JMS, Vol. 51, No. 3, 2015
GEOMECHANICS
WATER INRUSH IN MINES AS. A. CONSEQUENCE OF SPONTANEOUS HYDROFRACTURE
V. N. Odintsev and N. A. Miletenko
Research Institute of Comprehensive Exploitation of Mineral Resources—IPKON, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: Odin-VN@yandex.ru
The authors review water inrushes in mines as a consequence of spontaneous hydrofracturing of surrounding rocks. In the developed hydrofracture model, the fracture grows under the pressure of underground water in the area of reduction in mining-induced stresses. The model includes two criteria of fracture growth—critical extension of rocks at the fracture tip and opening of fracture throughout the length. It is found that spontaneous hydrofracturing is conditioned by natural and induced stresses, hydrostatic pressure of underground water and by mining sequence.
Underground excavations, underground water, water inrush, hydrofracture, numerical modeling
DOI: 10.1134/S1062739115030011 REFERENCES
1. Subbotin, A.I., Kozachenko, M.G., Konyakhina, O.A., Instruction on Safe Mining in the Vicinity of Flooded Workings, Okhrana Nedr Geol.-Marksh. Kontrol, 2010, Issue 8, Moscow: Zao NTTs PB.
2. Gazizov, M.S. and Kostenko, V.I., Spontaneous Water Inrush and Running Sands, Gornaya entsiklopediya (Mining Encyclopedia), Vol. 1, Moscow: Sov. Entsikl., 1984.
3. Mironenko, V.A., Mol’sky, E.V., and Rumynin, V.G., Gornopromyshlennaya gidrogeologiya (Mining Industrial Hydrogeology), Moscow: Nedra, 1989.
4. Fife, U., Price, N., and Tomson, A., Flyuidy v zemnoi kore (Fluids in Earth Crust), Moscow, Mir, 1981.
5. Zverev, V.P., Podzemnaya gidrosfera. Problemy fundamental’noi gidrogeologii (Underground Hydrosphere. Fundamental Hydrogeology Problems), Moscow: Nauchny Mir, 2011.
6. Zheltov, Yu.P. and Khristianovich, S.A., On Hydrofracturing of Petroliferous Stratum, Izv. An SSSR, ONT, 1955, no. 5.
7. Haimson, B.C. and Fairhust, C., Initiation and Extension of Hydraulic Fractures in Rocks, Soc. Petrol. Eng. J., 1967, vol. 7.
8. Ekonomides, M., Olini, R., and Val’ko, P., Unifitsirovannyi dizain gidrorazryva plasta: ot teorii k praktike (Unified Design of Hydrofracturing: From Theory to Practice), Moscow: Inst. Komput. Issled., 2007.
9. Trubetskoy, K.N., Iofis, M.A., Miletenko, I.V., Miletenko, N.A., and Odintsev, V.N., Problems on Complex Hydrogeological and Geomechanical Technogenic Effect on Geomedium, Fundamental’nye problemy formirovaniya tekhnogennoi geosredy (Fundamental Problems of Geoenvironment Formation under Industrial Impact), vol. 1, Novosibirsk: IGD SO RAN, 2012.
10. Odintsev, V.N., Miletenko, I.V., and Miletenko, N.A., Geomechanical Estimation of Variations in Hydrogeological Conditions in Overburden Rocks in Hydraulic Borehole Mining of Iron Ores, in Marksheid. nedropol’z., 2010, no. 5.
11. Lin’kov, A.M., Analytical Solution of Hydraulic Fracture Problem for a Non-Newtonian Fluid, J. Min. Sci., 2013, vol. 49, no. 1, pp. 8–18.
12. Zubkov, V.V., Koshelev, V.F., and Lin’kov, A.M., Numerical Modeling of Hydraulic Fracture Initiation and Development, J. Min. Sci., 2007, vol. 43, no. 1, pp. 40–56.
13. Martynyuk, P.A., Feature of Hydraulic Fracture Growth in the Compressed Field, J. Min. Sci., 2008, vol. 44, no. 6, pp. 544–553.
14. Alekseeva, T.E. and Martynyuk, P.A., Crack Emergence Trajectories at a Free Surface, J. Min. Sci., 1991, vol. 27, no. 2, pp. 90–99.
15. Alekseenko, O.P. and Vaisman, A.M., Certain Aspects of a Two-Dimensional Problem on the Hydraulic Fracturing of an Elastic Medium, J. Min. Sci., 1999, vol. 35, no. 3, pp. 269–275.
16. Martynyuk, P.A. and Sher, E.N., Development of a Crack Created by Hydraulic Fracturing in a Compressed Block Structure Rock, J. Min. Sci., 2010, vol. 46, no. 5, pp. 510–515.
17. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow:
Nauka, 1974.
18. Morozov, E.M. and Nikishkov, G.P., Metod konechnykh elementov v mekhanike razrusheniya (Finite Element Method in Failure Mechanics), Moscow: Librokom, 2010.
19. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1989.
20. Petukhov, I.M., Lin’kov, A.M., Sidorov, V.S., and Feldman, I.A., Teoriya zashchitnykh plastov (Protection Stratum Theory), Moscow: Nedra, 1976.
EXPERIMENTAL SUBSTANTIATION OF NONLOCAL FAILURE CRITERIA
FOR GEOMATERIAL PLATES WITH. A. CIRCULAR HOLE UNDER NONEQUICOMPONENT COMPRESSION
S. V. Suknev
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
pr. Lenina 43, Yakutsk, 677980 Russia
e-mail: suknyov@igds.ysn.ru
The theoretical and experimental analyses involve influence of boundary conditions on failure of brittle geomaterial in the area of high stress concentration under nonequicomponent compression, considering scale factor. The critical stress values calculated in terms of integral and gradient criteria are compared with the experimental data.
Failure, geomaterial, scale factor, stress concentration, hole, nonlocal failure criteria
DOI: 10.1134/S1062739115030023 REFERENCES
1. Seweryn, A. and Mroz, Z., A Non-Local Stress Failure Condition for Structural Elements under Multiaxial Loading, Eng. Fract. Mech., 1995, vol. 51, no. 6.
2. Mikhailov, S.E., A Functional Approach to Non-local Strength Condition and Fracture Criteria, Eng. Fract. Mech., 1995, vol. 52, no. 4.
3. Suknev, S.V. and Novopashin, M.D., Criterion of Normal Tension Crack Formation in Rocks under Compression, J. Min. Sci., 2003, vol. 39, no. 2, pp. 132–137.
4. Smirnov, V.I., Structural Approach in Problems on Limit Equilibrium of Brittle Bodies with Stress Raisers, Prikl. Mekh. Tekh. Fiz., 2007, vol. 48, no. 4.
5. Taylor, D., The Theory of Critical Distances, Oxford: Elsevier, 2007.
6. Kornev, V.M. and Zinov’ev, A.A., Quasi-Brittle Rock Failure Model, J. Min. Sci., 2013, vol. 49,
no. 4, pp. 576–582.
7. Lajtai, E.Z., Brittle Fracture in Compression, Int. J. Fract., 1974, vol. 10, no. 4.
8. Imamura, S. and Sato, Y., Fracture of a Graphite Solid Cylinder with a Transverse Hole in Tension, J. Coll. Eng. Nihon Univ., Ser. A., 1987, Vol. 28.
9. Hyakutake, H., Hagio, T., and Nisitani, H., Fracture of FRP Plates Containing Notches or a Circular Hole under Tension, Int. J. Pressure Vessels and Piping, 1990, vol. 44, no. 3.
10. Carter, B.J., Size and Stress Gradient Effects on Fracture around Cavities, Rock Mech. and Rock Eng., 1992, vol. 25, no. 3.
11. Efimov, P., Rock Tests in Heterogeneous Tension Stress Fields, Prikl. Mekh. Teor. Fiz., 2013,
vol. 54, no. 5.
12. Suknev, S.V., Computation and Experimental Investigation into Failure of Brittle Material with Elliptical Hole under Compression, Prikl. Mekh. Teor. Fiz., 2013, vol. 54, no. 2.
13. Suknev, S.V., Tensile Fracturing in Gypsum under Uniform and Nonuniform Distributed Compression, J. Min. Sci., 2011, vol.47, no. 5, pp. 573–579.
14. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), vol. 2, Moscow: Nauka, 1984.
15. Vekinis, G., Ashby, M.F., and Beaumont, P. W. R., Plaster of Paris as a Model Material for Brittle Porous
Solids, J. Mater. Sci., 1993, vol. 28, no. 12.
ILL-POSED PROBLEMS IN ROCK MECHANICS
V. E. Mirenkov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: mirenkov@misd.nsc.ru
Boundary value problems of rock mechanics include many variables that exercise complex influence on the problem solutions. The influence of some variables may be considerable while the other variables have minor effect. The nature of the variable–solution relationship becomes evident after conversion of a boundary value problem. The conversion and the analysis of the solution versus variable is as a rule carried out numerically, which raises questions on the solution accuracy and description of the influence of simultaneously changed variables on the solution. Currently there are known solutions to single-variable inverse subproblems. This article offers a new method for solving multi-variable inverse problems based on obtained exact solutions relating boundary stress values and displacements and eliminating regularization.
Rock block, boundary, stress, displacement, singular equation, inverse problem, solution
DOI: 10.1134/S1062739115030035 REFERENCES
1. Mirenkov, V.E., Evaluation of Weakenings in a Rock Block, Izv. vuzov. Gorny Zh., 2010, no. 4.
2. Shifrin, E.I., Identification of an Ellipsoidal Defect in Elastic Body Based on Results of Uniaxial Tension (Compression) Tests, Mekh. Tverd. Tela, 2010, no. 3.
3. Postnov, V.A., Application of Tikhonov’s Regularization Method to Solve Problems on Identification of Elastic Systems, Mekh. Tverd. Tela, 2010, no. 1.
4. Bavrin, I.I., Integral Representations in Multicircular Domains, Dokl. Akad. Nauk, 2011, vol. 441, no. 5.
5. Kunsish, K. Iterative Choices of Regularization Parameters in Linear Inverse Problems, Inverse Problem, 1998, vol. 14.
6. Park, H.W., Shin, S., and Lee, H.S., Determination of Optimal Regularization Factor in System Identification with Tikhonov Regularization for Linear Elastic Continua, Intern. J. Num. Methods Eng., 2001, vol. 51.
7. Tautenhahn, U. and Lin Qi-nian, Tikhonov Regularization and Posteriori Rules for Solving Nonlinear Ill-Posed Problems, Inverse Problems, 2003, vol. 19.
8. Khan, A.A. and Rouhani, B.D., Iterative Regularization for Elliptic Inverse Problems, J. Comput. Math. Appl., 2007, vol. 54, no. 6.
9. Jadamba, B., Khan, A.A., and Raciti, F., On the Inverse Problem of Identifying Lame Coefficients in Linear Elasticity, J. Comput. Math. Appl., 2008, vol. 56, no. 2.
10. Mirenkov, V.E., Ill-Posed Problems in Geomechanics, J. Min. Sci., 2011, vol. 47, no. 3, pp. 283–289.
11. Kaptsov, V.P. and Shifrin, E.I., Identification of a Plane Crack in an Elastic Body by Means of Invariant Integrals, Mekh. Tverd. Tel., 2008, no. 3.
12. Nazarov, L.A., Nazarova, L.A., Khan, G.N., and Vandamme, M., Estimation of Depth and Dimension of Underground Void in Soil by Subsidence Trough Configuration Based on Inverse Problem Solution, J. Min. Sci., 2014, vol. 50, no. 3, pp. 411–416.
13. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
14. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, P.A., Kovchavtsev, A.P., Tanaino, A.S.,
Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal Deposits, J. Min. Sci., 2014, vol. 50, no. 2, pp. 198–214.
15. Mirenkov, V.E., Finite Stress in Fracture Mechanics, Engin. Frac. Mech., 1994, vol. 48, no. 1.
16. Kurlenya, M.V., Mirenkov, V.E., and Shutov, V.A., Rock Deformation around Stopes at Deep Levels, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1001–1006.
ESTIMATE OF MAXIMUM PERMISSIBLE HEIGHT OF PIT WALL BASED ON. A. RIGID-PLASTIC MODEL
G. M. Podyminogin and A. I. Chanyshev
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: a.i.chanyshev@gmal.com
The authors describe mathematical model to estimate stability of an extended pit wall. Dilatancy and internal friction angle are included. Based on a rigid–plastic model, maximum permissible height of pit wall from the viewpoint of its safety is estimated. The article gives relations of the maximum permissible pit wall height, pit wall slope and rock mass properties.
Maximum permissible height, plasticity, stability, pit wall, internal friction angle, cohesion
DOI: 10.1134/S1062739115030047 REFERENCES
1. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Stability of Pit and Dump Slopes), Moscow:
Nedra, 1965.
2. Galust’yan, E.L., Upravlenie geomekhanicheskimi protsessami v kar’erakh (Control of Geomechanical Processes in Open-Pit Mines), Moscow: Nedra, 1980.
3. Tsytovich, N.A., Mekhanika gruntov (Soil Mechanics), Moscow: Vyssh. Shkola, 1983.
4. Sokolovsky, V.V., Teoriya plastichnosti (Plasticity Theory), Moscow: Vyssh. Shkola, 1969.
5. Berezantsev, V.G., Raschet osnovanii sooruzhenii (Design of Structure Base), Leningrad: Stroiizdat, 1970.
6. Karaulov, A.M. and Korolev, K.V., Postroenie reshenii statiki gruntov metodom sopryazheniya oblastei predel’nogo ravnovesiya (Plotting of Soil Statics Solutions by Conjunction of Limit Equilibrium Domains), Novosibirsk: Vest. SGUPS, 2002.
7. Geniev, G.A. and Esterin. M.I., Dinamika plasticheskoi i sypuchei sredy (Dynamics of Plastic and Granular Media), Moscow: Stroiizdat, 1972.
8. Solov’ev Yu.I., Bearing Capacity of Yield Stressed Base under Strip Foundation, Osnov. Fundam. Mekh. Gruntov, 1979, no. 4.
9. Tsvetkov, V.K., Examination of Stability of Inclines and Slopes by Finite Element Method, Prilozhenie chislennykh metodov k zadacham geomekhaniki (Application of Numerical Methods to Geomechanical Problems), Moscow: Mosk. Gos. Stroit. Univer., 1986.
10. Zubkov, V.V., Zubkova, I.A., and Sidorov, V.S., Evaluation and Prediction of Geomechanical State of Rock Mass, Ugol’, 1994, no. 7.
11. Ukhov, S.B., Raschet sooruzhenii i osnovanii metodom konechnykh elementov (Calculation of Structures and Basements by Finite Element Method), Moscow: Energia, 1973.
12. Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of Plasticity Theory), Moscow: Nauka, 1969.
13. Chanyshev, A.I., Elasticity Relations for Rock and Deformational Plasticity Theory, J. Min. Sci., 1986, vol. 22, no. 1, pp. 1–9.
14. Chanyshev, A.I., Constitutive Dependences for Rocks in the Pre- and Post-Limit Deformation Stages, J. Min. Sci., 2002, vol. 38, no. 5, pp. 434–439.
15. Chanyshev, A.I. and Abdulin, I.M., Deformation and Failure of Originally Isotropic Media under Mises Strength Conditions, J. Min. Sci., 2006, vol. 42, no. 4, pp. 322–334.
ULTRASONIC CORRELATION LOGGING FOR ROOF ROCK STRUCTURE DIAGNOSTICS
V. L. Shkuratnik, P. V. Nikolenko, and A. A. Kormnov
National University of Science and Technology—MISiS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: ftkp@mail.ru
Influence of a fracture and lamination in roof of an underground excavation on correlation characteristics of stationary continuous acoustic noise signal is studied by means of computer and physical modeling. It is shown that against conventional time–impulse method for roof rock structure diagnostics, the use of acoustic signal and the new log data processing method enhances perceptibility and reliability of the analysis of roof rocks and their damage with fractures.
Roof rocks, ultrasonic, noise signal, correlation method, control, fracture, structure diagnostics
DOI: 10.1134/S1062739115030059 REFERENCES
1. Lomtadze, V.D., Inzhenernaya geologiya mestorozhdenii poleznykh iskopaemykh (Engineering Geology of Mineral Deposits), Leningrad: Nedra, 1986.
2. Nazarova, L.A. and Nazarov, L.A., Dilatancy and the Formation and Evolution of Disintegration Zones in the Vicinity of Heterogeneities in a Rock Mass, J. Min. Sci., 2009, vol. 45, no. 5, pp. 411–419.
3. Shkuratnik, V.L. and Bochkareva, T.N., Theory of Electroacoustic Path during the Interhole Sonic Testing of Rocks Surrounding a Worked Space, J. Min. Sci., 1996, vol. 32, no. 6, pp. 476–482.
4. Shkuratnik, V.L. and Nikolenko, P.V., Using Acoustic Emission Memory of Composites in Critical Stress Control in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 4, pp. 544–549.
5. Kusznir, N.J. and Whitworth, K.R., Use of Synthetic Fracture Logs Derived from Borehole Geophysics to Assess Mine Roof and Floor Quality, Int. J. Min. Eng., 1983, vol. 1, no. 3.
6. Nazarov, L.A., Determination of Properties of Structured Rock Mass by the Acoustic Method, J. Min. Sci., 1999, vol. 35, no. 3, pp. 240–249.
7. Shkuratnik, V.L. and Danilov, G.V., Investigation into the Influence of Stresses on the Velocities of Elastic Waves in the Vicinity of an Elliptical Mine Working, J. Min. Sci., 2005, vol. 41, no. 3, pp.195–201.
8. Oyler, D.C., Mark, C., and Molinda G. M., In-Situ Estimation of Roof Rock Strength Using Sonic Logging, Int. J. Coal Geol., 2010, vol. 83, no. 4.
9. Shtumpf, G.G., Ryzhkov, Yu.A., Shalamanov, V.A., and Petrov, A.I., Fiziko-tekhnicheskie svoistva gornykh porod i uglei Kuznetskogo basseina (Physical and Process Properties of Rocks and Coals in Kuznetsk Coal Basin), Moscow: Nedra, 1994.
10. Rzhevsky, V.V. and Yamshchikov,V.S., Akusticheskie metody issledovaniya i kontrolya gornykh porod v massive (Acoustic Methods for Investigation and Control of Rock Masses), Moscow: Nauka, 1973.
11. Ol’shevsky, V.V., Statisticheskie metody v gidrolokatsii (Statistic Hydrospace Detection Methods), Leningrad: Sudostroenie, 1983.
12. Yamshchikov, V.S. and Nosov, V.N., On Substantiation of Ultrasonic Correlation Method for Defectoscopy of Massive-Structure Materials, Defektoskopiya, 1972, no. 3.
13. Miletenko, I.V., Miletenko, N.A., and Odintsev, V.N., Modeling Induced Dislocation in Host Rocks around Excavations, J. Min. Sci., 2013, vol. 49, no. 6, pp.847–853.
14. Coggan, J., Gao, F., Stead, D., and Elmo, D., Numerical Modelling of the Effects of Weak Immediate Roof Lithology on Coal Mine Roadway Stability, Int. J. Coal Geol., 2012, vols. 90–91.
15. Shkuratnik, V.L., Nikolenko, P.V., and Kormnov, A.A., On Principles of Ultrasonic Structural Diagnostics of Host Rock Mass by Applying Noise Probing Signals, Proc. Int. Symp. Miner’s Week-2015, Moscow: Gornaya kniga, 2015, no. OB1.
16. Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement Procedures, USA, Wiley, 2010.
CONTACT FRICTION INCLUDED IN THE PROBLEM ON ROCK FAILURE UNDER COMPRESSION
L. M. Vasil’ev and D. L. Vasil’ev
Polyakov Institute of Geotechnical Mechanics, National Academy of Sciences of Ukraine,
ul. Simferopol’skaya 2a, Dnepropetrovsk, 49005 Ukraine
e-mail: vdl_2007@mail.ru
The authors have developed the analytical method for estimating ultimate compression strength and plotting normal stress–axial strain curves using experimentally obtained indexes of rock properties—ultimate shearing strength and coefficients of internal and external friction. The values of the listed properties are readily found in mine experiments. The method is advantageous for simple and efficient acquisition of source data for stress–strain plots and estimation of ultimate strength of rocks immediately in mines.
Rock, ultimate strength, failure, fracture, stress–strain curve
DOI: 0.1134/S1062739115030060 REFERENCES
1. Muzdakbaev, M.M. and Nikiforovsky, V.S., Compressive Strength of Materials, Prikl. Mekh. Tekh. Fiz., 1978, no. 2.
2. Muzdakbaev, M.M. and Nikiforovsky, V.S., On Feasible Failures of Tubular Specimens under Compression, Prikl. Mekh. Tekh. Fiz., 1981, no. 3.
3. Baklashov, I.V., Mekhanicheskie protsessy v gornykh massivakh (Mechanical Processes in Rock Mass), Moscow: Nedra, 1986.
4. Sokolovsky, V.V., Statika sypuchei sredy (Granular Material Statics), Moscow: Stroiizdat, 1960.
5. Panasyuk, V.V., Predel’noe ravnovesie khrupkikh tel s treshchinami (Ultimate Strength of Brittle Bodies with Cracks), Kiev: Naukova Dumka, 1968.
6. Birger, I.A., Soprotivlenie materialov (Material Resistance), Moscow: Nauka, 1986.
7. Storozhev, M.V., Teoriya obrabotki metallov davleniem (Theory of Metal Forming), Moscow: Mashinostroenie, 1977.
8. Vasil’ev, L.M. and Vasil’ev, D.L., Theoretical Ground for Origination of Normal Horizontal Stresses in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 2, pp. 240–247.
9. Unksov, E.P., Inzhenernaya teoriya plasticnosti. Metody rascheta usilii deformirovaniya (Engineering Theory of Plasticity. Methods for Calculation of Deformation Forces), Moscow: Mashgiz, 1959.
10. Tomenov, A.D., Teoriya plasticheskogo deformirovaniya metallov (Theory of Plastic Deformation of Metals), Moscow: Metallurgiya, 1972.
11. Stavrogin, A. N. Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Rock Strength and Stability of Deep Mine Workings), Moscow: Nedra, 1985.
NANOINDENTATION IN STUDYING MECHANICAL PROPERTIES
OF HETEROGENEOUS MATERIALS
F. M. Borodich, S. J. Bull, and S. A. Epshtein
Cardiff School of Engineering, Cardiff University,
Queen’s Buildings, the Parade, Cardiff CF24 3AA, Wales, United Kingdom
School of Chemical Engineering and Advanced Materials, Newcastle University,
Newcastle upon Tyne, NE1 7RU, United Kingdom
National University of Science and Technology—MIS&S,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: apstein@yandex.ru
A procedure has been developed for estimation of elastic moduli and microhardness of elements composing heterogeneous materials, including coal and rocks. The procedure is based on the joint application of continuous nanoindentation and optical microscopy. The article gives an example of the procedure application in terms of two different coal samples.
Continuous nanoindentation, macerals, mechanical properties
DOI: 10.1134/S1062739115030072 REFERENCES
1. Khrushchev, M.M. and Berkovich, E.S., Mikrotverdost’ opredelyaemaya metodom vdavlivaniya (Determination of Microhardness by Indentation), Moscow: AN SSSR, 1943.
2. Mott, B.A., Micro-Indentation Hardness Testing, London: Butterworths, 1956.
3. GOST 21206–75, Moscow: Gostandart SSSR, 1975.
4. Musyal, S.A., Microhardness and Microbrittleness as Possible Classification Parameters of Fossil Coals, Petrograficheskie osobennosti i svoistva uglei (Petrographic Peculiarities and Properties of Coals), Moscow: AN SSSR, 1963.
5. Hower, J., Trinkle, E.J., and Raione, R.P., Vickers Microhardness of Telovitrinite and Pseudovitrinite from High Nolatile Bituminous Kentucky Coals, Int. J. Coal Geology, 2008, vol. 75.
6. Epshtein, S.A., Barabanova, O.V., Minaev, V.I., Veber, Zh., and Shirochin, D.L., Effect of Di-Methyl-Formamide Treatment of Coals on Their Thermal Destruction and Elastic–Plastic Properties, Khim. Tverd. Tela, 2007, no. 4.
7. Das, B., Effect of Load on Vickers Indentation Hardness of Coals, Int. J. Rock Mech. Min. Sci., 1972, vol. 9.
8. Epshtein, S.A., Physico-Mechanical Properties of Different-Genotype Coal Vitrinite, GIAB, 2009, no. 8.
9. Kozusnikova, A., Determination of Microhardness and Elastic Modulus of Coal Components by Using Indentation Method, GeoLines, 2009, vol. 22.
10. Kalei, G.N., Data on Microhardness Tests by Indent Depth, Mashinovedenie, 1968, no. 3.
11. Bulychev, S.I., Alekhin, V.P., Shorokhov, M. Kh., Ternovsky, A.P., and Shyrev, G.D., Determination of Young’s modulus from Indentation Diagram, Zavod. Labor., 1975, no. 9.
12. Bull, S.J., Nanoindentation of Coatings, J. Phys. D: Appl. Phys., 2005, vol. 38.
13. Borodich, F. M., The Hertz-Type and Adhesive Contact Problems for Depth-Sensing Indentation, Advances in Applied Mechanics, 2014, vol. 47.
14. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, London: North-Holland, 1994.
15. Iofis, M.A. and Shmelev, A.I., Inzhenernaya geomekhanika pri podzemnykh razrabotkakh (Engineering Geomechanics in Underground Mining), Moscow: Nedra, 1985.
16. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., and Sorrentino, F., Determination by Nanoindentation of Elastic Modulus and Hardness of Pure Constituents of Portland Cement Clinker, Cement and Concrete Research, 2001, vol. 31.
17. Constantinides, G., Ulm, F.J., and Van Vliet, K., On the Use of Nanoindentation for Cementitious Materials, Materials and Structures, 2003, vol. 36.
18. Zhu, W., Hughes, J.J., Bicanic, N., and Pearce C. J., Nanoindentation Mapping of Mechanical Properties of Cement Paste and Natural Rocks, Materials Characterization, 2007, vol. 58.
19. Ban, H., Karki, P., and Kim, Y., Nanoindentation Test Integrated with Numerical Simulation to Characterize Mechanical Properties of Rock Materials, J. Testing and Evaluation, 2014, vol. 42.
20. Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R., and Swain, M. V. Determination of Elastic Modulus of Thin Layers Using Nanoindentation, J. Materials Res., 1997, vol. 12.
PROCESSING MICROSEISMIC MONITORING DATA, CONSIDERING SEISMIC ANISOTROPY OF ROCKS
S. V. Yaskevich, V. Yu. Grechka, and A. A. Duchkov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: yaskevichsv@gmail.com
Marathon Oil,
5555 San Felipe St, Houston, TX 77056, USA
Using the model information and in situ data on hydrofracturing in an oil and gas reservoir of the Bakken Formation (USA), potential of locating hypocenters of microseismic events concurrently with determining parameters of velocity anisotropy of seismic waves in rock mass is analyzed. It is shown that inclusion of anisotropy in the analysis improves accuracy of spatial location of microseismic event hypocenters and increases validity of estimation of the fracturing direction.
Microseismic monitoring, rock mass, velocity model, anisotropy
DOI: 10.1134/S1062739115030084 REFERENCES
1. Dobroskok, A.A. and Linkov, A.M., Modeling of Fluid Flow, Stress State and Seismicity Induced in Rock by an Instant Pressure Drop in a Hydrofracture, J. Min. Sci., 2011, vol. 47, no. 1, pp. 10–19.
2. Rutledge, J. and Soma, N., Using Reflected Phases to Improve Depth Resolution of Microseismic Source Locations from Single-Well Observations, Proc. Unconventional Resources Technology Conf., 2013.
3. Hayles, K., Horine, R.L., Checkles, S., and Blangy, J.P., Comparison of Microseismic Results from the Bakken Formation Processed by Three Different Companies, SEG Technical Program Expanded
Abstracts, 2011.
4. Aleksandrov, S.I., Mishin, V.A. and Burov, D.I., Surface Microseismic Monitoring of Hydrofracturing: Quality Control and Prospects, Ekspoz. Neft. Gaz., 2014, no. 2.
5. Chambers, K., Kendall, M., Brandsberg-Dahl, S., and Rueda, J., Testing the Ability of Surface Arrays to Monitor Microseismic Activity, Geophysical Prospecting, 2010, vol. 58.
6. Shmakov, F.D., Procedure for Processing and Interpreting Data of Microseismic Activity Monitoring in Hydrocarbon Reservoirs, Tekhnol. Seismorazv., 2012, no. 3.
7. Eisne, L., Duncan, P., Heig, W.M., and Keller, W.R., Uncertainties in Passive Seismic Monitoring, The Leading Edge, 2009, vol. 28.
8. Zhang, H., Sarkar, S., Toksoz, M.N., Kuleli, H.S., and Al-Kindy, F., Passive Seismic Tomography Using
Induced Seismicity at a Petroleum Field in Oman, Geophysics, 2009, vol. 74, no. 6.
9. Zimmer, U., Bland, H., Du, J., Warpinski, N., Sen, V., and Wolfe, J., Accuracy of Microseismic Event Locations Recorded with Single and Distributed Downhole Sensor Arrays, SEG Technical Program Expanded Abstracts, 2009.
10. Jansky, J., Plicka, V., and Eisner, L., Feasibility of Joint 1D Velocity Model and Event Location Inversion by the Neighborhood Algorithm, Geophysical Prospecting, 2010, vol. 58.
11. Abel, J. S., Coffin, S., Hur, Y., and Taylor, S., An Analytic Model for Microseismic Event Location Estimate Accuracy, First Break, 2011, vol. 29.
12. Usher, P.J., Angus, D.A., and Verdon, J. P. Influence of a Velocity Model and Source Frequency on
Microseismic Waveforms, Some Bakken Microseismic Implications for Microseismic Locations, Geophysical Prospecting, 2013, vol. 61.
13. Vernik, L. and Nur, A., Ultrasonic Velocity and Anisotropy of Hydrocarbon Source Rocks, Geophysics, 1992, vol. 57.
14. Vernik, L., and Liu, X., Velocity Anisotropy in Shales: A Petrophysical Study, Geophysics, 1997, vol. 62.
15. Tsvankin, I. and Grechka, V., Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization, SEG, Geophysical References, 2011, Series no. 17.
16. Maxwell, S., Shemeta, J., and House, N., Integrated Anisotropic Velocity Modeling Using Perforation Shots, Passive Seismic and VSP Data, CSPG-CSEG-CWLS Convention, 2006.
17. Verdon, J. P., Kendall, J.–M., and Wustefeld, A., Imaging Fractures and Sedimentary Fabrics Using Shear Wave Splitting Measurements Made on Passive Seismic Data, Geophysical J. Int., 2009, vol. 179.
18. Verdon, J.P. and Kendall, J.–M., Detection of Multiple Fracture Sets Using Observations of Shear-Wave Splitting in Microseismic Data, Geophysical Prospecting, 2011, vol. 59.
19. Grechka, V. and Duchkov, A., Narrow-Angle Representations of the Phase and Group Velocities and Their Applications in Anisotropic Velocity Model Building for Microseismic Monitoring, Geophysics, 2011, vol. 76, no. 6.
20. Grechka, V., Singh, P., and Das, I., Estimation of Effective Anisotropy Simultaneously with Locations of Microseismic Events, Geophysics, 2011, vol. 76, no. 6.
21. Li, J., Rodi, W., Toksoz, M.N., and Zhang, H., Microseismicity Location and Simultaneous Anisotropic Tomography with Differential Traveltimes and Differential Back Azimuths, SEG Technical Program Expanded Abstracts, 2012, pp. 1–5.
22. Li, J., Toksoz, N., Li, C., Morton, S., Dohmen, T., and Katahara, K., Locating Bakken Microseismic Events with Simultaneous Anisotropic Tomography and Extended Double-Difference Method, SEG Technical Program Expanded Abstracts, 2013.
23. Grechka, V. and Yaskevich, S., Inversion of Microseismic Data for Triclinic Velocity Models, Geophysical Prospecting, 2013, vol. 61.
24. Grechka, V. and Yaskevich, S., Azimuthal Anisotropy in Microseismic Monitoring: A Bakken Case Study, Geophysics, 2014, vol. 79, no. 1.
25. Obolentseva, I.R. and Grechka, V.Yu., Luchevoi metod v anizotropnoi srede (algoritmy,
programmy) (Ray-Path Method in an Anisotropic Medium (Algorithms, Programs), Novosibirsk: IGiG SO AN SSSR, 1989.
26. Ñerveny, V., Seismic Ray Theory: Cambridge University Press, 2001.
27. Meissner, F.F., Petroleum Geology of the Bakken Formation Williston Basin, North Dakota, and Montana, Proc. Montana Geological Society 24th Annual Conference, 1991.
28. Hansen, P.C., Pereyra, V., and Scherer, G., Least Squares Data Fitting with Applications, Johns Hopkins University Press, 2012.
MINERAL MINING TECHNOLOGY
GEOMECHANICAL SERVICE IN MINING UNDER GAS-AND-DYNAMIC PHENOMENA
K. N. Trubetskoy, M. A. Iofis, and E. N. Esina
Research Institute of Comprehensive Exploitation of Mineral Resources—IPKON RAS,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: iofis@mail.ru
The authors validate efficiency and safety of mining under possible gas-and-dynamic phenomena by directing natural energy of rocks to breakage and based on preliminary coal degassing and implementation of resource-saving and resource-reproducing geotechnologies. Relevant recommendations are given. In addition, the authors present a procedure to forecast and to control geomechanical processes, considering formation and expansion of mined-out void in borehole mining.
Resource-saving and resource-reproducing geotechnologies, gas-and-dynamic phenomena, borehole mining, preliminary degassing, overburden pressure
DOI: 10.1134/S1062739115030114 REFERENCES
1. Trubetskoy, K.N., Razvitie resursosberegayushchikh i resursovosproizvodyashchikh geotekhnologii kompleksnogo osvoeniya mestorozhdenii poleznykh iskopaemykh (Development of Resource-Saving and Resource-Reproducing Geotechnologies for Comprehensive Development of Mineral Resources), Moscow: IPKON RAN, 2012.
2. Trubetskoy, K.N., Gornye nauki. Osvoenie i sokhranenie nedr zemli (Mining Sciences. Development and Conservancy of the Earth Interior), Moscow: Akad. Gorn. Nauk, 1997.
3. Kreinin, E.V., Fedorov, N.A., Zvyagintsev, K.N., and P’yankova, T.M., Podzemnaya gazifikatsiya ugol’nykh plastov (Underground Gasification of Coal Beds), Moscow: Nedra, 1982.
4. Trubetskoy, K.N., Iofis, M.A., Miletenko, I.V., Esina, E.N., Postavnin, B.N., and Grishin, A.V., RF patent no. 2474691, Byull. Izobret., 2013, no. 4.
5. Trubetskoy, K.N., Chanturia, V.A., Iofis, M.A., Krasnov, G.D., Lavrinenko, A.A., Postavnin, B.N., and Miletenko, I.V., RF patent no. 2363849, Byull. Izobret., 2009, no. 22.
6. Airuni, A.T., Iofis, M.A., Shestopalov, A.V., and Kasimov, S.O., USSR Author’s Certificate no. 1011865, Byull. Izobret., 1982, no. 14.
7. Esina, E.N., Laboratory Test Data on Borehole Hydromining of Coal, GIAB, 2011, no. 6.
8. Pravila okhrany sooruzhenii i prirodnykh ob’ektov ot vrednogo vliyaniya podzemnykh gornykh rabot na ugol’nykh mestorozhdeniyah (Guidance on Conservation of Structures and Environment against Harmful Influence of Underground Coal Mining), Saint-Petersburg, 1998.
9. Iofis, M.A. and Esina, E.N., Specific Features of Shear and Deformation of Earth Surface in Borehole Mineral Hydromining, Vest. RUFN, Ser. Inzh. Issled., 2012, no. 3.
10. Slesarev, V.D., Mekhanika gornykh porod (Rock Mechanics), Moscow: Ugletekhizdat, 1948.
11. Instruktsiya po proizvodstvu marksheiderskikh rabot (Underground Survey Specification),
RD 07–603–03, 2003.
JUSTIFICATION OF METHODS TO OPEN UP ORE BODIES WITH VARIOUS COMBINATIONS OF CONVEYOR TRANSPORT
S. V. Lukichev, O. V. Belogorodtsev, and E. V. Gromov
Mining Institute, Kola Science Center, Russian Academy of Sciences,
ul. Fersmana 24, Apatity, 184209 Russia
e-mail: evgromov@goikolasc.net.ru
The article gives a brief description of geology of Oleniy Ruchey deposit and the characteristic of current mining situation at Oleniy Ruchey Mine, Northwestern Phosphorus Company. The limitations of the current scheme used to open up the ore body with ore drawing via vertical blind skip-hoist shaft and conveyor tunnel are discussed. The new-developed rational schemes for opening-up and mining, taking into account stagewise commissioning of the mine, are compared from the viewpoint of economic performance. The authors point out benefits of stagewise opening-up of Oleniy Ruchey ore body by inclined conveyor shafts.
Underground mining, opening-up schemes, shaft, skip, tunnel, hoist machine compartment, crushing chamber, conveyor, technical and economic comparison
DOI: 10.1134/S1062739115030126 REFERENCES
1. Leont’ev, A.A., Belogorodtsev, O.V., and Gromov, E.V., Opening up Deep Levels at Zhelezny Open-Pit Mine, Kovdor Polymetallic Deposit via Underground Haulage Roadways, Proc. Sci. Conf., Apatity: KNTs, 2012.
2. Leont’ev, A.A., Belogorodtsev, O.V., and Gromov, E.V., Opening up Deep Levels at Zhelezny Open-Pit Mine, Kovdor Polymetallic Deposit through Underground Workings, GIAB, 2013, no. 4.
3. Perten, Yu.A., Konveiery: spravochnik (Conveyors: Handbook), Leningrad: Mashinostr., 1984.
4. Galkin, V.I., Dmitriev, V.G., D’yachenko, V.P., Zapenin, I.V., and Sheshko, I.V., Sovremennaya teoriya lentochnykh konveierov gornykh predpriyatii (Modern Theory of Mine Belt Conveyors), Moscow: Gornaya Kniga, 2011.
5. Mel’nikov, N.N., Lukichev, S.V., and Nagovitsyn, O.V., Computerized Mining Engineering Service Based on MINEFRAME System, GIAB, 2013, no. 5.
6. Lukichev, S.V., and Nagovitsyn, O.V., Automated Instruments of Mining Engineering Service in MINEFRAME System, GIAB, 2013, no. 7.
7. Gromov, E.V., Leont’ev, A.A., and Belogorodtsev, O.V., Search for an Ore Haulage Scheme in Complex Mining Process at Zhelezny Mine, Kovdor Polymetallic Deposit, Izv. vuzov, Gorny Zh., 2013, no. 8.
8. Dovzhenko, M.V., Exploitation of Vertical Conveyor Transport System, Gorn. Promyshl., 2008, no. 5.
9. Tverdov, A.A., Zhura, A.V., and Nikishichev, S.B., Modern Mineral Ore and Overburden Rock Transportation Systems, Gorn. Promyshl., 2012, no. 2.
10. Galkin, V.I. and Sheshko, I.V., Justification of Practicality of Special Belt Conveyors at Open-Pit Mines, Proc. Conf. Open Mining Machinery, Moscow: Krokus-Expo, 2013.
VALIDATION OF RATIONAL BACKFILL TECHNOLOGY
FOR SEKISOVSKOE DEPOSIT
L. A. Krupnik, M. Zh. Bitimbaev, S. N. Shaposhnik, Yu. N. Shaposhnik,
and V. F. Demin
Satpaev Kazakh National Technical University,
ul. Satpaeva 22a, Almaty, 050013 Kazakhstan
Data Invest LTD,
ul. Shevchenko 157, Almaty, 050000 Kazakhstan
East Kazakhstan State Technical University after Serikbaev,
ul. Protozanova 69, Ust-Kamenogorsk, 070004 Kazakhstan
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: shaposhnikyury@mail.ru
Karaganda State Technical University,
Blv. Mira 56, Karaganda, 100027 Kazakhstan
The article gives geological characteristic of ore and enclosing rocks at Sekisovskoe gold deposit. The underground mining involves room-and-pillar and sublevel caving for medium thick ore bodies and shrinkage stoping for thin ore bodies. The use of the solidifying backfill technology is validated. Based on the laboratory research into rheological and strength properties of backfill mixtures, rational backfill compositions are proposed for the said deposit. The technical and economic estimation of backfilling scenarios in Sekisovsky Mine is made for: 1) preparation of backfill in a mixer-activator and gravity flow in pipeline; 2) backfill preparation in a concrete mixer and feed in mine via vertical holes and horizontal mine mixers. Efficient flowsheet is developed for backfill feed from the surface backfill plants. Selection of the rational backfill technology for Sekisovskoe deposit is described.
Backfilling, backlfill preparation and feed flowsheets, backfill strength
DOI: 10.1134/S1062739115030138 REFERENCES
1. Nurseitova, Zh.T, Il’yasov, A.A., and Shaposhnik, Yu.N., Development of Rational and Safe Underground Mining Process for Sekisovskoe Deposit, Vestn. VKGTU, 2014, no. 2.
2. Bitimbaev, M.Zh., Krupnik, L.A., and Shaposhnik, Yu.N., Teoriya i praktika zakladochnykh rabot pri razrabotke mestorozhdenii poleznykh iskopaemykh (Theory and Practice of Backfill Operations in Mineral Mining Industry), textbook, Almaty: Assots. Vuzov Kazakh., 2012.
3. GOST 23732–79 as of Jun 07, 1979.
4. Metodicheskie ukazaniya po opredeleniyu normativnoi prochnosti tverdeyushchei zakladki i otsenke prochnostnykh svoistv iskustvennykh massivov (Guideline on Evaluation of Standard Strength of Solidifying Backfill and Strength Properties of Man-Made Massifs), Saint-Petersburg: VNIMI, 1975.
5. Rukovodstvo po opredeleniyu normativnoi prochnosti tverdeyushchei zakladki na rudnikakh tsvetnoi metallurgii (Evaluation of Standard Strength of Solidifying Backfill in Non-Ferrous Metal Mines. Manual), Saint-Petersburg, 1993.
6. Normy tekhnologicheskogo proektirovaniya rudnikov tsvetnoi metallurgii s podzemnym sposobom razrabotki VNTP 37–86 (Underground Non-Ferrous Metal Mine Planning Regulations. VNTP 37–86), Moscow: Mintsvetmet SSSR, 1986.
7. Normy tekhnologicheskogo proektirovaniya gornodobyvayushchikh predpriyatii s podzemnym sposobom razrabotki (Underground Mine Planning: Recommended Practice), Decree of the Committee for State Monitoring of Emergency Situations and Industrial Safety, Republic of Kazakhstan, no. 46, Dec 4, 2008.
8. Trebovaniya promyshlennoi bezopasnosti pri vedenii rabot podzemnym sposobom (Safety Requirements for Underground Mining), amended Nov 29, 2011, approved by Minister of Emergency Situations of the Republic of Kazakhstan, Jul 25, 2008, no. 132.
9. Vremennye pravila okhrany sooruzhenii i prirodnykh ob’ektov ot vrednogo vliyaniya podzemnykh gornykh razrabotok mestorozhdenii rud tsvetnykh metallov (Provisional Regulations on Protection of Structures and Nature from Underground Non-Ferrous Metal Mining Impact), Leningrad: VNIMI, 1986.
10. Krupnik, L.A. and Shaposhnik, Yu.N., Use of Barren Rocks in Underground Mines, GIAB, 2005, no. 3.
11. Prokushev, G.A., Ispol’zovanie skal’nykh porod v tekhnologii tverdeyushchei zakladki (Use of Rocks in Solidifying Backfill Preparation), Alma-Ata: Nauka, 1988.
12. Edil’baev, A.I. and Muzgina, V.S., Kompleksnoe ispol’zovanie otkhodov i mestnykh materialov v tekhnologii zakladochnykh rabot (Integrated Use of Waste and Local Materials in Backfilling Operations), Almaty, 2002.
13. Anushenkov, A.N., Freidin, A.M., and Shalaurov, V.A., Preparation of Molden Solidifying Fill from Production Wastes, J. Min. Sci., 1998, vol. 34, no.1, pp. 86–90.
14. Krupnik, L.A., Shaposhnik, Yu.N., Shaposhnik, S.N., and Tursunbaeva, A.K., Backfilling Technologies in Kazakhstan Mines, J. Min. Sci., 2013, vol. 49, no. 1, pp. 82–90.
15. Freidin, A.M., Filippov, P.A., Gaidin, S.P., et al., Prospects of Technical Re-equipment in Underground Mines of the Metallurgy Complex in West Siberia, J. Min. Sci., 2004, vol. 40, no. 3, pp. 28–291.
16. Krupnik, L.A., Demin, V.F., Shaposhnik, Yu.N., and Shaposhnik, S.N., Selection of Rational Filling Process at Suzdal Mine, Alel, Vestnik KarGTU, 2011, no. 2 (43).
17. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Ways to Improve Strength Properties of Backfill Masses in Slice Mining Systems, Gorn. Zh. Kazakh., 2012, no. 6.
18. Karaev, O.S., Golik, V.I., and Magomedov, Sh.M., Standardization of Backfill Material Strength in Underworking Operations, GIAB, 2002, no. 5.
MINING OF U-SHAPED HARD MINERAL BODIES
V. I. Cheskidov and V. K. Norri
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru
The authors analyze structural features of U-shaped hard mineral bodies and offer an approach to selecting scenarios of opening-up and sequence of mining at such deposits. It is validated efficient to use draglines for actual mining and overburden removal. The analytical method of finding re-excavation factor in dragline mining is proposed.
U-shaped mineral deposits, dragline mining method, reexcavation factor
DOI: 10.1134/S106273911503014X
REFERENCES
1. Litvinenko, V.S., Mineral Resource Potential of Russia, Zap. Gorn. Inst., 2002, no. 11.
2. Cheskidov, V.I., Freidina, E.V., and Vasil’ev, E.I., Open Pit Mining of a Series of Slightly Inclined Coal Seams with Temporary Internal Piling, J. Min. Sci., 1999, vol. 35, no. 2, pp. 190–198.
3. Shchadov, M.I., Vinitsky, K.E., and Gridnev, V.A., Development of Direct Dumping Processes and Equipment, Ugol’, 1997, no. 9.
4. Cheskidov, V.I. and Zaitseva, A.A., Mining Sequence for Inclined and Flat-Dipping Superimposed Coal Beds, Geotekhnicheskie problemy kompleksnogo osvoeniya nedr: sb. nauch. tr. (Geotechnical Problems of Comprehensive Mineral Resource Development: Collected Papers), Issue 2(92), Ekaterinburg, 2004.
5. Cheskidov, V.I. and Vasil’ev, E.I., Internal Dumps in Open Mining of Scattered Flat-Dipping Bed Suites, Proc. Int. Conf. Problems of Geotechnology and Subsoil Science, Ekaterinburg, 1998.
6. Zaitseva, A.A., Cheskidov, V.I., and Zaitsev, G.D., Effect of the Mining Sequence on the Internal Dump Capacity in an Open Pit, J. Min. Sci., 2007, vol. 43, no. 5, pp. 508–512.
7. Tanaino, A.S. and Cheskidov, V.I., Substantiation of the Sequence for Opencast Mining of a Series of Flat and Inclined Strata Using the Mined-out Space for Internal Dumps, J. Min. Sci., 1999, vol. 35, no. 3, pp. 307–313.
8. Cheskidov, V.I., Norri, V.K., and Sakantsev, G.G., Diversification of Open Pit Coal Mining with Draglining, J. Min. Sci., 2014, vol. 50, no. 4, pp. 690–695.
9. Pechenikhin, S.P., Cheskidov, V.I., and Rossova, T.I., Analytical Estimation of Re-excavation Factor in Mining of Flat-Dipping Beds with Direct Dumping, Razrabotka ugol’nykh mestorozhdenii otkrytym sposobom: mezhvuz. sb. (Open Coal Mining: Interuniversity Collection), 1977, no. 6.
ESTIMATE OF STABILITY OF OVERBURDEN DUMPING
ON AN INCLINED SURFACE
A. I. Barulin
AGS Manufacturing Company,
Rudnyi, 111500 Kazakhstan
e-mail: BarulinAI@mail.ru
The author analyzes potential dumping on an inclined surface by small-capacity dump trucks. A mathematical model is developed for FEM analysis of stresses in a dump, using a proprietory method of dump stability estimation. Safe operation of dump trucks Kamatsu MOXY in such conditions is proved. The research findings are used in construction of conveyor hoist in Kachar open pit mine, Sokolov–Sarbai Mining Production Association.
Dump, finite element method, dump truck, failure mechanics, sliding surface, stability criteria
DOI: 10.1134/S1062739115030151 REFERENCES
1. Edinye pravila bezopasnosti pri razrabotke mestorozhdenii poleznykh iskopaemykh otkrytym sposobom PB 02–498–02 (Uniform Regulations on Open Pi Mineral Mining Safety PB 02–498–02), Moscow: GUP NTTs Prom. Bezop., 2003.
2. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
3. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Stability of Pit Walls and Dumps), Moscow: Nedra, 1965.
4. Raschet ustoichivosti borta Kacharskogo kar’era po profilyu trassy konveiernogo kompleksa (Calculation of Kachar Pitwall Stability by the Profile of Conveyor Track), Saint Petersburg: OAO Giproruda, 2010.
5. Articulated dump trucks product information. Internet: www.doosanmoxy.com.
6. Sokolovsky, V.V., Statika sypuchei sredy (Granular Medium Statics) Moscow: Fizmatgiz, 1960.
7. Barulin, A.I. and Rakhimov, Z.R., Otsenka ustoichivosti otkosov slabykh gornykh porod metodom konechnykh elementov: sb. (Evaluation of Weak Rock Slope Stability by the Finite Element Method: Collected Works), Karaganda: KarGTU, 2006, no. 4.
8. Metodicheskie ukazaniya po opredeleniyu uglov naklona bortov, otkosov i ustupov stroyashchikhsya i ekspluatiruemykh kar’erov (Guidelines on Evaluation of Inclination of Walls, Slopes and Dumps in Open-Pit Mines under Operation and Construction), Leningrad: VNIMI, 1972.
JUSTIFICATION OF BASIC DIAGRAMS OF HORIZONTAL DRILLING DEFLECTORS
B. B. Danilov, B. N. Smolyanitsky, and D. O. Cheshchin
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bsmol@misd.nsc.ru
The authors discuss approaches to engineering a directional drilling tool to be used in underground mining and construction. Justification is provided for operating principles of devices for deflection of drilling in a required direction. Experimental research of changing pneumatic drilling machine trajectory in soil is reported.
Rock mass, hole, soil, directional drilling, trajectory, deflection
DOI: 10.1134/S1062739115030175 REFERENCES
1. Smolyanitsky, B.N., Repin, A.A., Danilov, B.B., et al., Povyshenie effektivnosti i dolgovechnosti impul’snykh mashin dlya sooruzheniya protyazhennykh skvazhin v porodnykh massivakh: integratsionnye proekty (Improvement of Performance and Service Life of Machinery for Long Hole Drillings in Rock: Integrated Projects), Simonov B. F. (ED.), issue 43, Novosibirsk: SO RAN, 2013.
2. Ven Zhon, Introduction of Downhole Directional Drilling to Recover and Produce Coal Methane, DonNTU Transactions, Mining and Geology Series, 2011, issue 14.
3. Klishin, V.I., Kokoulin, D.I., Kubanychbek, B., and Gurtenko, A.P., Exploration, Degassing and Service Hole Drill Rig SBR -400, J. Min. Sci., 2010, vol. 46, no. 4, pp. 411–415.
4. Mament’ev, L.E., Anan’ev, A.N., Lyubimov, O.V., and Zhalnin, D.V., Perspectives of Underground Horizontal Hole-Making, GIAB, 2000, no. 11.
5. Levinson, L.M., Akbulatov, T.O., and Akchurin, H. I., Upravlenie protsessom iskrivleniya skvazhin: ucheb. posob. (Hole Deflection Control: Educational Aid), Ufa: UGNTU, 2000.
6. Kalinin, A.G., Nikitin, B.A., and Solodky, K.M., Burenie naklonnykh i gorizontal’nykh skvazhin (Boring of Inclined and Horizontal Holes), Moscow: Nedra, 1997.
7. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., Plavskikh, V.D., Rusin, E.P., Smolyanitsky, B.N., Tupitsyn, K.K., and Chepurnoy, N.P., Pnevmoproboiniki (Air Hammers), Novosibirsk:
IGD SO RAN, 1990.
8. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (Principles of Trenchless Technologies), Moscow: Press Byuro, 2005, no.1.
9. Kyun, G., Shoible, L., and Shlik, Kh., Zakrytaya prokladka neprokhodnykh truboprovodov (Trenchless of Crawlways), Moscow: Stroiizdat, 1993.
10. Danilov, B.B., Ways of Improvement of the Technologies and Equipment for Trenchless Communication Laying, J. Min. Sci., 2007, vol. 43, no. 2, pp. 171–176.
11. Danilov, B.B. and Smolyanitsky, B.N., Latest Trends in Development of Modern Hole-Making Processes in Rock Mass, Fund. Prikl. Voprosy Gorn. Nauk, 2014, vol. 2, no. 2.
12. Balakhovsky, M.S., The U. S. Vermeer Company enters the Russian Market, Mekhan. Stroit., 2000, no. 13.
13. Heibort, P., NO-DIG LIVE’ 96 Expo in Abington, ROBT, 1996, no. 2.
14. Kostylev, A.D., Maslakov, P.A., and Smolyanitsky, B.N., Development of Controllable Air Hammer to Drive Holes of Preset Trajectory, Izv. vuzov, Stroit., 1999, no. 11.
15. Kostylev, A.D., Tupitsyn, K.K., and Karavaev, A.T., Controllable Pneumatic Drill, J. Min. Sci., 1985,
vol. 21, no. 4, pp. 319–329.
16. Controllable Air Hammer by Allied Steel & Tractor Product, USA: Advertisement, Ohio, Solon, 1988.
17. Yushkov, I.A., and Petrakov, A.E., Development of a Drilling String for Directional Degassing Hole Drilling, DonNTU Transactions, Mining and Geology Series, 2012, no. 2.
18. Horizontal Directional Boring in Hard Rocks, http://www.mgs.ru/articles/2011_JULAY.
19. Shakhnazarov, D., Horizontal Directional Boring in Hard Rocks, Building Machinery, http://www.estateline.ru.
20. Baldenko, D.F. and Korotaev Yu.A., State-of-the-Art and Perspectives of Development of Downhole Drilling Motors, Buren. Neft’, 2012, no. 3.
21. Danilov, B.B., Smolyanitsky, B.N., and Sher, E.N., Determination of Conditions for Compressed
Air-Assisted Removal of Plastic Soil in Horizontal Pipeline in Drilling, J. Min. Sci., 2014, vol. 50,
no. 3, pp. 484–490.
INFLUENCE OF AIR DISTRIBUTION SYSTEM ON ENERGY EFFICIENCY OF PNEUMATIC PERCUSSION UNIT OF CIRCULAR IMPACT MACHINE
A. M. Petreev and A. Yu. Primychkin
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: sania385@ngs.ru
The article describes computer modeling of three options of pneumatic percussion unit in a circular impact machine. All options have similar structure diagrams and mechanical linkage parameters but different control of energy-carrier feed in a working chamber: valveless; with one or two circular elastic valves. The obtained data allow quantitative evaluation of operation of such systems given the accepted constraints for mechanical block.
Circular pneumatic impact machine, air distribution, elastic valve, design model
DOI: 10.1134/S1062739115030187 REFERENCES
1. Boginsky, V.P., Investigation and Development of Air-Percussion Machine to Drive Metallic Bars of Low Longitudinal Rigidity into Soil, Cand. Tech. Sci. Thesis, Novosibirsk, 1979.
2. Syryamin, Yu.N., Investigation and Development of Air-Percussion Machine with Through Axial Channel to Drive Bar Elements into Soil, Cand. Tech. Sci. Thesis, Novosibirsk, 1983.
3. Smolyanitsky, B.N., Kol’tsevye pnevmoudarnye mashiny. Pnevmoproboiniki (Annular Air-Percussion Machines. Air Punches), Novosibirsk: IGD SO RAN, 1990.
4. Syryamin, Yu.N., Optimal Parameters of a Ring-Shaped Air-Percussion Facility, FTPRPI, 1983, no. 2.
5. Petreev, A.M. and Boginsky, V.P., Issledovanie dinamiki besklapannogo pnevmoudarnogo mekhanizma s odnoi rabochei kameroi. Gornye mashiny (Dynamics of Valveless Single Working-Chamber Air-Percussion Facility. Mining Machinery), Novosibirsk: IGD SO RAN, 1980.
6. Gaun, V.A., Razrabotka i issledovanie pogruzhnykh pnevmoudarnikov s povyshennoi energiei udara. Povyshenie effektivnosti pnevmoudarnykh burovykh mashin (Development of Downhole Air Punches with Enhanced Impact Energy. Improved Performance of Pneumatic Percussion Drill Machines), Novosibirsk: IGD SO RAN, 1987.
7. Petreev, A.M., Vorontsov, D.S., and Primychkin, A.Yu., Ring-Shaped Elastic Valve in the Air Percussion Machines, J. Min. Sci., 2010, vol. 46, no. 4, pp. 416–424.
8. Syryamin, Yu.N., Smolyanitsky, B.N., Boginsky, V.P., Selection of Geometry of Wedge-Gripping Device, FTPRPI, 1982, no. 3, pp.
9. Smolyanitsky, B.N., K vyboru parametrov zazhimnykh mekhanizmov. Pnevmoproboiniki (Selection of Parameters of Gripping Devices. Pneumatic Punches), Novosibirsk: IGD SO RAN, 1990.
10. Petreev, A.M. and Primychkin, A.Yu., Specific Operational Features of Ring-Shaped Elastic Valve of Rectangular Cross-section in Air-Distribution System in Pneumatic Impact Machines, Int. Sci. Conf. Interexpo GeoSibir-2013, vol. 3, Exploitation of Mineral Resources. Mining. New Trends in Exploration and Mining of Mineral Deposits, Novosibirsk, 2013.
MINERAL DRESSING
COMPLEXING COLLECTING AGENT FOR SELECTIVE FLOTATION
OF CHALCOPYRITE
I. G. Zimbovsky, T. A. Ivanova, V. A. Chanturia, and E. L. Chanturia
Research Institute of Comprehensive Exploitation of Mineral Resources—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 11120 Russia
e-mail: zumboff@gmail.ru
College of Mining, National University of Science and Technology—MISiS,
Leninskii pr. 6, Moscow, 119991 Russia
Under analysis is interaction between 1-phenyl-2,3-dimethylaminopyrazolone-5 (AMD) and copper in solution and on the surface of chalcopyrite. It is found that AMD experiences chemical adsorption on the surface of chalcopyrite as a compound with copper. Effect exerted on adsorption of AMD agent on copper sulfide by ammonium rhodanate (NH4CNS), introduced as an additional ligand, or its mixture with acetic acid is defined. Based on the analytical research and the analytical chemistry data, the type of adsorption on the surface of chalcopyrite is determined. The flotation tests on monomineral fraction of chalcopyrite and pyrite, and copper sulfide ore prove selectivity of AMD in separation of chalcopyrite and pyrite.
Sulfide selection, sorption, flotation, chalcopyrite, pyrite, extraction, reagents
DOI: 10.1134/S1062739115030199 REFERENCES
1. Chanturia, E.L., Ivanova, T.A., and Zimbovsky, I.G., Improved Selectivity of Sulfide Ore Flotation, J. Min. Sci., 2013, vol. 49, no. 1, pp. 132–137.
2. Chanturia, V.A., Ivanova, T.A., Chanturia, E.L., and Zimbovsky, I.G., Mechanism for Selective Effect of 1-Phenyl-2,3-Dimethyl-Aminopyrazolone-5, Tsv. Met., 2013, no. 1.
3. Katkova, O.V., Synthesis and Physical-Chemical Investigation into Complexes of Isothiocyanate of Some 3d-Elements with Amidopyrine, Cand. Chem Sci. Thesis, Kemerovo, 2005.
4. Preobrazhensky, N.A. and Genkin, E.I., Khimiya organicheskikh lekarstvennykh sredstv: ucheb. posob. (Chemistry of Organic Medicinal Agents: Educational Aid), Moscow, Leningrad: Goskhimizdat, 1953.
5. Busev, A.I., Akimov, V.K., and Gusev, S.I., Pyrazolone Derivatives as Analytical Reagents, Usp. Khim., 1965, vol. XXXIV, issue 3.
6. Okas, A. and Celechovsky, J., Pyrazolone Derivatives as Analytical Reagents, Chem. Listy, 1949,
vol. 43, no. 7.
FAHL ORE FLOTATION
V. A. Bocharov, V. A. Ignatkina, and A. A. Kayumov
National University of Science and Technology—MIS&S,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: woda@mail.ru
The authors discuss flotation of fahl ore. It is proved that tennantite should be separated into an individual copper product in order to enhance overall copper recovery and mitigate ecological impact by means of preventing arsenic volatilization under smelting. Single mineral fractions of pyrite, chalcopyrite, tennantite, secondary sulfides, sphalerite and quartz sampled in the Ural region, as well as the samples of copper-zinc ore containing fahl ore are examined. The research involves oxidation of copper sulfides and pyrite under grinding in different conditions. Concentration of oxygen and sulfur-bearing ions is under control. The differences in oxygen consumption, oxidation of pyrite, tennantite and other sulfides are used to develop the mode of tennantite separation from other copper sulfides, sphalerite and pyrite. Based on the research findings, the authors recommend a flotation technology for copper–zinc pyritic ore with high content of tennantite to separate tennantite and secondary copper sulfides in different flotation circuits at varied pH.
Flotation, tennantite, copper sulfides, oxidation, modifiers, technology
DOI: 10.1134/S1062739115030205 REFERENCES
1. Bocharov, V.A. and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh (Mineral Processing), vol. 1, Moscow: Ruda Metally, 2007.
2. Mozgova, N.N. and Tsepin, A.N., Bleklye rudy: osobennosti khimicheskogo sostava i svoistv mineralov (Fahl Ores: Peculiarities of Chemical Composition and Mineral Properties), Moscow: Nauka, 1983.
3. Pshenichny, G.N., Bleklye rudy kolchedannykh mestorozhdenii (Fahl Ores from Sulfide Ore Deposits), Leningrad: Nauka, 1987.
4. Izotko, V.M., Tekhnologicheskaya mineralogiya i otsenka rud (Technological Mineralogy and Ore Valuation), Saint-Petersburg: Nauka, 1997.
5. Dobrotsvetov, B.L., Effect of Mineral Composition of Fahl Ore on its Beneficiation Process, Tsv. Met., 2009, no. 7.
6. Fullston, D., Fornasiero, D., and Ralston, J., Zeta Potential Study of the Oxidation of Copper Sulfide Minerals, Colloids Surf, Application, 1999, vol. 146.
7. Mitrofanov, S.I., Selektivnaya flotatsiya (Selective Flotation), Moscow: Metallurgiya, 1954.
8. Petrus, H. T. B.M. and Hirajima, T., Alternative Techniques to Separate Tennantite from Chalcopyrite: Single Minerals and Arseno Copper Ore Flotation Study, XXVI IMPC, New Deli, 2012.
9. Mitrofanov, S.I., Issledovanie rud na obogatimost’ (Ore Dressability), Moscow: Gostekhizd., 1954.
10. Petrus, H. T. B.M., Hirajima, T., Sasaki, K., and Okamoto, H., Effect of Sodium Thiosulphate on Chalcopyrite and Tennantite. An Insight for Alternative Separation Technique, J. Min. Proc.,
2012, vol. 102–103.
11. Sasaki, K., Takatsugi, K., Ishikura, K., and Hirajima, T., Spectroscopic Study on Oxidative Dissolution of Chalcopyrite, Enargite and Tennantite at Different pH Values, Hydrometallurgy, 2010, vol. 100, nos. 3–4.
EXPERIMENTAL INVESTIGATION OF INTERACTION BETWEEN MODIFIED THERMOMORPHIC POLYMERS, GOLD AND PLATINUM IN DRESSING
OF REBELLIOUS PRECIOUS METAL ORE
V. A. Chanturia and V. V. Getman
Research Institute of Comprehensive Exploitation of Mineral Resources—IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: viktoriki.v@gmail.com
The article reports physical and physico-mechanical test data on interaction between modified thermomorphic polymers and gold- and platinum-bearing sulfides. It is found that the reagents interact selectively with precious metals and are applicable as efficient flocculants.
Thermomorphic polymers, modification, platinum, gold, flotation, flocculation, optical microscopy, electron microscopy, X-ray phase analysis
DOI: 10.1134/S1062739115030217 REFERENCES
1. Zolotova, Yu.A., Varshal, G.M., and Ivanova, V.M., Analiticheskaya khimiya metallov platinovoi gruppy (Analytical Chemistry of Metals of Platinum Group), Moscow: URSS, 2003.
2. Mokhodoeva, O.B., Myasoedova, G.V., and Kubrakova, I.V., Sorption Concentration in Complex Precious Metal Identification Processes, Zh.. Analit. Khim., 2007, vol. 62, no. 7.
3. Chanturia, V.A., Nedosekina, T.V., Getman, V.V., and Gapchich, A.O., New Agents to Recover Precious Metals from Rebellious Ores and other Materials, J. Min. Sci., 2010, vol. 46, no. 1, pp. 66–72.
4. Getman, V.V., Selective Concentration of Platinoids from Copper–Nickel Ores Based on the Application of Complexing Agents and Modified Thermomorphic Polymers, Cand. Tech. Sci. Thesis, Moscow: 2010.
5. Bergbreiter, D.E., Case, B.L., Liu, Y.-S., and Caraway, J.W., Poly (N-Isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis, Macromolecules, 1998, vol. 31.
6. Chanturia, V.A., Nedosekina, T.V., and Stepanova, Experimental-Analytical Methods of Investigating the Effect of Complexing Agents on Platinum Flotation, J. Min. Sci., 2008, vol. 44, no. 3, pp. 283–288.
GOLD AND ARSENIC RECOVERY FROM CALCINATES OF REBELLIOUS PYRITE–ARSENOPYRITE CONCENTRATES
M. A. Gurman, L. I. Shcherbak, and A. V. Rasskazov
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: mgurman@yandex.ru
The products of stepped calcination of pyrite–arsenopyrite concentrates contain ferric arsenate phases FeAsO4, Fe4As2O11, Fe3(AsO4)2. The article reports the research data on leaching of calcines in alkaline medium including caustic soda and hydrogen peroxide used as an oxidizer. The experiments prove the efficiency of alkaline leaching with H2O2 for dissociation of gold associated with ferric arsenates (II) and (III) and for reduction of arsenic content from 1.2–1.4 to 0.006–0.15%. Preliminary leaching of calcinates enhances gold cyanidation yield from 91–92.9 to 97.3–97.9%.
Pyrite–arsenopyrite concentrates, ferric arsenates, alkaline leaching, hydrogen peroxide, arsenic, gold, recovery
DOI: 10.1134/S1062739115030229 REFERENCES
1. Lodeishchikov, V.V., Tekhnologiya izvlecheniya zolota i serebra iz upornykh rud (Process for Gold and Silver Recovery from Rebellious Ores), Irkutsk: Irgiredmet, 1999.
2. Zakharov, B.A. and Meretukov, M.A., Zoloto: upornye rudy (Gold: Rebellious Ores), Moscow: Ruda Metally, 2013.
3. Kotlyar, Yu.A., Meretukov, M.A., and Strizhko, L.S., Metallurgiya blagorodnykh metallov (Metallurgy of Noble Metals), vol. 1, Moscow: Ruda Metally, 2005.
4. Isabaev, S.M., Pashinkin, A.S., Milke, E.G., and Zhambekov, M.I., Fizizko-khimicheskie osnovy sulfidirovaniya mysh’yaksoderzhashchikh soedinenii (Physical and Chemical Fundamentals of Arsenic-Bearing Compound Sulfidation), Alma-Ata: Nauka, 1986.
5. Kopylov, N.I. and Kaminsky, Yu.D., Mysh’yak (Arsenic), Novosibirsk: Sib. Univer. 2004.
6. Maslenitsky, I.N., Chugaev, L.V., Borbat, V.F., et al., Metallurgiya blagorodnykh metallov (Metallurgy of Noble Metals), Moscow: Metallurgiya, 1987.
7. Muhtadi, O.A., D. van Zyl, Hutchison, I., and Kiel, J., Metal Extraction (Recovery Systems), Introduction to Evaluation, Design and Operation of Precious Metal Heap Leaching Projects, Littleton, Colorado: SME, 1988, Chapt. 8.
8. Gurman, M.A., Investigation into Alkaline Leaching of Gold-Bearing Iron (II) and (III) Arsenates in the Presence of Hydrogen Peroxide, Proc. 9th Cong. Mineral Dressers of the CIS Countries, vol. 1, Moscow: MISiS, 2013.
9. Luganov, V.A., Sazhin, E.N., and Kilibaev, E.O., Elimination of Arsenic from Smelting, Vestn. VKGTU, 2005, no. 3.
10. Aleksandrova, T.N., Gurman, M.A., and Kondrat’ev, S.A., Some Approaches to Gold Extraction from Rebellious Ores on the South of Russia’s Far East, J. Min. Sci., 2011, vol. 47, no. 5, pp. 684–694.
11. Rasskazov, I.Yu., Gurman, M.A., Aleksandrova, T.N., and Shcherbak, L.I., Mineral–Technological Peculiarities and Prospects for Processing Rebellious, Gold–Arsenic Ores, Uchaminskoe Deposit, Tikhookean. Geolog., 2014, no. 4.
EFFECT OF GALENA GRAIN SIZE ON FLOTATION KINETICS
L. Cvetićanin, D. Vučinić, P. Lazić, and M. Kostović
University of Belgrade,
Studentski trg. 1, Belgrade, 11000 Serbia
e-mail: lidijacveticanin@gmail.com
Laboratory tests of relationship between kinetics of flotation of pure galena smaller than 38 µm in size and concentration of potassium butyl xanthate show that flotation rate undergoes considerable reduction when mineral grains are under 18 µm in size. Size grades below 18 µm show the slowest flotation rates that are nearly equal at the collector concentration of 0.5 mg/l. With the higher collector concentration, the flotation rate grows in all size grades under testing.
Flotation kinetics, rate constant, galena grain size, collector concentration
DOI: 10.1134/S1062739115030230 REFERENCES
1. Polat, M. and Chander, S., First-order Flotation Kinetics Models and Methods for Estimation of the True Distribution of Flotation Rate Constants, Int. J. Min. Proc., 2000, no. 58.
2. Trahar, W.J., The Selective Flotation of Galena from Sphalerite with Special Reference to the Effects of Particle Size, Int. J. Min. Proc., 1976, no. 3(2).
3. Trahar, W.J. and Warren, L.J., The Floatability of Very Fine Particles: Review, Int. J. Min. Proc.,
1976, no. 3.
4. Trahar, W.J., A Rational Interpretation of the Role of Particle Size in Floatation, Int. J. Min. Proc.,
1981, no. 8.
5. Jameson, G.L., Physical Factors Affecting Recovery Rates in Flotation, Min. Engin., 1977, no. 9.
6. Radoev, B.P., Alexandrova, L.B., and Tchaljovska, S.D., On the Kinetics of Froth Floatation, Int. J. Min. Proc., 1989, no. 28.
7. Loewenberg, M. and Davis, R.H., Flotation Rates of Fine Spherical Particles and Droplets, Chem. Engin. Sci., 1994, no. 49.
8. Hewitt, D., Fornasiero, D., and Ralston, J., Bubble Particle Attachment Efficiency, Min. Engin., 1994,
vol. 7, no. 5/6.
9. Dobby, G. S. and Finch J. A., Particle Size Dependence in Flotation Derived from a Fundamental Model of the Capture Process, Int. J. Min. Proc., 1987, no. 21.
10. Schulze, H. J. Flotation as Heterocoagulation Process: Possibilities of Calculating the Probability of Flotation, Coagulation and Flocculation, B. Dobias (Ed.), 1993.
11. Ralston, J., Dukhin, S.S., and Mishchuk, N.A., Wetting Film Stability and Flotation Kinetics, Advances in Colloid and Interface Science, 2002, no. 95.
12. Pyke, B., Fornasiero, D., and Ralston, J., Bubble Particles Heterocoagulation under Turbulent Conditions, J. Colloid and Interface Science, 2003, no. 265.
13. Duan, J., Fornasiero, D., and Ralston, J., Calculation of the Flotation Rate Constant of Chalcopyrite in an Ore, Int. J. Min. Proc., 2003, no. 72.
14. Koh, P. T. L. and Schwarz, M.P., CDF Modeling of Bubble-Particle Attachments in Flotation Cells, Miner. Engin., 2006, no. 19.
15. Cvetićanin, L., Lazić, P., Vučinić D., and Knežević, D., The Galena Flotation in Function of Grindability, J. Min. Sci., 2012, vol. 48, no. 4, pp. 760–764.
PRECIPITATION OF SALTS DURING CAPILLARY HOIST IN SOLUTIONS
IN SUBSURFACE AERATION ZONE
A. G. Mikhailov, M. Yu. Kharitonova, I. I. Vashlaev, and M. L. Sviridova
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
ul. Akademgorodok 50, Bld. 24, Krasnoyarsk, 660036 Russia
e-mail: mag@icct.ru
Series of experiments on seepage of water solutions of nickel and cobalt through an evaporation barrier in a porous loose rock mass is described. Evaporation intensity shows tendency toward linear decrease with time due to change of the rock mass porosity as a consequence of salt precipitation in the subsurface aeration zone. It is possible to control evaporation intensity by redistributing vertical zonality of precipitate in the subsurface zone. The authors find mechanism of precipitated salt distribution in subsoil.
Porous rock mass, aeration zone, evaporation barrier, brine, salt concentration
DOI: 10.1134/S1062739115030242 REFERENCES
1. Mikhailov, A.G., Kharitonova, M.Yu., and Vashlaev, I.I., Mobility of Water-Soluble Non-ferrous and Precious Metals in Aged Mineral Processing Waste, J. Min. Sci., 2013, vol. 49, no. 3, pp. 514–520.
2. Trubetskoy, K.N., Present-Day State of Mineral Resource Base and Mining Industry in Russia, Gorny Zh., 1995, no. 1.
3. Chanturia, V.A., Contemporary Problems of Mineral Raw Material Beneficiation in Russia, J. Min. Sci., 1999, vol. 35, no. 3, pp. 314–328.
4. Chanturia, V.A., Makarov, D.V., Trofimenko, T.A., Makarov, V.N., and Vasil’eva, T.N., Change in Technological Properties of Technogenic Sulfide Containing Raw Materials in the Storage Process, J. Min. Sci., 2000,vol. 36, no. 3, pp. 293–298.
5. Vigdergaus, V.E., Makarov, D.V., Zorenko, I.V., Belogub, E.V., Malyarenok, M.N., Shrader, E.A., and Kuznetsova, I.N., Effect Exerted by Structural Features of Copper-Zinc Ores on their Oxidation and Technological properties, J. Min. Sci., 2008, vol. 44, no. 4, pp. 413–420.
6. Umarov, N.V. and Isamukhamedov, Ya.U., Vodno-solevoi rezhim zony aeratsii i gruntovykh vod oroshaemykh massivov (Water–Salt Regime at Aeration Zone and Underground Waters at Irrigation Projects), Tashkent, 1991.
7. Kats, D. M. Vliyanie orosheniya na rezhim gruntovykh vod (Effect of Irrigation on Underground Water Regime), Moscow: Kolos, 1977.
8. Parfenova, N.I., Korrelyatsiya i otsenka tochnosti opredelenii zasolennosti porod dlya meliorativnykh tselei (Correlation and Precision of Rock Salinity Evaluation in Irrigation Projects, Ushakov Area, Sarpinskaya Lowland), issue 37, Moscow: VSEGINGEO, 1971.
9. Starov, V.M. and Churaev, N.V., Specific Features of Crystal Growth Kinetics in Capillary Mouth under Solution Evaporation, Inzh.-Fiz. Zh., 1988, vol. 54, no. 4.
10. Zolotarev, P.P., Evaporation of Liquid from Plane Solution Surface, DAN SSSR, 1966, vol. 168, no. 1.
11. Tishkova, P.A., Churaev, N.V., and Ershov, A.P., Evaporation Rates for Concentrated Electrolyte Solutions from Thin Capillaries, Inzh.-Fiz. Zh., 1979, vol. 37, no. 5.
12. Gamayunov, N.I., Gamayunov, S.N., and Mironov, V.A., Osmoticheskii massoperenos (Osmotic Mass Transport), Tver: TGTU, 2007.
13. Veran-Tissoires, S., Marcoux, M., and Prat, M., Why Salt Clusters Form on Basement Walls, Physics, 2012, vol. 5, no. 15.
ANALYSIS OF ADSORPTION OF PHYTOGENOUS COLLECTING AGENTS
AT THE GOLD-CONTAINING SULFIDES DURING FLOTATION
T. N. Matveeva, N. K. Gromova, and E. V. Koporulina
Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: tmatveyeva@mail.ru
The article presents research findings of testing adsorption of phytogenous collecting agents at the surface of gold-containing pyrite and arsenopyrite using UV spectroscopy, as well as analytical scanning electron, laser and atomic force microscopy methods. It is found that components of extracts of oak bark and umbelliferous plant foliage are selectively adsorbed at the sulfide mineral surface, which enables selective flotation of pyrite and arsenopyrite in gold-bearing sulfide ore dressing.
Gold-bearing ore, pyrite, arsenopyrite, phytogenous extracts, adsorption
DOI: 10.1134/S1062739115030254 REFERENCES
1. Shubov, L.Ya., Ivankov, S.I., and Shcheglova, N.K., Flotatsionnye reagenty v protsessakh obogashcheniya mineral’nogo syr’ya (Flotation Agents in Mineral Processing), vol. 1, Moscow:
Nedra, 1990.
2. Robertson, C., Bradshaw, D., and Harris, P., Decoupling the Effects of Depression and Dispersion in the Batch Flotation of a Platinum Bearing Ore, Proc. 22nd IMPC, Cape Town, South Africa, 2003.
3. Somasundaran, P., Wang, J., Pan, Z., et al., Interactions of Gum Depressants with Talc: Study of Adsorption by Spectroscopic and Allied Techniques, Proc. 22nd IMPC, Cape Town, South Africa, 2003.
4. Khan, G.A., Gabrielova, L.I., and Vlasova, N.S., Flotatsionnye reagenty i ikh primenenie (Flotation Agents and Their Use), Moscow: Nedra, 1986.
5. Trusov, P.D., Organicheskie kolloidy i ikh ispolzovanie vo flotatsii (Organic Colloids and Their Application in Flotation), LGI Transactions, 1939, vol. XII, issue 3.
6. Ivanova, T.A. and Chanturia, E.L., Application of Complexing Reagents to Flotation Separation of Varieties of Pyrite, J. Min. Sci., 2007, vol. 43, no. 4, pp. 441–449.
7. Chanturia, V.A., Matveeva, T.N., Ivanova, T.A., Gromova, N.K., and Lantsova, L.B., New Complexing Agents to Select Auriferous Pyrite and Arsenopyrite, J. Min. Sci., vol. 47, no. 1, pp. 102–108.
8. Matveeva, T.N., Scientific Grounds for High-Performance Agent Modes in Platinoferous Sulfide Mineral Flotation from Rebellious Ores, J. Min. Sci., 2011, vol. 47, no. 6, pp. 824–828.
9. Matveeva, T.N., Ivanova, T.A., and Gromova, N.K., Sorption and Flotation Properties of Phytogenous Agents in Selective Flotation of Sulfide Minerals Containing Noble Metals, Tsv. Met., 2012, no. 12.
10. Korenman, I.M., Fotometricheskii analiz (Photometric Analysis), Moscow: Khimiya, 1970.
11. Kretovich, V.L., Biokhimiya Rastenii (Biochemistry of Plants), 2 ed., Moscow: Vyssh. shkola, 1986.
12. Goodwin, T. W. and Mercer, E.I., Introduction to Plant Biochemistry, vol. 2, Oxford: Pergamon, 1972, Russian translation, Moscow: Mir, 1986.
13. Barton, S.D. and Ollis, W.D., General Organic Chemistry, vol. 9, Oxford: Pergamon, 1979, Edit. Kochetkova, N.K., Moscow: Khimiya, 1985.
14. Semenistaya, E.N., High-Effective Liquid Chromatography in Studies on Physicochemical Properties of Coumarins and their Complexes with Transition Metals, Cand. Chem. Sci. Thesis, Moscow: 2007.
15. Antropova, I.G., Fenin, A.A., and Revina, A.A., Radiation–Chemical Transformation of Coumarins in Organic Solvents, Khim. Vysok. Energ., 2007, vol. 41, no. 2.
16. Ganguly, B.K. and Bagchi, P., Studies on the Ultraviolet Absorption Spectra of Coumarins and Chromones. Part I, J. Org. Chem., 1956, vol. 21, no. 12.
17. Kalyanmay Sen and Bagchi P., Studies on the Ultraviolet Absorption Spectra of Coumarins and Chromones, Part II., Hydroxy Derivatives, J. Org. Chem., 1959, vol. 24, no. 3.
GEOINFORMATION SCIENCE
SERVICES FOR CLOUD COMPUTING AND SEISMIC DATA PROCESSING
FOR GEOMECHANICALLY AND GEODYNAMICALLY ACTIVE COAL MINING AREAS IN KUZBASS
V. P. Potapov, V. N. Oparin, O. L. Giniyatullina, and I. E. Kharlampenkov
Kemerovo Division, Institute of Computational Technologies,
Siberian Branch, Russian Academy of Sciences,
ul. Rukavishnikova 21, Kemerovo, 650025 Russia
e-mail: kembict@gmail.com
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.ncs.ru
The authors present a new, more efficient decision on using information services for cloud computing in geomechanical and geodynamic safety control in seismically active areas. The offered approach is trialed in terms of analysis of seismicity data obtained in the Kemerovo Region between Jan 1, 2006 and Dec 31, 2009, using the method of plotting migration trajectories for a reduced center of seismic energy release, as well as for a spot with an area of 150 km2. The implementation of the developed services together with a cloud hosting enable cutting the time of seismic data processing algorithm.
Geomechanical and geodynamic safety, coal mining areas in Kuzbass, geoinformation technologies, web-services, cloud hostings, seismicity, speed
DOI: 10.1134/S1062739115030266 REFERENCES
1. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46,
no.6, pp. 666–671.
2. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Kharlampenkov, I.E., Fractal Analysis of Geodynamic Even Migration Paths in the Kuzbass Area, J. Min. Sci., 2012, vol. 48, no. 3, pp. 474–479.
3. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission in Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.
4. Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shekunova, E.V., and Podkorytova, V.G., Mining Induced Seismicity at Open-Pit Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013), J. Min. Sci., 2014, vol. 50, no. 2, pp. 224–228.
5. Oparin, V.N., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization Processes in the Crust under Strong Induced Impact), N. N. Mel’nikov (Ed.), Novosibirsk: SO RAN, 2012.
6. Potapov, V.P., Oparin, V.N., Logov, A.S., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechannical–Geodynamic Control Geoinformation System with Entropy Analysis of Seismic Events (in Terms of Kuzbass), J. Min. Sci., 2013, vol. 49, no. 3, pp. 482–488.
7. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Information Science, J. Min. Sci., 2014, vol. 50, no. 1, pp.142–154.
8. Michael Peterson, OnLine Maps with API and WebService, New York, Heidelberg: Springer, 2012.
9. Above the Clouds. A Berkeley View of Cloud Computing, USA, California, 2009.
10. Cafaro, M. and Alliso, G. (Eds.), Grid, Clouds and Virtualization, London, Ney York: Springer, 2011.
11. Soroko, V., Cloud Computing and Services: Classification, Basic Functions, Advantages, and Drawbacks, Proc. Int. Conf. Developers and Users of Free/Open Source Software. August 2014, http: lvee.org/en/reports/LVEE_2011_03.
12. Romanchenko, V., Everyday Cloud Computing, 3D News, Daily Digital Digest [j.]. http://www.3dnews.ru/editorial/cloud_computing.
13. Summary Table: Google App Engine vs. Microsoft Windows Azure vs. Salesforce.com (Force.com), http:cloud-computing.findthebest.com/compare/15–17–19–123/Google-App-Engine-vs-Microsoft-Windows-Azure-vs-Salesforce-com-Force-com.
14. Jelastic. https: jelastic.com.
15. OpenShift. https: www.openshift.com.
16. API Google Maps. https: developers.google.com/maps/?hl=ru.
17. Oracle Fusion Middleware, MapViewer. http://www.oracle.com/technetwork/ middleware/mapviewer/ overview/index-090261.html.
18. OpenLayers: Free Maps for the Web. http: openlayers.org.
NEW METHODS AND INSTRUMENTS IN MINING
NEW-GENERATION PORTABLE GEOACOUSTIC INSTRUMENT FOR ROCKBURST HAZARD ASSESSMENT
I. Yu. Rasskazov, D. S. Migunov, P. A. Anikin, A. V. Gladyr’, A. A. Tereshkin, and D. O. Zhelnin
Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: rasskazov@idg.khv.ru
The article gives specifications and design features of a new-generation portable digital geoacoustic instrument for local geomechanical control. Field application of the instrument in rockburst-hazardous conditions is described and its capacity of efficient express-estimation of parameters of deformation processes running in a rock mass is illustrated.
Rockburst hazard, rock mass, stress–strain state, geomechanical monitoring, ground control, acoustic emission, local control
DOI: 10.1134/S1062739115030278 REFERENCES
1. Instruktsiya po bezopasnomu vedeniyu gornykh rabot na rudnikakh i nerudnykh mestorozhdeniyakh i ob’ektakh stroitel’stva podzemnykh sooruzhenii, sklonnykh i opasnykh po gornym udaram (Guidelines on Safe Metal and Nonmetal Mining and Underground Construction under Conditions of Rockburst Hazard, RD 06–329–99), Moscow: GP NTTs, 2000.
2. Kulakov, G.I. and Yakovitskaya, G.E., Acoustic Emission and Stages of Crack-Formation Process in Rock, J. Min. Sci., 1993, vol. 29, no. 2, pp. 111–114.
3. Kurlenya, M.V., Vostretsov, A.G., Kulakov, G.I., and Yakovitskaya, G.E., Registratsiya i obrabotka signalov elektromagnitnogo izlucheniya gornykh porod (Recording and Processing of Electromagnetic Emission Signals in Rocks), Novosibirsk: SO RAN, 2000.
4. Antsyferov, M.S., Antsyferova, N.G., and Kagan, Ya.Ya., Seismoakusticheskie issledovaniya i problema prognoza dinamicheskikh yavlenii (Seismo-Acoustic Exploration and Dynamic Event Forecasting Problem), Moscow: Nauka, 1971.
5. Ardashev, K.A., Akhmatov, V.I., and Katkov, G.A., Metody i pribory dlya issledovaniya proyavlenii gornogo davleniya: sprav. (Processes and Instrumentation to Study Rock Pressure Events: Reference Book), Moscow: Nauka, 1981.
6. Voznesensky, A.S., Sistemy kontrolya geomekhanicheskikh protsessov (Geomechanical Control Systems), Moscow: MGGU, 2002.
7. Petukhov, I.M., Smirnov, V.A., Vinokur, B.Sh., and Dal’nov, A.S., Geofizicheskie issledovaniya gornykh udarov (Geophysical Investigation of Rockbursts), Moscow: Nedra, 1975.
8. Rasskazov I. Yu., Kontrol’ i upravlenie gornym davleniem na rudnikakh Dal’nevostochnogo regiona (Control and Management of Rock Pressure in Russia’s Far East Mines), Moscow: Gornaya kniga, 2008.
9. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan, E.V., Osnovy mekhaniki gornykh porod (Fundamentals of Rock Mechanics), Leningrad: Nedra, 1989.
10. Yamshchikov, V.S., Metody i sredstva issledovaniya i kontrolya gornykh porod i protsessov (Methods and Instrumentation to Study and Control Rocks and Processes), Moscow: Nedra, 1982.
11. Joung, R., Hutchins, D., Taltbi, S., Chow, T., Falis, S., Farell, L., Jansen, D., McGaughey, J., Towers, J., and Urbancic, T., Laboratory and Field Investigations of Rockburst Phenomena Using Concurrent Geotomographic Imaging and Acoustic Emission, Microseismic Techniques, Pure and Appl. Geophys., 1989, nos. 3–4.
12. Rasskazov, I.Yu., Migunov, D.S., Gladyr’, A.V., Makarov, V.V., Anikin, P.A., Iskra, A.Yu.,
Zhelnin, D.O., and Sidlyar A. V., Updating of Instruments for Local Rockburst Monitoring in Mining under Complicated Ground Conditions, Problems of Georesource Development in Russia’s Far East, Special Issue, GIAB, 2014, issue 5, no. 12.
13. Metodicheskie ukazaniya po seismoakusticheskim i elektromagnitnym metodam polucheniya kriteriev stepeni udaroopasnosti (Guidelines on Seismoacoustic and Electromagnetic Processes for Rockburst Evaluation Criterion), Leningrad: VNIMI, 1986.
14. Rasskazov, I.Yu., Saksin, B.G., Anikin, P.A., Potapchuk, M.I., Gladyr’, A.V., Sidlyar, A.V., Damaskinskaya, E.E., Prosekin, B.A., and Osadchy, S.P., Methods and Results of Burst-Hazardous Assessment in the Underground Mines of Russian Far East, Proc. 8th Int. Symp. Rockbursts and Seismicity in Mines, Obninsk–Perm, 2013.
MEASURING EQUIPMENT AND TEST BENCH TO CONTROL EVOLUTION
OF ACOUSTIC-DEFORMATION AND HEAT FIELDS INDUCED IN SOLIDS UNDER FAILURE BY FLUIDS
V. N. Oparin, V. I. Vostrikov, O. M. Usol’tseva, P. A. Tsoi,
and V. N. Semenov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.nsc.ru
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
Novosibirsk State Technical University,
pr. K. Marks 20, Novosibirsk, 630073 Russia
The authors have developed a procedure and a test bench for studying evolution of various nature physical fields in modeling geomedium fracture by fluids. The test bench performs synchronous recording of macro- and micro-deformation, heat and acoustic emission induced in physical models of geomedium under loading to discontinuity. The experimental procedure has been trialed. The analysis of the synchronized test data allows a conclusion on the existence of time–space relationship between different nature physical fields induced during failure of solids.
Physical model, laboratory experiment, deformation, fluid-induced fracture, acoustic emission, speckle-method, test bench, stress–strain state evolution, physical fields, interrelationship
DOI: 10.1134/S106273911503028X
REFERENCES
1. Damaskinskaya, E.E. and Kadomtsev, A.G., Departure from Gutenberg–Richter Law, Pis’ma Zh. Tekh. Fiz., 2013, vol. 39, issue 2.
2. Sobolev, G.A., Lementueva, R.A., and Los’, V.F., Investigation into Acoustic Signal Spectra, Proc. 9th Int. School-Seminar Physical Fundamentals of Rock Failure Forecasting, Irkutsk: 2013.
3. Panteleev, I.A., Plekhov, O.A., and Naimark, O.B., Specific Features of Strain Localization under Uniaxial Loading of Rocks, Proc. 9th Int. School-Seminar Physical Fundamentals of Rock Failure Forecasting, Irkutsk: 2013.
4. Shkuratnik, V.L., Filimonov, Yu.L., and Kuchurin, S.V., Features of the Kaiser Effect in Coal Specimens at Different Stages of the Triaxial Axisymmetric Deformation, J. Min. Sci., 2007, vol. 43, no. 1, pp. 1–7.
5. Voznesensky, A.S., Ustinov, K.B., and Shkuratnik, V.L., Theoretical Acoustic Emission Model
under Mechanical Loading of Rocks in the Maximum Compression Area, Prikl. Mekh. Tekh. Fiz., 2006, vol. 47, no. 4.
6. Vinnikov, V.A. and Shkuratnik, V.L., Theoretical Model of Thermoemission Effect of Memory in Rocks, Prikl. Mekh. Tekh. Fiz., 2008, vol. 49, no. 2.
7. Vinnikov, V.A., Voznesensky, A.S., Ustinov, K.B., and Shkuratnik, V.L., Theoretical Models of Acoustic Emission in Rocks at Different Heating Modes, Prikl. Mekh. Tekh. Fiz., 2010, vol. 51, no. 1.
8. Shkuratnik, V.L., Novikov, E.A., and Oshkin, R.O., Experimental Analysis of Thermally Simulated Acoustic Emission in Various-Genotype Rock Specimens under Uniaxial Compression, J. Min. Sci., 2014, vol. 50, no. 2, pp. 249–255.
9. Shkuratnik, V.L. and Cherepetskaya, E.B., Laser Ultrasonic Spectroscopy as a New Promising Geocontrol Method, Izv. vuzov, Gorny Zh., 2009, no. 1.
10. Shcherbakov, I.P. and Kuksenko, V.S., Acoustic Emission Accumulation Stage in Compression and Impact Rupture of Granite, J. Min. Sci., 2012, vol. 48, no. 4, pp. 656–659.
11. Shcherbakov, I.P., Kuksenko, V.S., and Chmel’, A.E., Non-Extensive Statistical Analysis of Data on High-Speed Recording of Impact Solid Body Failure, Pis’ma Zh. Teor. Fiz., 2011, vol. 94, issue 5.
12. Kuksenko, V.S., Guzev, M.A., Makarov, V.V., Rasskazov, I.Yu., Conception of Heavy Compression of Rocks and Rock Masses, Vest. DGTU, e-publication, 2011, no. 3/4 (8/9).
13. Kuksenko, V.S., Makhmudov, H.F., and Manzhikov, B.Ts., Damage Accumulation Model for Solids and Catastrophe Prediction for Large-Scale Objects, J. Min. Sci., 2010, vol. 46, no. 4, pp. 384–393.
14. Zhaoa, X.G., Caib, M., Wanga, J., Maa, L.K., Damage Stress and Acoustic Emission Characteristics of the Beishan Granite, Int. J. Rock Mech. Min. Sci., 2013, vol. 64.
15. Chmel’, A. and Shcherbakov, I.A, Comparative Acoustic Emission Study of Compression and Impact Fracture in Granite, Int. J. Rock Mech. Min. Sci., 2013, vol. 64.
16. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., Krivetsky, A.V., Mechanical-Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
17. Oparin, V.N., Vostretsov, A.G., Krivetsky, A.V., Bizyaev, A.A., and Yakovitskaya, G.E., Integrated Measurement and Recording of Loads, Displacements and Electromagnetic Emission in Rocks under Uniaxial Compression, J. Min. Sci., 2011, vol. 47, no. 5, pp. 547–556.
18. Bespal’ko, A.A., Yavorovich, L.V., Kolesnikova, S.I., et al., Investigation into Variations in Electromagnetic Signal Characteristics under Uniaxial Compression of Rock Specimens, Izv. vuzov, Fizika, 2011, nos. 1/2.
19. Zuev, L.B., Barannikova, S.A., Nadezhkin, M.V., and Gorbatenko, V.V., Localization of Deformation and Prognostibility of Rock Failure, J. Min. Sci., 2014, vol. 50, no. 1, pp. 43–49.
20. Shao-Peng Ma, Xiang-Hong, Xu, Yong-Hong Zhao, The Geo–DSCM system and its Application to the Deformation Measurement of Rock Materials, Int. J. Rock Mech. Min. Sci., 2004, vol. 41.
21. Yunliang Tan, Yanchun Yin, and Tongbin Zhao, Investigation of Rock Failure Pattern in Creep
by Digital Speckle Correlation Method, Adv. Mat. Sci. Eng., 2013, vol. 2013, Article ID 916069. http://dx.doi.org/10.1155/2013/916069.
22. Shao-Peng M., Shan–Jun L., and Guan-Chang J. An Experimental Study of the Failure Process
of En-Echelon Fault Structure Using Digital Speckle Correlation Method, Chin. J. Geophys., 2005,
vol. 48, no. 6.
23. Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis
and Evolution of Discontinuities in Geomaterials: Theory and Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp. 1–7.
24. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress-Strain State in Structure Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.
25. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, P.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, N.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 3, pp. 191–214.
26. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., On Formation of Elastic Wave Packages in Pulse Excitement of Block Mediums. Pendulum-Type Waves V?, Dokl. Akad. Nauk, 1993, vol. 333, no. 4.
27. Oparin, V.N., Simonov, B.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Fundamentals to Increase Oil Recovery from Petroleum Reservoir in Vibro-Wave Processes) Novosibirsk: Nauka, 2010.
28. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J. Min. Sci., 2012, no. 2, pp. 203–222.
29. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, no. 2, pp. 175–209.
30. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part III, J. Min. Sci., 2014, no. 4, pp. 623–645.
31. Yingwei Shi, Qun He, Shanjun Liu, and Lixin Wu, The Time–Space Relationship between Strain, Temperature and Acoustic Emission of Loaded Rock, Progress in Electromagnetics Research Symposium, China, 2010.
32. Kyu, N.G., Particular Issues Associated with Fluid-Fracturing of Rocks by Plastic Materials, J. Min. Sci., 2011, vol. 47, no. 4, pp. 450–459.
EQUIPMENT FOR MICROSEISMIC MONITORING OF GEODYNAMIC PROCESSES IN UNDERGROUND HARD MINERAL MINING
S. V. Serdyukov, A. V. Azarov, P. A. Dergach, and A. A. Duchkov
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru
Trofimuk Institute of Petroleum Geology and Geophysics, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia
The article describes engineering decisions on equipment for acquisition of microseismicity data, that improve information content of microseismic monitoring of geodynamic processes in underground hard mineral mining.
Microseismic monitoring, geodynamic processes, data acquisition system, rock mass, downhole seismic equipment
DOI: 10.1134/S1062739115030291 REFERENCES
1. System of Wireless Information Infrastructure SBGPS [Electronic resource], URL: http://www.granch.ru/ (inquiry date Nov 27, 2014).
2. Noncable Seismosystem SCOUT [Electronic resource], URL: http://skbsp.ru/index.php/ ru/sejsmosistemy/beskabelnaya-sejsmosistema-scout (inquiry date Nov 27, 2014).
3. Blackfin Embedded Processor ADSP-BF512/BF514/BF514F16/BF516/BF518/BF518F16 [Electronic resource]. — URL: http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-BF512_ 514_514F16_516_518_518F16.pdf (inquiry date May 11, 2015).
4. Geophone GS-ONE [Electronic resource], URL: http://www.geospace-ufa.ru/catalog/geofony/gs-one.html (inquiry date Nov 27, 2014).
5. Presentation of GITS [Electronic resource], URL: http://www.vnimi.ru/hardGITS.php (inquiry date Nov. 24, 2014).
6. Gladyr’, A.V., Miroshnokov, V.I., Bolotin, Yu.A., Aleksandrov, A.V., Anikin, P.A., and Rasskazov, M.I., New-Generation Hardware of Microseismic Monitoring System, GIAB, 2012, no. 5.
7. System for Local and Regional Monitoring and Forecasting of Rock-Mass State MIKON-GEO [Electronic resource], URL: http://www.ingortech.ru/produktsiya/statsionarnye-sistemy/ paragraf-41-pb/kontrol-gornogo-massiva-p-41-pb (inquiry date May 28, 2015).
8. Network Seismic Monitoring System SSSM TOO ELgeo [Electronic resource], URL: http://www.elgeo.kz/newssm.shtml (inquiry date Nov 27, 2014).
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|