNIIG, 1985.
4. Nesterov, M.P., Engineering Methods of Chain Pillar Design, Gorny Zh., 1968, no. 9.
5. Serata, S. and Schults, W.G., Application of Stress Control in Deep Potash Mines, Mining Congress Journal, 1972, no. 58(11).
6. Marakov, V.E., Nesterov, M.P., and Neprimerov, A.F., Change of Stresses in Sylvinite Pillars Depending on Their Age and Position in Mined-Out Area, Napryazhennoe sostoyanie gornykh massivov: sb. nauch. tr. (Stress State of Rock Masses: Collection of Scientific Papers), Novosibirsk: IGD SO AN SSSR, 1978.
7. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob’ektov v usloviyakh VKMKS (Guidelines on Flooding Protection and Safety of Undermined Objects at UKPSD), Saint-Petersburg, 2008.
8. Tournaire, Des dimensions a donner auõ pilliers des carriers et des pressions aux quelles les terrains sont soumis dans les profondeurs, Annales des mine, 8 series, 1884, T. V.
9. Shevyakov, L.D., Calculation of Size and Deformation for Strong Pillars, Izv. AN SSSR, OTN, 1941, nos. 7–9.
10. Konstantinova, S.A., Khronusov, V.V., and Sokolov, V.Yu., Stress–Strain State and Stability of Rock Mass around Stopes in Mining Single Sylvinite Seam, Izv. vuzov, Gorny Zh., 1993, no. 4.
11. Bolikov, V.E. and Konstantinova, S.A., Prognoz i obespechenie ustoichivosti kapital’nykh gornykh vyrabotok (Prediction and Maintenance of Stability in Permanent Mine Workings), Ekaterinburg: UrO RAN, 2003.
12. Baryakh, A.A., Shumikhina, A.Yu., Toksarov, V.N., Lobanov, S.Yu., and Evseev, A.V., Criteria and Features of Failure in Stratified Roof of Stopes in Mining at Upper Kama Potash Salt Deposit, Gorny Zh., 2011, no. 11.
13. Baryakh, A.A., Asanov, V.A., and Pan’kov, I.L., Fiziko-mekhanicheskie svoistva solyanykh porod Verkhnekamskogo kaliynogo mestorozhdeniya: ucheb. posob. (Physico-Mechanical Properties of Salt Rocks of Upper Kama Potash Salt Deposit: Educational Aid), Perm: Perm. Gost. Tekh. Univer., 2008.
14. Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw Hill, 1972.
15. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.
16. Goodman, R., The Mechanical Properties of Joints, Adv. Rock Mech., 1974, vol.1, Pt A.
17. Baryakh, A.A., Dudyrev, I.N., Asanov, V.A., and Pan’kov, I.L., Interaction of Layers in Salt Deposit. Part I: Mechanical Properties of Joints, Journal of Mining Science, 1992, vol. 28, no. 2, pp. 145–149.
18. Baryakh, A.A. and Fedoseev, A.K., Sinkhole Formation Mechanism, J. Min. Sci., 2011, vol. 47, no. 4, pp. 404–412.
19. Baryakh, A.A. and Samodelkina, N.A., To the Calculation of Pillar Stability under Condition of Pillar Mining, J. Min. Sci., 2007, vol. 43, no. 1, pp. 8–16.
20. Lobanov, S.Yu., Shumikhina, A.Yu., Toksarov, V.N., Lomakin, I.S., and Evseev, A.V., Stability of Load-Bearing Elements in Room-and-Pillar Mining System, Gorny Zh., 2013, no. 6.
21. Baryakh, A.A., Asanov, V.A., Toksarov, V.N., and Gilev, M.V., Evaluating the Residual Life of Salt Pillars, J. Min. Sci., 1998, vol. 34, no. 1, pp. 14–20.
22. Baryakh, A.A. and Samodelkina, N.A., Rheological Analysis of Geomechanical Processes, J. Min. Sci., 2005, vol. 41, no. 6, pp. 522–530.
23. Lobanov, S.Yu., Estimate of Time Variation in Load-Bearing Capacity of Interchamber Pillars, Strategiya i protsessy osvoeniya georesursov: sb. nauch. tr. (Strategy and Processes of Development of Georesources: Collection of Scientific Papers), Perm: GI UrO RAN, 2013, issue 11.
24. Shulakov, D.Yu., Analysis of Correlation between Microseismic Activity and Ground Surface Subsidence Depending on Mining Factors, Strategy and Processes of Development of Georesources: Proc. Sci. Session on 2013 R&D Results, Perm: GI UrO RAN, 2004.
25. Baryakh, A.A., Telegina, E.A., Samodelkina, N.A., and Devyatkov, S.Yu., Prediction of the Intensive Surface Subsidences in Mining Potash Series, J. Min. Sci., 2005, vol. 41, no. 4, pp. 312–319.


EFFECT OF DEFORMATION PROPERTIES OF DISCONTINUITIES ON SOURCES OF MINING-INDUCED SEISMICITY IN ROCKS. PART I: IN SITU OBSERVATIONS
A. N. Besedina, S. B. Kishkina, and G. G. Kocharyan

Institute of Geosphere Dynamics, Russian Academy of Sciences,
Leninskii pr. 38, Bld. 1, Moscow, 119334 Russia
Moscow Institute of Physics and Technology,
Institutskii pereulok 9, Dolgoprudny, 141700 Russia
e-mail: geospheres@idg.chph.ras.ru

The authors analyze mine logs of seismic events in Poland, Finland, Canada, Russia and South Africa. For the analyzed events, induced seismic energy varies by 2–3 orders of magnitude at the same value of seismic moment. The upper and lower limits of the range correspond to “stiff” and “soft” sources, respectively. The most probable cause of the wide spread of the reduced energy values seems to be fluctuating properties of discontinuities due to the change in the composition of filler and water content of joints.

Induced seismicity, seismic energy, seismic moment, tectonic shocks, stiffness of faults

DOI: 10.1134/S1062739115040078 

REFERENCES
1. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime, J. Min. Sci., 2004, vol. 40, no. 4, pp. 321–338.
2. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission in Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.
3. Oparin, V.N. et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization of the Earth’s Crust in the Areas of Heavy Industrial Impact), N. N. Mel’nikov (Ed.), Novosibirsk: SO RAN, 2012.
4. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., Miroshnichenko, N.A., and Vasil’eva, E.V., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J, Min. Sci., 2011, vol. 47, no. 6, pp. 707–713.
5. Usol’tseva, O.M., Nazarova, l.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and a Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp. 1–7.
6. Nazarova, L.A., Nazarov, L.A., and Kozlova, M.P., Dilatancy and the Formation and Evolution of Disintegration Zones in the Vicinity of Heterogeneities in a Rock Mass, J. Min. Sci., 2009, vol. 45, no. 5, pp. 411–419.
7. Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shevkunova, E.V., and Podkorytova, E.G., Mining-Induced Seismicity at Open Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013), J. Min. Sci., 2014, vol. 50, no. 2, 224–228.
8. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’–indutsirovannaya i triggernaya (Induced and Trigger Seismicity), Moscow: IDG RAN, 2015.
9. Snelling, P., Godin, L., and McKinnon, S., The Role of Geologic Structure and Stress in Triggering Remote Seismicity in Creighton Mine, Sudbury, Canada, International Journal of Rock Mechanics & Mining Sciences, 2013, vol. 58.
10. Kocharyan, G.G., Kishkina, S.B., Novikov, V.À., and Ostapchuk, À.À., Slow Slip Events: Parameters, Conditions of Occurrence, and Future Research Prospects, Geodyn. & Tectonophys., 2014, vol. 5 (4).
11. Shebalin, N.V., Sil’nye zemletryaseniya: izbr. trudy (Strong Earthquakes: Selectals), Moscow: AGN, 1997.
12. Malovichko, A.A. and Malovichko, D.A., Assessment of Force and Deformation Characteristics of Seismic Sources, Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems of Seismic Deformation Monitoring of Induced Earthquakes and Rock Bursts), vol. 2, N. N. Mel’nikov (Ed.), Novosibirsk, 2010.
13. Rodkin, M.V., Physical Issue of the Earthquake Source—Discrepancies and Models, Fiz. Zemli, 2011, no. 8.
14. Rautian, T.G., Determination of Earthquake Energy at a Distance to 3000 km, Eksp. Seismika. Trudy IFZ AN SSSR, 1964, no. 32(199).
15. Ide, S. and Beroza, G., Does Apparent Stress Vary with Earthquake Size? Geophys. Research Letters, 2001, vol. 28.
16. Domanski, B. and Gibowicz, S., Comparison of Source Parameters Estimated in the Frequency and Time Domains for Seismic Events at the Rudna Copper Mine, Poland, Acta Geophys., 2008, vol. 56.
17. Oye, V., Bungum, H., and Roth, M., Source Parameters and Scaling Relations for Mining-Related Seismicity within the Pyhasalmi Ore Mine, Finland, BSSA, 2005, vol. 95 (3).
18. Gibowicz, S., Young, R., Talebi, S., Rawlence, D., Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for Events with Moment Magnitude Smaller than 2, BSSA, 1991, vol. 81.
19. Urbancic, T.I. and Young, R.P., Space–Time Variations in Source Parameters of Mining-Induced Seismic Events with M < 0, BSSA, 1993, vol. 83.
20. McGarr, A., Some Comparisons between Mining-Induced and Laboratory Earthquakes, Pure Appl. Geophys., 1994, vol. 142, DOI 10.1007/BF00876051.
21. Yamada, T., Mori, J.J., Ide, S., Abercrombie, R.E., Kawakata, H., Nakatani, M., Iio, Y., and Ogasawara, H., Stress Drops and Radiated Seismic Energies of Microearthquakes in a South African Gold Mine, J. Geophys. Res., 2007, vol. 112, B03305, DOI:10.1029/2006JB004553.
22. Kwiatek, G., Plenkers, K., Dresen, G., et al., Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6.
23. Kocharyan, G.G., Scale Effect in Seismotectonics, Geodynamics & Tectonophysics, 2014, vol. 5 (2).
24. Gibowicz, S.J. and Kijko, A., An Introduction to Mining Seismology, San Diego: Academic Press Inc., 1994.
25. Malovichko, D.A., Analysis of Mechanisms of Seismic Events in Upper Kama Potash Mines, Cand. Phys.-Math. Sci. Dissertation, Moscow: IFZ RAN, 2004.
26. Rorke, A.J. and Roering, C., Source Mechanism Studies of Mine-Induced Seismic Events in a Deep-Level Gold Mine, Proc. 1st Int. Symp. Rockburst and Seismicity in Mines, Johannesburg, N. C. Gay and E. H. Wainwright (Eds.), Johannesburg: SAIMM, 1984.
27. Syrnikov, N.M and Tryapitsyn, V.M., Induced Earthquake Mechanism in Khibiny, Dokl. Akad. Nauk, 1990, vol. 314, no. 4.
28. Heesakkers, V., Murphy, S., and Reches, Z., Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa, Pure Appl. Geophys., 2011, vol. 168.
29. Kasakhara, K., Earthquake Mechanics, Cambridge University Press, 1981.
30. Madariaga, R., Earthquake Scaling Laws in Extreme Environmental Events: Complexity in Forecasting and Early Warning, R. A. Meyers (Ed.), Springer, 2010.
31. Sobolev, G.A., Osnovy prognoza zemletryasenii (Principle of Earthquake Forecasting), Moscow: Nauka, 1993.
32. Sherman, S.I., Fizicheskie zakonomernosti razvitiya razlomov zemnoi kory (Physical Laws of Growth of Faults in the Earth’s Crust), Novosibirsk: Nauka, 1977.
33. Kanamori, H. and Brodsky, E.E., The Physics of Earthquakes, Reports on Progress in Physics, 2004, vol. 67 (8).
34. Goodman, R.E., Taylor, R., and Brekke, T., A Model for the Mechanics of Jointed Rock, J. Soil Mech., Found. Div. ASCE 1968, vol. 94.


ASSESSMENT OF DEFORMATION PROPERTIES OF ROCKS BY PRESSUREMETER TESTING IN HYDROFRACTURED INTERVAL
M. V. Kurlenya, S. V. Serdyukov, and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The authors propose the method to estimate deformation properties of rocks by the data on pressuremeter test in hydrofractured interval, allowing in situ values of Young’s modulus and Poisson’s ratio of rocks. It is shown that combination of pressuremeter tests and hydraulic fracturing expands the scope of deformation measurements and improves efficiency of stress assessment in rocks using hydrofracturing method.

Rock mass, pressuremeter test, hydrofracturing, crack, Young’s modulus, Poisson’s ratio, stress state

DOI: 10.1134/S106273911504008X

REFERENCES
1. Clarke, Â.G., Pressuremeter Testing in Ground Investigation. Part I: In-Site Operations, Proc. Instn. Civ. Engrs. Geotech. Engng., 1996, vol. 119.
2. Amadei, B., Valverde, M., Jernigan, R., Touseull, J., and Cappelle, J.F., The Directional Dilatometer: A New Option to Determine Rock Mass Deformability, The Pressuremeter and Its New Avenues: Proc. 4th Int. Symp., Sherbrooke, Quebec, 1995.
3. RF State Standard GOST 20276–2012, Moscow, 2012.
4. Shkuratnik, V.L. and Nikolenko, P.V., Metody opredeleniya napryazhenno-deformirovannogo sostoyaniya: nauch.-obraz. kurs (Methods to Determine Stress–Strain State: Education and Research Course), Moscow, 2012.
5. Zalesky, M., Buhler, Ch., Burger, U., and John, M., Dilatometer Tests in Deep Boreholes in Investigation for Brenner Base Tunnel, Proc. World Tunnelling Congress, Rotterdam: A. Balkema, 2006.
6. Vardanyan, G.S., Andreev, V.I., Atarov, N.M., and Gorshkov, A.A., Soprotivlenie materialov s osnovami teorii uprugosti i plastichnosti (Strength of Materials and Basics of the Theory of Elasticity and Plasticity), Moscow: ASV, 1995.
7. Bel’tyukov, N.L. and Evseev, A.V., Comparing Elastic Properties of Rocks, Vestn. PNIPU. Geolog. Neftegaz. Gorn. Delo, 2010, no. 5.
8. Gercek, H., Poisson’s Ratio Values for Rocks, International Journal of Rock Mechanics & Mining Sciences, 2007, vol. 44.
9. Lu, P., Li, G., Huang, Zh., Tian, Sh., and Shen, Zh., Simulation and Analysis of Coal Seam Conditions on the Stress Disturbance Effects of Pulsating Hydro-Fracturing, Journal of Natural Gas Science and Engineering, 2014, vol. 21.
10. Akbarzadeh, H. and Chalaturnyk, R.J., Structural Changes in Coal at Elevated Temperature Pertinent to Underground Coal Gasification: A Review, International Journal of Coal Geology, 2014, vol. 131.
11. Lu, P.H., In Situ Determination of Deformation Modulus and Poisson’s Ratio of a Rock Mass with Hydraulic Borehole Pressure Cells, Proc. 28th US Symp. Rock Mechanics, Tucson, 1987.
12. Method for Obtaining Poisson’s Ratio in Rock Masses by Boreholes Made In Situ. Available at: http://www.swisseen.ch/marketplace/index.php?file=bbs-show.php&bbsref=11%20ES%2024D4%203 MMD (last visited June 5, 2015).
13. Unal, E., Determination of In Situ Deformation Modulus: New Approaches for Plate-Loading Tests, Int. J. Rock Mech. Min. Sci., 1997, vol. 34 (6).
14. Pavlov, A., Martynyuk, P.A., and Serdyukov, S.V., The Hydraulic Fracture Opening Pressure Multiple Test for the Stress State Measurement in Permeable Rock, Rock Stress and Earthquakes: Proc. 5th Int. Symp., London: CRC Press/Balkema, 2010.
15. Martynyuk, P.A., Pavlov, V.A., and Serdyukov, S.V., Assessment of Stress State in Rocks by Deformation Characteristic of Borehole Zone with Hydrofracture, J. Min. Sci., 2011, vol. 47, no. 3, pp. 290–296.
16. Haimson, B.C., A Hybrid Method for Constraining the In Situ Stress Regime in Deep Vertical Holes, Rock Stress and Earthquakes: Proc. 5th Int. Symp., London: CRC Press/Balkema, 2010.
17. Haimson, B.C. and Fairhurst, C., Initiation and Extension of Hydraulic Fracture in Rocks, Soc. Petr. Engrs. J., Sept. 1967.
18. Serdyukov, S.V., Degtyareva, N.V., Patutin, A.V., and Rybalkin, L.A., Precision Dilatometer with Built-In System of Advance along the Borehole, J. Min. Sci., 2015, vol. , no. 4, pp. 860–864.


MONITORING LINEAR DEFORMATION OF BUILDINGS AND STRUCTURES
S. V. Usanov, V. I. Ruchkin, and O. D. Zheltysheva

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: usv@igduran.ru

In focus are special cases of distortion of buildings when heavy structural deformations were visually observed though instrumental monitoring showed low strain values. The experimental laser scanning of such deformations exhibited complex deformation patterns in horizontal planes of buildings. Aimed at determining causes of the nonlinear deformation of buildings and structures and preventing relevant accidents, the integrated monitoring technology is offered based on taking into account stress–strain state and block structure of rock mass under the buildings.

Deformations of buildings, instrumental monitoring, laser scanning, stress–strain state, rock mass

DOI: 10.1134/S1062739115040091 

REFERENCES
1. Usanov, S.V., Konovalova, Yu.P., and Zheltysheva, O.D., Advanced Technologies of Movement Monitoring, Gorny Zh., 2012, no. 1.
2. Usanov, S.V. and Konovalova, Yu.P., Deformation during Subway Tunnel Construction in Ekaterinburg, GIAB, 2011, no. S11.
3. Konovalova, Yu.P., Analysis of Cyclic Short-Term Geodynamic Deformation of an Area in Selecting Nuclear Plant Construction Site, GIAB, 201, no. 7.
4. Usanov, S.V., Geodynamic Movement of Rocks under Action of a Large Mining-and-Processing Integrated Works, GIAB, 2011, no. S11.
5. Draskov, V.P., Operation Safety of Mine Structure at Sarany Chromite Deposit, GIAB, 2010, no. 6.
6. Instruktsia po nablyudeniyam za sdvizheniem gornykh porod i zemnoi poverkhnosti pri podzemnoi razrabotke rudnykh mestorozhdenii (Guidelines on Monitoring of Surface and Underground Movements in Underground Ore Mining), Moscow: Nedra, 1988.
7. Usanov, S.V. and Zheltysheva, O.D., Laser Scanning Deformation of a Building in the Mining Influence Zone, Proc. 2nd Sino-Russian Joint Scientific-Technical Forum on Deep-Level Rock Mechanics and Engineering, Novosibirsk: IGD SO RAN, 2012.
8. Gulyaev, A.N., Osipova, A.Yu., and Shchapov, V.A., Geophysical Research Findings for 9-Storey Repair Nonresidential Building Site, Proc. Conf. Mining Geomechanics, Ekaterinburg: IGD UrO RAN, 2012.
9. Mel’nik, V.V., Zamyatin, A.L., and Pustuev, A.L., Spectral Profile Shooting for Accident Forecasting and Risk Abatement in Subsoil Use, Gorny Zh., 2012, no. 1.
10. Tagil’tsev, S.N., Khaustova, A.Yu., Luk’yanov, A.E., and Dalatkazin, T.Sh., Effect of Tectonic Activity on Deformation of Buildings in Ekaterinburg, Proc. Int. Conf. Urgent Issues of Engineering Geology and Ecological Geology, Moscow: MGU, 201.
11. Usanov, S.V., Mel’nik, V.V., and Zamyatin, A.L., Monitoring Rock Mass Transformation under Induced Movements, J. Min. Sci., 2013, vol. 49, no. 6, pp. 913–918.
12. Balek, A.E. and Zamyatin, A.L., Self-Organization Processes in a Hierarchical Blocks Structure Geomedium under Industrial Impact, GIAB, 2006, no. 7.
13. Dalatkazin, T.Sh., Creation of Geodynamic Test Ground in the Ekaterinburg Region, GIAB, 2008, no. 1.
14. Ruchkin, V.I., Rock Mass Stress–Strain State Monitoring at Large Spacing, GIAB, 2008, no. 4.
15. Sashurin, A.D., Sdvizhenie gornykh porod na rudnikakh chernoi metallurgii (Rock Mass Movement in Iron Industry Mines), Ekaterinburg: IGD UrO RAN, 1999.
16. Panzhin, A.A., Analysis of Ground Surface Displacements in Mineral Mining Using Areal Instrumental Techniques, Izv. vuzov, Gorny Zh., 2009, no. 2.


MINERAL MINING TECHNOLOGY


SUBSTANTIATION OF EXTRACTION PANEL PARAMETERS IN ECOLOGICALLY BALANCED COAL MINING CYCLE
M. V. Ryl’nikova, V. A. Eremenko, A. P. Eruslanov, and S. A. Prokhvatilov

Institute of Integrated Mineral Development—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: eremenko@ngs.ru
Novokuznetsk Paramilitary Mine Rescue Team, Paramilitary Mine Rescue Unit,
ul. Gornospasatel’naya 5, Novokuznetsk, 654028 Russia

The article focuses on ecologically balanced and complete extraction of coal reserves, with minimized impact exerted on human environment by gas emissions. It is found that geometrical design of extraction panels should be based on modeling of oxygen distribution in mined-out stopes and then calibration of the model using in situ test data.

Ecologically balanced cycle, deposit, complete extraction, mine, coal seam, extraction panel, dimension, mined-out stope, monitoring system, oxygen, methane

DOI: 10.1134/S1062739115040127 

REFERENCES
1. Trubetskoy, K.N., Kaplunov, D.R., Ryl’nikova, M.V., et al., Russia’s Mineral Mining and Processing Industry Sustainability Conditions, GIAB, 2015, no. 2.
2. Kaplunov, D.R., Ryl’nikova, M.V., Radchenko, D.N., Utilization of Renewable Energy Sources in Hard Mineral Mining, J. Min. Sci., 2015, vol. 51, no. 1, pp. 111–117.
3. Gorbatov, V.A., Igishev, V.G., Popov, V.B., et al., Zashchita ugol’nykh shakht ot samovozgoraniya uglei (Protection of Coal Mines from Spontaneous Coal Combustion), Kemerovo: Kuzbassvuzizdat, 2001.
4. Ordin, A.A. and Klishin, V.I., Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Optimizing Technological Parameters of Mines Based on Lag Models), Novosibirsk: Nauka, 2009.
5. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
6. Ordin, A.A., Nikol’sky, A.M., and Metel’kov, A.A., Modeling and Optimization of Preparatory Work and Stoping in a Coal Mine Panel, J. Min. Sci., 2013, vol. 49, no. 6, pp. 941–949.
7. Federal’nye normy i pravila v oblasti promyshlennoi bezopasnosti “Pravila bezopasnosti v ugol’nykh shakhtakh” (Federal Industrial Safety Codes: Safety Regulations for Coal Mines), Series 05, issue 40, Moscow: Nauch.-tekh. tsentr issled. probl. prom. bezop., 2014.
8. Govorukhin, Yu.M., Development of Method to Estimate Air Distribution Parameters to Decelerate Oxidation Processes in Mined-Out Areas in Coal Mines, Cand. Tech. Sci. Dissertation, Kemerovo: SibGIU, 2012.
9. Prokhvatilov, S.A., Eremenko, V.A., Nikitin, S.G., Miletenko, N.A., and Eruslanov, A.P., Geodynamic Zoning in Coal Mine, GIAB, 2013, no. 9.
10. Borisov, A.A., Mekhanika gornykh porod i massivov (Mechanics of Rocks and Rock Masses), Moscow: Nedra, 1980.
11. Rukovodstvo po bor’be s endogennymi pozharami na shakhtakh Minugleproma SSSR (Guidelines on Combating Endogenous Fires in Mines of the USSR Ministry of Coal Industry), Donetsk, 1990.
12. MDG 1006 Spontaneous Combustion Management—Technical Reference—Mine Safety Operations, Branch Industry and Investment, NSW, May 2011.
13. Rukovodstvo po obnaruzheniyu i lokalizatsii ochagov podzemnykh pozharov po vudeleniyu radona (Guidelines on Detection and Confinement of Underground Fire Sources Based on Radon Emissions), Kemerovo: RosNIIGD, 1998.


GEODATA-BASED MODELING OF TRUCK TRANSPORT IN OPEN PIT MINES
A. A. Botvinnik

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: alexbtvn@rambler.ru

In the framework of geo-information model of a coal deposit and open pit mine, the author derives analytical expressions for calculating work of rock haulage from face to start point of transport incline, considering characteristics of the road obtained in the course of geo-information modeling. Alternative calculations of freight ton-kilometers and work of vehicles to overcome gravity and rolling resistance are analyzed. The example of calculations for the conditions of a particular open pit coal mine contains comparison of one- and two-flank mining schemes.

Open pit mine, rock mass haulage work, overburden rehandling, concentratioon points, road configuration

DOI: 10.1134/S1062739115040139 

REFERENCES
1. Trubetskoy, K.N., Potapov, M.G., Vinnitsky, K.E., and Mel’nikov, N.N., Otkrytye gornye raboty: spravochnik (Open Pit Mining: Manual), Moscow: Gornoe byuro, 1994.
2. Tanaino, A.S. and Botvinnik, A.A., Three-Dimensional Solution of Mining-Geometric Problems in a Graphic Dialog Regime in Planning Opencast, J. Min. Sci., 1999, vol. 35, no. 6, pp. 640–653.
3. Shchadov, M.I., Freidina, E.V., Botvinnik, A.A., and Dvornikova, A.N., System Control of Coal Quality in Open Pit Mining, Ugol’, 2003, no. 2.
4. Vasil’ev, M.V., Sirotkin, Z.L., and Smirnov, V.P., Avtomobil’nyi transport kar’erov (Motor Transport in Open Pit Mines), Moscow: Nedra, 1973.


ULTIMATE LENGTH AND CAPACITY OF PRODUCTION HEADING WITH REGARD TO GAS CONTENT, CONSIDERING NONUNIFORM AIR FLOW
A. A. Ordin, A. M. Timoshenko, and S. A. Kolenchuk

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru
East Research Institute,
ul. Institutskaya 3, Kemerovo, 650002 Russia
Giprougol Institute,
ul. Trikotazhnaya 41, Novosibirsk, 630015 Russia

Procedures for calculating permissible length and capacity of a fully mechanized production heading with regard to gas content and considering nonuniform air flow across and along longwall are described. Nonlinear relations are derived for methane concentrations and air leakage into mined-out area. It is proposed to assess a production heading capacity based on the gas-related permissible length of the heading and the coal cutting chart with a shearer. It is found that the increased gas content of coal and higher air leakage into mined-out area results in reduction of gas-related length and capacity of production headings.

Mine, coal bed, permissible length and output of production heading, gas factor, airflow velocity nonuniformity, air leakage, methane concentration

DOI: 10.1134/S1062739115040140 

REFERENCES
1. Reznikov, E.L., Appropriate Efforts, Ugol’ Kuzbassa, 2013, no. 6.
2. Ermolaev, A.M., Egorov, P.V., and Ermolaev, A.A., Distribution of Ultimate Gas-Nonhazardous Capacity of Production Headings in Super Gas-Hazardous Mines, Ugol’, 2006, no. 11.
3. Slastunov, S.I., Karkashadze, G.G., Kolikov, K.S., and Ermak, G.P., Calculation Procedure for Permissible Coal Breakage Face Output by Gas Factor, J. Min. Sci., 2013, vol. 49, no. 6, pp. 888–893.
4. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Manual on Coal Mine Ventilation Design), Makeevka–Donbass, 1989.
5. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Manual on Coal Mine Ventilation Design), Kiev, 1994.
6. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Manual on Coal Mine Ventilation Design), Moscow, 2010.
7. Instruktsiya po primeneniyu skhem provetrivaniya vyemochnykh uchastkov shakht s izolirovannym otvodom metana iz vyrabotannogo prostranstva s pomoshch’yu gazootsasyvayushchikh ustanovok (Guidelines on Mine Ventilation Charts with Isolated Methane Removal from Mined-Out Area Using Gas-Suction Plants), Approved by the Federal Environmental, Industrial and Nuclear Supervision Service of the Russian Federation, Order no. 680 as of Dec 1, 2011.
8. Grashchenkov, N.F., Petrosyan, A.E., Frolov, M.A. et al., Rudnichnaya ventilyatsiya: spravochnik (Mine Ventilation: Quick Reference), K. Z. Ushakov (Ed.), Moscow: Nedra, 1988.
9. Timoshenko, A.M., Baranova, N.N., Nikiforov, D.V. et al., Some Aspects of Using Regulatory Documents in Planning of High-Capacity Production Areas in Coal Mines, Vest. NTs VostNII, 2010, no. 1.
10. Pravila bezopasnosti v ugol’nykh shakhtakh (Coal Mine Safety Regulations), Federal Mining and Industrial Supervision of the Russian Federation, Decree no. 50 as of Jun 5, 2003.
11. Ordin A. A. and Metel’kov, A.A., Optimization of the Fully Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.
12. Ordin, A. A. Nikol’sky, A.A., and Metel’kov, A.A., Modeling and Optimization of Preparatory Work and Stoping in a Coal Mine Panel, J. Min. Sci., 2013, vol. 49, no. 6, pp. 941–949.
13. Ordin, A. A. Nikol’sky, A.A., and Metel’kov, A.A., Optimizatsiya tekhnologii podzemnoi razrabotki pologikh ugol’nykh plastov. Osnovnye zavisimosti i zakonomernosti mekhanizirovannoi dobychi uglya v dlinnykh ochistnykh zaboyakh (Optimization of Underground Mining Technology for Gently Dipping Coal. Basic Relations and Mechanisms of Coal Longwalling), Saarbrucken: Palmarium Academic Publishing, 2013.


REDUCTION OF COAL BED METHANE RELEASE UNDER HIGH-RATE ADVANCE OF PRODUCTION FACE
A. A. Ordin and A. M. Timoshenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru
VostNII Science Center,
ul. Institutskaya 3, Kemerovo, 650002 Russia

The theoretical proof is presented for absolute coal bed methane release as a nonlinear extremum function of production face output. The article gives actual and theoretical evidences of reduction in absolute coal bed methane release under high-rate advance of production face.

Mine, coal bed, absolute and relative methane release, productin face advance rate, methane concentration

DOI: 10.1134/S1062739115040152 

REFERENCES
1. Trubetskoy, K.N., Ruban, A.D., and Zaburdyaev, V.S., Justification Methodology of Gas Removal Methods and Their Parameters in Underground Coal Mines, J. Min. Sci., 2011, vol. 47, no. 1, pp. 1–9.
2. Trubetskoy, K.N., Ruban, A.D., and Zaburdyaev, V.S., Characteristics of Methane Release in Highly Productive Coal Mines, J. Min. Sci., 2011, vol. 47, no. 4, pp. 467–475.
3. Timoshenko, A.M., Baranova, M.N., Nikiforov, D.V., et al., Some Aspects of Application of Regulatory Documents in Planning High-Productive Panels in Coal Mines, VostNII Bulletin, 2010, no. 1.l
4. Bokii, A.B., Influence of Coal Production Capacity on Greenhouse Gas Emission in Mines, Geotekhnicheskaya mekhanika: sb. nauch. trudov (Geotechnical Mechanics: Collection of Scientific Papers), Dnepropetrovsk, 2010, issue 88.
5. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht. Proekt (Guidelines on Coal Mine Ventilation Planning. Draft), Moscow, 2010.
6. Ordin, A.A., Timoshenko, A.M., and Kolenchuk, S.A., Ultimate Length and Output of Production Heading with Regard to gas Content, Considering Nonuniform Air Flow, J. Min. Sci., 2015, vol. 51, no. 4, pp. 771–778.
7. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Guidelines on Coal Mine Ventilation Planning), Makeevka–Donbass, 1989.
8. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Guidelines on Coal Mine Ventilation Planning), Kiev, 1904.
9. Instruktsiya po primeneniyu skhem provetrivaniya vyemochnykh uchastkov shakht s izolirovannym otvodom metana iz vyrabotannogo prostranstva s pomoshch’yu gazootsasyvayushchikh ustanovok (Guidelines on Ventilation Schemes for Mine Districts with Isolated Methane Drainage from Mined-Out Areas Using Gas Suction Plants), Approved by the Decree no. 680 of the Federal Service on Ecological, Technological and Nuclear Supervision of the Russian Federation dated Dec 1, 2011.
10. Grashchenkov, N.F., Petrosyan, A.E., Frolov, M.A., et al., Rudnichnaya ventilyatsiya: spravochnik (Mine Ventilation: Manual), K. Z. Ushakov (Ed.), Moscow: Nedra, 1988.
11. Polevshchikov, G.Ya., Shinkevich, M.V., and Plaksin, M.S., Gas-Kinetic Features of Methane Decomposition in Conveyor Drift of a Panel, GIAB, 2011, no. 8.
12. Zaburlyaev, G.S., Novikova, I.A., and Podobrazhin, A.S., Methane and Dust Emission under Operation of Shearing Drums, GIAB, 2008, no. 53.
13. Myshkovsky, M. and Pashedag, U., Plougher or Shearer, Glukauf, 2009, no. 3.
14. Borshchev, V.Ya., Oborudovanie dlya izmel’cheniya materialov (Grinding Equipment), Tambov: TGTU, 2009.
15. Leont’ev, A.V., Osnovy teorii fil’tratsii (Basics of Flow Theory), Moscow: MGU, 2009.
16. Ordin, A.A. and Metel’kov, A.A., Optimization of the Fully-Mechanized Stoping Face Length and Efficiency in a Coal Mine, J. Min. Sci., 2013, vol. 49, no. 2, pp. 254–264.


MINERAL DRESSING


EXPERIMENTAL VALIDATION OF MECHANISM FOR PULSED ENERGY EFFECT ON STRUCTURE, CHEMICAL PROPERTIES AND MICROHARDNESS OF ROCK-FORMING MINERALS OF KIMBERLITES
I. Zh. Bunin, V. A. Chanturia, N. E. Anashkina, and M. V. Ryazantseva

Institute of Integrated Mineral Development—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: numim_i@mail.ru

Using the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), microscopy and microhardness test methods, the change in the crystalline and chemical properties and in microhardness of rock-forming minerals of kimberlites as a result of exposure to high-power nanosecond electromagnetic pulses (HPEM) has been studied. From FTIR and XPS data the non-thermal effect of HPEM results in damage of surface microstructure of dielectric minerals due to formation of microcracks, surface breakdowns and other defects, which ensure effective weakening of rock-forming minerals and reduction in their microhardness by 40–66%.

Kimberlite rock-forming minerals, high-voltage nanosecond pulses, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, microscopy, surface, microhardness

DOI: 10.1134/S1062739115040177 

REFERENCES
1. Shafeev, R.Sh., Chanturia, V.A., and Yakushkin, V.P., Vliyanie ioniziruyushchikh izluchenii na protsess flotatsii (Ionizing-Radiation Effect on Flotation), Moscow: Nauka, 1973.
2. Chanturia, V.A. and Shafeev, R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Chemistry of Surface Phenomena in Flotation), Moscow: Nedra, 1977.
3. Chanturia, V.A., Trubetskoy, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya geomaterialov (Nanoparticles in Failure and Exposure of Geomaterials), Moscow: IPKON RAN, 2006.
4. Kurets, V.I., Usov, A.F., and Tsukerman, V.A., Elektroimpul’snaya dezintegratsiya materialov (Electric-Impulse Disintegration of Materials), Apatity: KNTs RAN, 2002.
5. Boriskov, F.F. and Alekseev, V.D., Impul’snye i avtogennye metody pererabotki syr’ya (Impulse and Autogenous Mineral Processing), Ekaterinburg: UrO RAN, 2005.
6. Goncharov, S.A., Fiziko-tekhnicheskie osnovy resursosberezheniya pri razrushenii gornykh porod (Physical and Technical Resource-Saving Fundamentals of Rock Failure), Moscow: MGGU, 2007.
7. Chanturia, V.A. and Vigdergauz V. E., Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii (Sulfide Electrochemistry. Theory and Practice of Flotation), Moscow: Ruda Metally, 2008.
8. Badenkov, A.V. and Badenkov, V.Ya., Energeticheskie vozdeistviya na komponenty flotatsii (Energy Effects on Flotation Components), Moscow: Gornaya Kniga, 2010.
9. Bunin, I.Zh., Theoretical Fundamentals of Nanosecond Electromagnetic Impulse Effects on Disintegration and Exposure of Finely Dispersed Mineral Complexes and Precious Metal Recovery from Ores, Dr. Tech. Sci. Thesis, Moscow, 2009.
10. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Filippov, L.O., Theory and Application of High-Power Nanosecond Pulses to Processing of Mineral Complexes, Min. Proc. Extract. Metallurgy Rev., 2011, vol. 32, no. 2.
11. Rostovtsev, V.I., Scientific Justification and Development of Intensifying Radiation and Electrochemical Effects on Solid and Liquid Phases of Rebellious Raw Mineral Materials, Dr. Tech. Sci. Thesis, Novosibirsk, 2012.
12. Chanturia, V.A., Gulyaev, Yu.V., Lunin, V.D., Bunin, I.Zh., Cherepenin, V.A., Vdovin, V.A., and Korzhenevsky, A.V., Exposure of Rebellious Gold Ores under Powerful Electromagnetic Pulses, Dokl. Akad. Nauk, 1999, vol. 366, no. 5.
13. Kotov, Yu.A., Mesyats, G.A., Filatov, A.L., Koryukin, B.M., Boriskov, F.F., Korzhenevsky, A.V., Motovilov, V.A., and Shcherbinin, S.V., Complex Nanosecond Pulse Treatment of Pyrite Wastes at Mining and Ore-Preparation Integrated Works, Dokl. Akad. Nauk, 2000, vol. 372, no. 5.
14. Chanturia, V.A., Gulyaev, Yu.V., Bunin, I.Zh., Vdovin, V.A., Korzhenevsky, A.V., Lunin, V.D., and Cherepenin, V.A., Synergic Effect of Powerful Electromagnetic Pulses and Pore Moisture on Exposure of Gold-Bearing Materials, Dokl. Akad. Nauk, 2001, vol. 379, no. 3.
15. Chanturia, V.A., Bunin, I.Zh., Lunin, V.D., Gulyaev, Yu.V., Bunina, N.S., Vdovin, V.A., Voronov, P.S., Korzhenevsky, A.V., and Cherepenin, V.A., Use of High-Power Electromagnetic Pulses in Processes of Disintegration and Opening of Rebellious Gold-Containing Raw Material, J. Min. Sci., 2001, vol. 37, no. 4, pp. 427–437.
16. Bunin, I.Zh., Bunina, N.S., Vdovin, V.A., Voronov, P.S., Gulyaev, Yu.V., Korzhenevsky, A.V., Lunin, V.D., Chanturia, V.A., and Cherepenin, V.A., Experimental Investigation into Non-Thermal Effect of Powerful Electromagnetic Pulses on Rebellious Gold-Bearing Materials, Izv. RAN, Ser. Fiz., 2001, vol. 65, no. 12.
17. Ivanova, T.A., Bunin, I.Zh., and Khabarova, I.A., Peculiarities of Sulfide Mineral Oxidation under Effect of Nanosecond Electromagnetic Pulses, Izv. RAN, Ser. Fiz., 2008, vol. 72, no. 10.
18. Didenko, A.N., Zverev, B.V., and Prokopenko, A.V., Microwave Failure and Grinding of Hard Rocks in Terms of Kimberlite, Dokl. Akad. Nauk, 2005, vol. 403, no. 2.
19. Didenko, A.N., SVCh-energetika: teoriya i praktika (Microwave Energetic: Theory and Practice), Moscow: Nauka, 2003.
20. Swart, A.J., Evaluating the Effects of Radio-Frequency Treatment on Rock Samples: Implications for Rock Comminution, Geochemistry—Earth’s System Processes, Dr. Dionisios Panagiotaras (Ed.), INTECH Open Access Publisher, 2012.
21. Swart, A.J. and Mendonidis, P., Evaluating the Effect of Radio-Frequency Pre-treatment on Granite Rock Samples for Comminution Purposes, Int. J. Min. Proc., 2013, vol. 120.
22. Chanturia, V.A., Bondar’, S.S., Godun, K.V., and Goryachev, B.E., Present-Day State of Diamond Mining Industry in Russia and Main World Diamond Producers, Gorny Zh., 2015, no. 3.
23. Kaplin, A.I., Intensification of Wet Autogenous Kimberlite Grinding Based on Electrochemical Conditioning of Aqueous Systems, Cand. Tech. Sci. Thesis, Moscow, 2010.
24. Cherepenin, V.A., Relativistic Multi-wave Generators and their Application Scope, Usp. Fiz. Nauk, 2006, vol. 176, no. 10.
25. Chanturia, V.A., Bunin, I.Zh., and Kovalev, A.T., Auto-emission Properties of Sulfide Minerals under Powerful Nanosecond Pulses Effect, Izv. RAN, Ser. Fiz., 2007, vol. 71, no. 5.
26. Chanturia, V.A., Bunin, I.Zh., and Kovalev, A.T., Concentration of Energy in Electrical Discharges between Semi-conductor Sulfide Mineral Particles under Powerful Nanosecond Pulses, Izv. RAN, Ser. Fiz., 2008, vol. 72, no. 8.
27. Chanturia, V.A., Bunin, I.Zh., and Kovalev, A.T., Nanosecond Electric Discharges between Semi-conductor Sulfide Mineral Particles in Aqueous Medium, Izv. RAN, Ser. Fiz., 2009, vol. 73, no. 5.
28. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., Khabarova, I.A., Koporulina, E.V., and Anashkina, N.E., Surface Activation and Induced Change of Physicochemical and Process Properties of Galena by Nanosecond Electromagnetic Pulses, J. Min. Sci., 2014, vol. 50, no. 3, pp. 573–586.
29. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., X-Ray Photoelectron Spectroscopy-Based Analysis of Change in the Composition and Chemical State of Atoms of Chalcopyrite and Sphalerite Surface before and after the Nanosecond Electromagnetic Pulse Treatment, J. Min. Sci., 2034, vol.49, no. 3, pp. 489–498.
30. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., Influence of Nanosecond Electromagnetic Pulses on Phase Surface Composition, Electrochemical, Sorption, and Flotation Properties of Chalcopyrite and Sphalerite, J. Min. Sci., 2012, vol. 48, no. 4, pp. 732–740.
31. Chanturia, V.A., Brylyakov, Yu.E., Koporulina, E.V., Ryazantseva, M.V., Bunin, I.Zh., Khabarova, I.A., and Krasnov, A.N., Up-to-Date Approaches to Studying Adsorption of Fatty-Acid Collecting Agents at Apatite and Shtaffelite Ore Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 768–779.
32. Hamilton, V.E., Thermal Infrared (Vibrational) Spectroscopy of Mg–Fe Olivines: a Review and Application to Determine the Composition of Planetary Surfaces, Chemie der Erde, 2009, vol. 70.
33. Farmer, V.C., The Infrared Spectra of Minerals, London: Mineralogical Society, 1974.
34. Mohammadnejad, S., Provis, J.L., van Deventer, J. S. J., Effect of Grinding on the Preg–Robbing Potential of Quartz in Acidic Chloride Medium, Minerals Engineering, 2013, Vol. 52.
35. Zakaznova-Herzog, V.P., Nesbitt, H.W., Bancroft, G.M., and Tse, J.S., Characterization of Leached Layers on Olivine and Pyroxenes Using High-Resolution XPS and Density Functional Calculations, Geochimica et Cosmochimica Acta, 2014, vol. 72.
36. XPS data base. Available at: http://srdata.nist.gov/xps/.
37. Schulze, R.K., Hill, M.A., Field, R.D., Papin, P. A., Hanrahan, R.J., and Byler, D. D. Characterization of Carbonated Serpentine Using XPS and TEM, Energy Conversion and Management, 2004, vol. 45. no. 20.
38. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei (Modern Radiation Chemistry. Radiolysis of Gases and Liquids), Moscow: Nauka, 1986.
39. Kacmarek, S.M., Chen, W., and Boulon, G., Recharging Process of Cr Ions in MgSiO4 and Y3Al5O12 Crystals under Influence of Annealing and ?–Irradiation, Crys. Res. Technol., 2006, no. 1.
40. Yushkin, N.P., Mekhanicheskie svoistva mineralov (Mechanical Properties of Minerals), Leningrad: Nauka, 1971.
41. Viktorov, S.D., Golovin, Yu.I., Kochanov, A.N., Tyurin, A.I., et al., Micro- and Nano- Indentation Approach to Strength and Deformation Characteristics of Minerals, J. Min. Sci., 2014, vol. 50, no. 4, pp. 652–659.
42. Nosov, Yu.G. and Derkachenko, L.I., After-Effects of Microhardness Tests of Diamond Spar, Zh. Tekh. Fiz., 2003, vol. 73, no. 10.
43. Zeldovich, Ya.B., Buchachenko, A.L., Frankevich, E.L., Magnetic-Spin Effects in Chemistry and Molecular Physics, Usp. Fiz. Nauk, 1988, vol. 155, no. 1.
44. Makara, V.A., Vasil’ev, M.A., Steblenko, L.P., Koplak, O.V., et al., Variations in Impurity Composition and Microhardness of Near-Surface Layers in Silicium Crystals under Magnetic Field Effect, Fizika Tekhn. Poluprovod., 2008, vol. 2, no. 10.
45. Makara, V.A., Korotchenkov, O.A., Steblenko, L.P., Podolyan, A.A., and Kalinichenko, D.V., Effect of Weak Magnetic Field on Micromechanical and Electrophysical Characteristics of Silicium in Helioenergetics, Fizika Tekhn. Poluprovod., 2013, vol. 47, no. 5.


MODELING AND ANALYSIS OF PHYSICOCHEMICAL PROCESSES IN RECIRCULATING WATER CONDITIONING
I. V. Pestryak

National University of Science and Technology—MISiS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: irina_ucdp@msmu.ru

The current technologies of mineral mining, processing and beneficiation require introduction of closed water circulation. A common ecological and technological objective is in this case reduction of concentration of copper and commercial-grade fat acid ions that worsen flotation. A promising way of reaching the set objective is preliminary mixing of different waste water flows with maximum concentrations of the specified ions. The thermodynamic calculations justify optimized water treatment modes when engineering-and-economic performance of copper–molybdenum ore dressing remains unaltered, consumption of fresh natural water is lowered, and water supply is enhanced.

Recirculating water, conditioning, copper cations, commercial-grade fat acids, ground water, ore flotation

DOI: 10.1134/S1062739115040189 

REFERENCES
1. Baimakhanov, M.T., Zero-Discharge Water Circulation at Non-ferrous Metal Ore-Preparation Plants with Concurrent Mastering of their Technology, Tsv. Met., 2010, no. 4.
2. Chanturia, V.A. and Lunin, V.D., Elektrokhimicheskie metody intensifikatsii protsessa flotatsii (Electrochemical Methods for Flotation Intensification), Moscow: Nauka, 1983.
3. Kozin, V.Z., Morozov, Yu.P., Koryukin, B.M., Koltunov, A.V., Tarchevskaya, I.G., and Komlev, S.G., Tailings and Tailing Dumps at Mineral Processing Factories, Izv. vuzov, Gorny Zh., 1996, nos. 3/4.
4. Morozov, V.V., Scientific Fundamentals of Sewage Treatment and Circulating Water Conditioning with Utilization of Valuable Components at Mining and Ore-Preparation Integrated Works, GIAB, 1999, no. 6.
5. Medyanik, N.L. and Girevaya, Kh.Ya., Recovery of Copper Ions from Waste Water Effluents by Precipitating-Reducing Agents, Vestn. MGTU, 2007, no. 1.
6. Abramov, A.A., Flotatsiya. Fiziko-khimicheskoe modelirovanie protsessov (Flotation. Physical-and-Chemical Simulation of the Processes), vol. 6, Moscow: MGGU, 2010.
7. Morozov, V.V. and Avdokhin, V.M., Optimization of Polymetallic Ore Processing in Terms of Monitoring and Adjustment of Ionic Composition of Pulp and Circulating Water, GIAB, 1998, no.1.
8. Erdenetuyaa, O., Pestryak, I.V., and Morozov, V.V., Development of Reagent-free Method for Circulating Water Conditioning at Erdenet Mining Corporation, GIAB, 2012, no. 8.
9. Garrels, R.M. and Christ, C.M., Solutions, Minerals, and Equilibria, New York: Jones & Bartlett Publisher, 1965.


COMPOSITION OF MULTICOMPONENT HERACLEUM EXTRACTS AND ITS EFFECT ON FLOTATION OF GOLD-BEARING SULFIDES
T. A. Ivanova, T. N. Matveeva, V. A. Chanturia, and E. N. Ivanova

Institute of Integrated Mineral Development—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: tivanova06@mail.ru

Using the proprietary method, the authors have obtained flotation agent BO—extract of atomized leaves and stalks of Heracleum sosnowskyi (hogweed), and analyzed its composition. Qualitative tests, thin-layer chromatography (TLC), ultraviolet spectrophotometry and flotation tests show that aqueous and organic extracts contain substances that differ in chemical and process properties. The article gives test results for aqueous, alcoholic and aqueous–alcoholic extracts BO used as modifiers in chalcopyrite and pyrite flotation. Selective properties of aqueous and aqueous–alcoholic extracts BO are characterized. The highest depression ability relative to pyrite is a characteristic of aqueous BO extract obtained at pH = 3, with heating and treatment in ultrasonic bath. Organic extracts contain mostly furocoumarins, aspic oils and resins, and have no material effect on flotation activity of pyrite.

Sulfide selection, flotation, gold-bearing chalcopyrite and pyrite sulfides, recovery, vegetable modifiers, extraction, heracleum

DOI: 10.1134/S1062739115040190 

REFERENCES
1. Shubov, L.Ya., Ivankov, S.I., and Shcheglova, N.K., Flotatsionnye reagenty v protsessakh obogashcheniya mineral’nogo syr’ya (Flotation Agents in Mineral Processing), Handbook, Moscow: Nedra, 1990.
2. Matveeva, T.N., Ivanova, T.A., and Gromova, N.K., Sorption and Flotation Properties of Agents of Vegetable Origin in Selective Flotation of Sulfide Precious-Metal-Bearing Minerals, Tsv. Met., 2012, no. 12.
3. Robertson, C., Bradshaw, D., and Harris, P. Decoupling the Effects of Depression and Dispersion in the Batch Flotation of a Platinum Bearing Ore, Proc. 22nd IMPC, Cape Town, South Africa, 2003.
4. Musikhin, P.V. and Sigaev, A.I., Investigation of Physical Properties and Chemical Composition of Heracleum Sosnowskyi and Production of Fiber Semi-Product from It, Sovr. Naukoem. Tekhnol., 2006, no. 3.
5. Mishurov, V.P. and Skupchenko, L.A., RF patent no. 2131728, June 20, 1999.
6. Vardanyan, R.L., Vardanyan, L.P., Arutyunyan, R.S., et al., Kinetic Regularities of Lecithin Oxidation and its Stabilization, Khim. Rast. Syr’ya, 2009, no. 1.
7. Asemkulova, G.B., Chemical Composition of Some Feeding Crops and Evaluation of Silage Grade Kormoproizv., 2011, no. 11.
8. Orlin, N.A., Recovery of Coumarins from Heracleum, Usp. Sovr. Estestvozn. Biol. Nauki. Komment., 2010, no. 3.
9. Terent’eva, M.V. and Chekalinskaya, I.I., Content of Some Microelements in New Feeding Plants, Vesti AN BSSR, Ser. Biol. Nauk, 1964, no. 3.
10. Grinkevich, N.I., Safronovich, L.N., Coumarins, Khimicheskii analiz lekarstvennykh rastenii (Chemical Analysis of Drug Plants), Chap. 8, Moscow: Vysshaya Shkola, 1983.
11. Murav’ev, I.A., Tekhnologiya lekarstv (Drug Technology), vol. II, Moscow: Meditsina, 1980.
12. Molchanov, G.I., Ul’trazvuk v farmatsii (Ultrasound in Pharmacy), Moscow: Meditsina, 1980.
13. Golovchenko, V.V., Structural-Chemical Characteristics of Physiologically Active Pectin Polysaccharides, Dr. Chem. Sci. Thesis, Syktyvkar, 2013.
14. Mikhailova, E.A., Shcherbakova, T.P., and Shubakov, A.A., Investigation into Application of Pectin Polysaccharide Products on Herbs in Field Conditions, Int. Conf. Scientific Achievements in Biology, Chemistry, and Physics, Novosibirsk, 2012.
15. Trusov, P.D., Organicheskie kolloidy i ikh ispol’zovanie vo flotatsii (Organic Colloids and Their Application in Flotation), vol. XII, issue 3, Leningrad: Len. Gor. Inst., 1939.
16. Khan, G.A., Gabrielova, L.I., and Vlasova, N.S., Flotatsionnye reagenty i ikh primenenie (Flotation Agents and Their Use), Moscow: Nedra, 1986.
17. Shapiro, D.K., Praktikum po biokhimii (Workshop on Biochemistry), Minsk: Vysshaya Shkola, 1976.
18. Mal’tseva, A.A., Chistyakova, A.S., Sorokina, A.A., et al., Quantitative Evaluation of Tinning Substances in Common Persicaria, Vestn. VGU, Ser. Khim., Biol., Farmats., 2013, no. 2.


INTERACTION OF GOLD-BEARING SULFIDES WITH MODIFIED CHLORINE SOLUTIONS
A. L. Samusev and E. S. Tomskaya

Institute of Integrated Mineral Development—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: samusev_al@ipkonran.ru

The article reports tests on studying mechanism of interaction between modified chlorine solutions and gold-bearing sulfides. The change in texture, structural properties and elemental composition of sulfides after electrochemical treatment is analyzed. The authors indicate basic negative factors reducing dissolution velocity of sulfides.

Rebellious gold ore, arsenopyrite, pyrite, chlorine, hypochlorite, electrochemical treatment

DOI: 10.1134/S1062739115040202 

REFERENCES
1. Mineev, G.G. and Panchenko, A.F., Rastvoritel’ zolota i serebra v gidrometallurgii (Gold and Silver Solvents in Hydrometallurgy), Moscow: Metallurgia, 1994.
2. Chanturia, V.A., Fedorov, A.A., Chekushkina, T.V., Zverev, I.V., and Zubenko, A.V., Electrochemical Intensification of Opening of Rebellious Gold-bearing Ore, Gorny Zh., 1997, no. 10.
3. Paleev, P.L., Gulyashinov, A.N., Antropova, I.G., and Gulyashinov, P.A., Gold Recovery from Rebellious Arsenopyrite Ores and Concentrates, Zoloto Tekhn., 2013, no. 2(20).
4. Chanturia, V.A., Gulayev, Yu.V., Bunin, I.Zh., Vdovin, V.A., Korzhenevsky, A.V., Lunin, V.D., and Cherepenin, V.A., Synergetic Effect of Powerful Electromagnetic Pulses and Porous Moisture on Exposure of Gold-Bearing Raw Materials, Dokl. RAN, 2001, vol. 379, no. 3.
5. Samusev, A.L. and Munenko, V.G., Productivity of Chemical-Electrochemical Gold Leaching from Rebellious Ore, J. Min. Sci., 2014, vol. 50, no. 1, pp. 171–176.
6. Kostina, G.M. and Chernyak, A.S., Oxidizing Electrochemical Leaching of Gold-Arsenic and Other Sulfide Concentrates, Gidrometallurgiya zolota (Gold Hydrometallurgy), Moscow, 1980.
7. Garrels, R.M. and Christ, S.L., Solutions, Minerals and Equilibria, USA: Jones & Bartlett Publishers Int., 1965.


COLLECTING ABILITY OF EASILY DESORBED XANTHATES
S. A. Kondrat’ev, N. P. Moshkin, and I. A. Konovalov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru
Lavrentiev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 15, Novosibirsk, 630090 Russia
e-mail: nikolay.moshkin@gmail.com

The analysis focuses on collecting ability of easily desorbed (ED-forms) ethyl and butyl xanthates. The authors give visual proof of “dry” spot extension on mineral surface when xanthates that are active relative to air–water interface are desorbed from it. It is shown that ED-forms of agents, being products of interaction between xanthates and heavy metal salts, can remove water from film between mineral particle and air bubble. The main force on water in the film is conditioned by surface tension nonuniformity at the moment of local rupture and by surface pressure of molecules in the film of agent ED-forms. The collecting ability of ED-forms of xanthate is determined as the rate of its influence on water in the film. The forces exerted on water in the film of ED-forms of ethyl and butyl xanthates are estimated numerically. The dependence of volumetric water flow from the film on the surface tension of agent ED-forms active at air–water interface is found. It is shown that collecting ability of an agent is dependent on surface tension of solution of its ED-forms and is governed by structure of hydrocarbon fragment of the collector.

Flotation, flotation agent activity, surface tension, water film, lubrication theory equations, physical adsorption, selectivity

DOI: 10.1134/S1062739115040214 

REFERENCES
1. Bulatovic, S.M., Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores, Elsevier Science & Technology Books, 2007.
2. Kulkarni, R.D. and Somasundaran, P., Kinetics of Oleate Adsorption at the Liquid/Air Interface and its Role in Hematite Flotation, Symposium series, AIChE, 1975, vol. 71, no. 150.
3. Bleier, A., Goddard, E.D., and Kulkarni, R.D., Adsorption and Critical Flotation Conditions, J. Colloid Interf. Sci., 1977, vol. 59, no. 3.
4. Finch, J.A. and Smith, G.W., Dynamic Surface Tension of Alkaline Dodecylamine Solutions, J. Colloid Interf. Sci., 1973, vol. 45, no.1.
5. Zhivankov, G.V. and Ryaboi, V.I., Collecting Properties and Surfactant Activity of Higher Aeroflots, Obogashch. Rud, 1985, no. 3.
6. Wark, E. and Wark, I., Influence of Micelle Formation on Flotation, Nature, 1939, vol. 143.
7. Klassen, V.I. and Tikhonov, S.A., Effect of Sodium Oleate on Flotation Properties of Air Bubble Surface, Tsv. Met., 1960, no. 10.
8. Kondrat’ev, S.A., Evaluation of Flotation Activity of Collecting Agents, Obogashch. Rud, 2010, no. 4.
9. Kondrat’ev, S.A., Activity and Selectivity of Carboxylic Acids as Flotation Agents, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1039–1046.
10. Kondrat’ev, S.A. and Moshkin, N.P., Estimate of Collecting Force of Flotation Agent, J. Min. Sci., 2015, vol. 51, no. 1, pp. 150–156.
11. Levich, V.G., Physico-Chemical Hydrodynamics, Englewood, New York: Prentice-Hall, Scripta Technica, Inc., 1962.
12. Loitsyansky, L.G., Mekhanika zhidkosti i gaza (Liquid and Gas Mechanics), Moscow: Nauka, 1987.
13. Pukhnachev, V.V., Problem on Equilibrium of Free Anisothermal Liquid Film, Prikl. Mekh. Tekh. Fiz., 2007, vol. 4, no. 3.
14. Gaver, D.P. and Grotberg, J., The Dynamics of a Localized Surfactant on a Thin Film, J. Fluid Mechan., 1990, vol. 213.
15. Jensen, O.E. and Grotberg, J.B., The Spreading of Heat or Soluble Surfactant along a Thin Liquid Film, Physics of Fluids. A Fluid Dynamics 01/1993; 5(1):58–68. DOI: 10.1063/1.858789.
16. Levy, R., Shearer, M., and Witelski, T., Gravity-Driven Thin Liquid Films with Insoluble Surfactant: Smooth Traveling Waves, Europ. J. App. Math., 2008, vol. 18, no. 6.
17. Borgas, M. and Grotberg, J.B., Monolayer Flow on a Thin Film, J. Fluid Mech., 1988, vol. 193.
18. Birikh, R.V., Mizev, A.I., Rudakov, R.N., and Mazunina, E.S., Concentration Convection Initiated by Submerged Surfactant Resource, Convective Currents, 2009, issue 4.
19. Khan, G.A., Gabrielova, L.I., and Vlasova, N.S., Flotatsionnye reagenty i ikh primenenie (Flotation Agents and Their Use), Moscow: Nedra, 1986.


NEW METHODS AND INSTRUMENTS IN MINING


GEOMECHANICAL MONITORING OF TEMPORAL LINING IN RAILWAY TUNNELING IN COMPLEX GEOLOGICAL CONDITIONS
V. N. Oparin, V. F. Yushkin, G. N. Polyankin, A. N. Grishin, A. O. Kuznetsov, and D. E. Rublev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: 114@ngs.ru
Siberian Transport University,
ul. D. Koval’chuk 191, Novosibirsk, 630049 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
e-mail: oparin@misd.nsc.ru

The article describes the integrated method and results of deformation–wave monitoring of temporal lining in railway tunneling in complex geological conditions in the south of Western Siberia. 3D geometric parameters of temporal lining are measured by laser scanning at a span of 3 months, which enables comparing actual 3D models of temporal lining and rocks in reinforced tunnel section. Based on the data obtained at various times of observation, shifting of unmarked points of temporal lining and deformation of tunnel walls and arch were determined. High density scanning allows remote identification of comparatively small zones where structure of rocks and state of lining are changed. The authors analyze seismic vibration of rocks under hammering, which shows that peak spectral densities of elastic wave in rocks are conditioned by low-frequency (pendulum) wave generated at siltstone and coal interface, and are related with dimension of joints and with mechanical properties of rocks.

Block rock mass, temporal lining, tunnel lining, deformation monitoring, laser scanning, seismic wave, rock hardness coefficient, spectrum analysis

DOI: 10.1134/S1062739115040226 

REFERENCES
1. Set of Rules 122.13330.2012. Rail- and Motorway Tunnels, Updated Edition of CN&R 32–04–97, Moscow: Minregion Rossii, 2012.
2. Kuznetsov, M.A. and Postnikova, O.V., Gidrogeologiya SSSR. Kemerovskaya oblast’ i Altaiskii krai. Zapadno-Sibirskoe geologicheskoe upravlenie (Hydrogeology of the USSR. The Kemerovo Region and Altai Territory. West Siberia Geology Department), vol. XVII, Moscow: Nedra, 1972.
3. Oparin, V.N., Kurlenya, M.V., Sidenko, G.G., Arshavsky, V.V., Akinin, A.A., Yushkin, V.F., and Tapsiev, A.P., RF patent no. 2097558, Byull. Izobret., 1997, no. 33.
4. Spravochnik (kadastr) fizicheskikh svoistv gornykh porod (Physical Properties of Rocks. Directory–Cadastre), Moscow: Nedra, 1975.
5. SNiP II-7–81. Construction in Seismic Areas (with revisions and amendments), Moscow: Gosstroi Rossii, 2000.
6. VSN 190–78. Instruktsiya po inzhenerno-geologicheskim izyskaniyam dlya proektirovaniya i stroitel’stva metropolitenov, gornykh zheleznodorozhnykh i avtomobil’nykh tonnelei (Instruction on Engineering and Geological Exploration in Design and Construction of Subway, Mining Railway and Motorway Tunnels), Moscow: Mintransstroi Rossii, 1978.
7. www.navgeocom.ru—web-site Navgeokom Ltd., Surface Laser Scanning. Equipment.
8. Oparin, V.N., Seredovich, V.A., Yushkin, V.F., Ivanov, A.V., and Prokop’eva, S.A., Application of Laser Scanning for Developing a 3D Digital Model of an Open Pit Side Surface, J. Min. Sci., 2007, vol. 43, no. 5 pp. 545–554.
9. Panzhin, A.A., Solving Problems on Choice of Basic Reference Points in Studying Subsoil Displacements, Marksheid. Nedropol’z., 2012, no. 2.
10. Panzhin, A.A., Information Techniques for Diagnostics of Underworked Rock Mass and Simulation of Earth Surface State, Proc. All-Russia Sci. Conf. Information Technologies in Mining Industry, Ekaterinburg: IGD UB RAN, 2012.
11. Yushkin, V.F., 3D Rock Mass Modeling in Investigation into Geomechanical Properties in Mining Operations, vol. 3, Trans. 11th Int. Forum Interexpo Geo-Sibiria 2015, Proc. Int. Sci. Conf. Mineral Resource Exploration. Trends and Technologies for Exploration and Development of Mineral Resources. Geoecology, Novosibirsk: SGUGT, 2015.
12. Oparin, V.N., Yushkin, V.F., Rublev, D.E., Kulinich, N.A., Yushkin, A.V., Verification of Kinematic Expression for Pendulum Waves Based on Seismic Measurements in Terms of the Tashtagol Mine and Iskitim Marble Quarry, J. Min. Sci., 2015, vol. 51, no. 2, pp. 203–219.
13. Programma upravleniya stantsiei seismorazvedochnoi inzhenernoi tsifrovoi “Lakkolit 24-M” (Program for Management of Seismic-Exploration Engineering Digital Station Lakkolit 24-M, Model 01), Operator Manual, Moscow: OOO Logis (Ramenskoe), 2005.
14. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Principles to Enhance Oil Recovery by Vibrowave Technologies), Novosibirsk: Nauka, 2010.
15. Orlov, V.A., Panov, S.V., Parushkin, M.D., Fomin, Yu.N., Sher, E.N., and Yushkin, V.F., High-Sensitivity Laser Probing in Experimental Works on Elastic Waves in a One-Dimensional Block Medium, Proc. All-Russia Conf. in Partnership with Foreign Scientists Geodynamics and Stress State of the Earth’s Interior, vol. 1, Novosibirsk: IGD SO RAN, 2011.
16. Kharkevich, A.A., Spektry i analiz (Spectra and Analysis), Moscow: Gos. Izd. Tekh. Lit., 1957.
17. Oparin, V.N., Yushkin, V.F., Akinin, A.A., and Balmashnova, E.G., A New Scale of Hierarchically Structured Representatives as a Characteristic for Ranking Entities in a Geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387–401.
18. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale to Represent Hierarchies in Science on Rocks), Novosibirsk: Nauka, 2011.


PRECISION DILATOMETER WITH BUILT-IN SYSTEM OF ADVANCE ALONG THE BOREHOLE
S. V. Serdyukov, N. V. Degtyareva, A. V. Patutin, and L. A. Rybalkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The article describes engineering designs of dilatometer to measure transverse deformation in borehole subjected to internal pressure exerted through impermeable shell. The device is equipped with the robotized system for advance along the borehole without special sectional barrels. Functionality and capacities of the dilatometer are optimized for surveying in long directional drill holes in mines.

Borehole dilatometer, rocks, pressure meter tests, deformation characteristics, system of advance along borehole

DOI: 10.1134/S1062739115040238 

REFERENCES
1. Ito T., Kato H., and Tanaka H., Innovative Concept of Hydrofracturing for Deep Stress Measurements, “Rock Stress and Earthquakes, Furen Xie (Ed.), Proc. 5th Int. Symp. on In-Situ Rock Stress, London: CRC Press/Balkema, 2010.
2. Impression Packers. Available at: http://www.inflatable-packers.com/images/ documents/ ProductSheets2013/EngProdSheets2013/impression%20packers-jh050413–01%20engrev.00.pdf (last visited June 5, 2015).
3. Martynyuk, P.A., Pavlov, V.A., and Serdyukov, S.V., Assessment of Stress State in Rocks by Deformation Characteristic of Borehole Zone with Hydrofracture, J. Min. Sci., 2011, vol. 47, no. 3, pp. 290–296.
4. Kurlenya, M.V., Serdyukov, S.V., and Patutin, A.V., Estimating Deformation Properties of Rocks by Pressuremeter Test Data Obtained in Hydrofractured Interval, J. Min. Sci., 2015, vol. 51, no. 4, pp. 718–723.
5. Dilatometer tests. Available at: http://www.solexperts.com/index.php?option=com_content &view=article&id=188&Itemid=214&lang=en (last visited inquiry June 5, 2015).
6. Borehole dilatometer Model DMP-95. Available at: http://www.esands.com/pdf/ Geotech/ Roctest/ESS_ROC_DMP95_BoreholeDilatometer.pdf (last visited June 5, 2015).


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå