Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2015 ãîä » JMS, Vol. 51, No. 1, 2015

JMS, Vol. 51, No. 1, 2015


GEOMECHANICS


ACOUSTIC EMISSION DURING DIFFERENT-TYPE INTER-BLOCK MOVEMENTS
G. G. Kocharyan and A. A. Ostapchuk

Institute of Dynamics of Geopsheres, Russian Academy of Sciences,
Leninskii pr. 38, Bld. 1, Moscow, 119334 Russia
e-mail: gevorgk@idg.chph.ras.ru
Moscow Physico-Technical University,
Institutskii per. 9, Dolgoprudny, 141700 Russia
e-mail: ostap165@gmail.com

The article reports the lab experimentation on seismic/acoustic emission during different-type inter-block movements of rock mass. The fact that co-seismic displacement under induced earthquakes occurs along the existing interfaces is the basis for relatively simple tests on a slip-model plant. Using different materials as fracture fillers allowed modeling entire range of probable deformation modes. The deformation modes are conditionally grouped as creep or steady-state slip, unsteady-state slip and regular discontinuous slip or stick-slip. The authors show that statistics of acoustic emission during slip is described using the Gutenberg–Richter law. The strongest “representative” events under shearing occur quasi-regularly, with probability much higher than follows from G–R law. The functional relation is found between the acoustic emission energy and the shear velocity.

Rockburst, induced earthquake, fault, deformation mode, acoustic emission, seismic monitoring

DOI: 10.1134/S1062739115010019 

REFERENCES
1. Adushkin, V.V., Strong Natural and Induced Earthquakes as a Special Type of Trigger Seismicity, Proc. 2nd All-Russian Conf. Trigger Effects in Geosystems, V. V. Adushkin and G. G. Kocharyan (Eds.), Moscow: GEOS, 2013.
2. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Minefields in the Oktyabrsky and Taimyrsky Mines in the Norilsk Deposit in 2003. Part I: Seismic Regime, J. Min. Sci., 2004, vol. 40, no. 4, pp. 321–338.
3. Oparin, V.N., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Earth Crust Destruction and Self-Organization in the Areas under Strong Industrial Load), Novosibirsk: SO RAN, 2012.
4. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., Miroshnichenko, N.A., and Vasil’eva, E.V., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 707–713.
5. Emanov, A.F., Emanov, A.A., The World’s Largest Induced Seismic Event. Bachatsky Earthquake on June 18, 2013 (ML = 6.1, Kuzbass), Interexpo Geo-Sibir 2014, Novosibirsk, 2014.
6. Ellsworth, W.L., Injection-Induced Earthquakes, Science, 2013, vol. 341.
7. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics and Forerunners of Earthquakes), Moscow: Nauka, 2003.
8. Bobryakov, A.P., Modeling Dynamic Manifestations in a Space-Limited Deformable Block Medium, J. Min. Sci., 2012, vol. 48, no. 6, pp. 975–981.
9. Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and Laboratory Experiment, J. Min. Sci., 2013, vol. 49, no. 1, pp. 1–7.
10. Klishin, S.V. and Mikenina, O.A., Horizontal Pressure Coefficient in a Random Packing of Discrete Elements, J. Min. Sci., 2013, vo. 49, no. 6, pp. 881–887.
11. Klishin, S.,V., Mikenina, O.A., and Revuzhenko, A.F., Deformation of Granular Material around a Rigid Inclusion, J. Min. Sci., 2014, vol. 50, no. 2, pp. 229–234.
12. Syrnikov, N.M. and Tryapitsyn, V.M., Mechanism of Induced Earthquake in Khibiny, DAN SSSR, 1990, vol. 314, no. 4.
13. Heesakkers, V., Muphy, S., and Reches, Z., Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa, Pageoph., 2011, vol. 168.
14. Kocharyan, G.G., Ostapchuk, A.A., Markov, V.K., and Pavlov, D.V., Some Questions of Geomechanics of the Faults in the Continental Crust, Izvestiya, Physics of the Solid Earth, 2014, vol. 50, no. 3.
15. Peng, Z. and Gomberg, J., An Integrated Perspective of the Continuum between Earthquakes and Slow-Slip Phenomena, Nature Geosciences, 2010, no. 3, pp. 599–607.
16. Kocharyan, G.G., Markov, V.K., Ostapchuk, A.A., and Pavlov, D.V., Mesomechanics of Shear Resistance along a Filled Crack, Physical Mesomechanics, 2014, vol. 17, no. 2.
17. Kuznetsov, V.M., Matematicheskie modeli vzryvnogo dela (Mathematical Models in Blasting), Novosibirsk: Nauka, 1977.
18. Gutenberg, B. and Richter, C., Seismicity of the Earth and Its Associated Phenomena, Princeton, N. J.: Princeton University Press, 1949.
19. Nadeau, R.M. and Dolenc, D., Nonvolcanic Tremors Deep beneath the San Andreas Fault, Science, 2005, vol. 307.
20. Omori, F., On the Aftershocks of Earthquakes, Journal of College of Science, Imperial University of Tokyo, 1894, vol. 7.
21. Kasahara, K., Earthquakes Mechanics, Cambridge University Press, 1981.
22. Ben-Zion, Y., Collective Behavior of Earthquakes and Faults: Continuum–Discrete Transitions, Progressive Evolutionary Changes, and Different Dynamic Regimes, Rev. Geophys., 2008, vol. 46, RG4006.


TRIGGER INITIATION OF ELASTIC ENERGY RELAXATION IN HIGH-STRESS GEOMEDIUM
A. P. Bobryakov, V. P. Kosykh, and A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bobriakov@ngs.ru

The authors have developed and manufactured a test bench and a measurement apparatus for modeling movement of surfaces of faults with a pre-loaded granular filler in rock mass under trigger destressing. The trigger is a weak seismic wave generated by a single point-wise blow. It is found that displacement discontinuities appear under drop of force. It is shown that soft loading consumes much energy and destressing in this case results in smaller drop of forces but larger displacements. The authors find out that displacements are initiated by the destressing wave that lowers contact friction in the geomedium.

Shearing, trigger effects, soft loading, faults, friction, sliding

DOI: 10.1134/S1062739115010020 

REFERENCES
1. Bobryakov, A.P. and Lubyagin, A.V., Experimental Investigation into Unstable Slippage, J. Min. Sci., 2008, vol. 44, no. 4, pp. 336–344.
2. Kosykh, V.P., Displacement Discontinuity Distribution in Granular Materials under Confined-Space Shearing, J. Min. Sci., 2010, vol. 46, no. 3, pp. 234–240.
3. Aksenov, V.V., Lavrikov, S.V., and Revuzhenko, A.F., Numerical Modeling of Deformation Processes in Rock Pillars, Applied Mechanics and Materials, 2014, vol. 682.
4. Klishin, S.V. and Mikenina, O.A., Horizontal Pressure Coefficient in a Random Packing of Discrete Elements, J. Min. Sci., 2013, vo. 49, no. 6, pp. 881–887.
5. Adushkin, A.A. and Kocharyan, G.G. (Eds.), Trigger Effects in Geosystems, Proc. All-Russian Workshop, Moscow: Geos, 2010.
6. Molchanov, A.E., Mechanics of Trigger Effect under Induced Earthquake, Proc. All-Russian Workshop Trigger Effects in Geosystems, Moscow: Geos, 2010.
7. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Uniform Shear of Granular Material. Localization of Deformation, J. Min. Sci., 1983, vol. 19, no. 5, pp. 372–376.
8. Bobryakov, A.P. and Revuzhenko, A.F., Uniform Displacement of a Granular Material. Dilatancy, J. Min. Sci., 2982, vol. 18, no. 5, pp. 373–379.
9. Bobryakov, A.P., Influence of Weak Shakes on a Statically Stressed Geomedium, J. Min. Sci., 2008, vol. 44, no. 2, pp. 115–122.
10. Kocharyan, G.G., Benedik, A.A., Kostyuchenko, V.N., Kulyukin, A.M., and Pavlov, D.V., Geomechanical Modeling of Geophysical Objects, Fizicheskie protsessy v geosferakh pri sil’nykh vozmushcheniyakh (Physical Processes in Geospheres under Strong Disturbance), Moscow: IDG RAN, 1996.
11. Esaki, N., Du, S., Metani, Y., Ikusada, K., and Jing, Li., Development of a Shear Flow Test Apparatus and Determination of Coupled Properties for a Single Rock Joint, Int. J. Rock Mech. Min. Sci., 1999, vol. 36.
12. Kocharyan, G.G., Markov, V.K., Ostapchuk, A.A., and Pavlov, D.V., Mechanics of Shear Resistance in a Crack with a Filler, Fiz. Mezomekh., 2013, vol. 16, no. 5.
13. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Rock Mass Deformation Dynamics), Moscow: Akademkniga, 2003.
14. Barenblatt, G.I., Genius Engineer Sergei Khristianovich, Sergei Alekseevich Khristianovich: vydayushchiisya mekhanik XX veka (Sergei Khristianovich: Genius Engineer of the 20th Century), V. N. Fomin and A. M. Kharitonov (Eds.), Novosibirsk: Geo, 2008.


EVOLUTION OF THERMOHYDRODYNAMIC FIELDS AT TAILINGS DAM AT KUMTOR MINE (KYRGYZ REPUBLIC)
L. A. Nazarova, L. A. Nazarov, M. D. Dzhamanbaev, and M. K. Chynybaev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: larisa@misd.nsc.ru
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
Razzakov Kyrgyz State Technical University,
pr. Mira 66, Bishkek, 720044 Kyrgyzstan

The authors have developed the FEM geomechanical model to describe evolution of temperature and hydrodynamic fields at the tailings dam of the Kumtor Gold Mine, Kyrgyzstan, in the permafrost region. The influence exerted by the temperature variation in the liquid waste accumulated in tailings pond and by the changes of size of impervious screen on the volume of filtrate material through the dam is evaluated in numerical experiments. It is shown that the pressure variation rate in the observation hole can be the indicator of the impervious screen rupture.

Soil, thermohydrodynamic model, permafrost, Kumtor mine, tailings pond, tailings dam, impervious screen

DOI: 10.1134/S1062739115010032 

REFERENCES
1. Batugin, A.S., Geodinamicheskoe raionirovanie (Geodynamic Zoning), Moscow: MGU, 2003.
2. Dovgan’, V.I., Seismic Surveillance at Toktogul Hydroelectric Plant, Vestn. KRSU, 2006, vol. 6, no. 3.
3. Vozin,V.F. (Ed.), Vliyanie GES na okruzhayushuyu sredu v usloviyakh Krainego Severa (Environmental Impact of Hydroelectric Plant in the Conditions of the Far North), Yakutsk, 1987.
4. Sobol’, S.V., Vodokhranilishcha v oblasti vechnoi merzloty (Water Storages in the Permafrost Area), Nizhni Novgorod: NNGASU, 2007.
5. Biyanov, G.F., Kogodovsky, O.A., and Makarov, V.I., Gruntovye plotiny na vechnoi merzlote (Soil Dams on the Permafrost), Yakutsk, 1989.
6. Goy, L., Fabre, D., and Menard, G., Modeling of Rock Temperatures for Deep Alpine Tunnel Projects, Rock Mechanics and Rock Engineering, 1996, vol. 29, no. 1.
7. Bense, V.F., Kooi, H., Ferguson, G., and Read, T., Permafrost Degradation as a Control on Hydrogeological Regime Shifts in a Warming Climate, J. Geophys. Res., 2012, 117, F03036.
8. Michel, F.A., and van Everdingen, R.O., Changes in Hydrogeologic Regimes in Permafrost Regions due to Climatic Change, Permafrost Periglacial Processes, 1994, no. 5.
9. Rawlins, M.A., Ye, H., Yang, D., et al., Divergence in Seasonal Hydrology across Northern Eurasia: Emerging Trends and Water Cycle Linkages, J. Geophys. Res., 2009, 114, D18119.
10. Bense, V. and Person, M., Transient Hydrodynamics in Inter-Cratonic Basins during Glacial Cycles, J. Geophys. Res., 2008, 113, F04005.
11. Zhang, Y., Chen, W., and Riseborough, D.W., Disequilibrium Response of Permafrost Thaw to Climate Warming in Canada over 1850–2100, Geophys. Res. Lett., 2008, 35, L02502.
12. Zhou, W. and Huang, S.L., Modeling Impacts of Thaw Lakes to Ground Thermal Regime in Northern Alaska, J. Cold Reg. Eng., 2004, 18(2), pp. 70–87.
13. Velicogna, I., Tong, J., Zhang, T., and Kimbal, J.S., Increasing Subsurface Water Storage in Discontinuous Permafrost Areas of the Lena River Basin, Eurasia, Detected from GRACE, Geophys. Res. Let., 2012, 39, L09403.
14. Chzhan, R.V., Temperaturnyi rezhim i ustoichovost’ nizkonapornykh gidrouzlov i gruntovykh kanalov v kriolitozone (Temperature Regime and Stability of Low-Head Water Power Development and Ground Channels in Permafrost Regions), Yakutsk: IMZ SO RAN, 2002.
15. Tsybin, A.M., Nekotorye voprosy rascheta temperaturnykh polei, svyazannye so stroitel’stvom i ekspluatatsiei gidrosooruzhenii, rabotayushchikh v usloviyakh Krainego Severa i vechnoi merzloty (Temperature Field Calculation Issues Connected with Waterworks Construction and Operation in the Far North and Permafrost Regions), Saint-Petersburg: VNIIG im. B. E. Vedeneeva, 1995.
16. McKenzie, J.M., Voss, C.I., and Siegel, D.I., Groundwater Flow with Energy Transport and Water–Ice Phase Change: Numerical Simulations, Benchmarks, and Application to Freezing in Peat Bogs, Adv. Water Resour., 2007, 30.
17. Lolaev, A.B., Spesivtsev, A.V., Spesivtsev, V.V., et al., Site Investigation of Tailing Dam in Permafrost Region, Geoeviron. Engineering, R. N. Yong and H. R. Thomas (Eds.), Telford, London, 1997.
18. Sayles, F. H. Special Report 87–11 July 1987 US Army Corps of Engineers Cold Regions Research & Engineering Laboratory Embankment Dams on Permafrost Design and Performance Summary, Bibliography and the Annotated Bibliography.
19. Buiskikh, A.A. and Zamoshch, M.N., Prediction of Thermal Regime within a Tailing Dump under Permafrost, J. Min. Sci., 2010, vol. 46, no. 1, pp/ 28–33.
20. www.kumtor.kg
21. RF Construction Norms and Regulations 2.01.01–82. Construction Climatology and Geophysics.
22. Kumtor Operating Company. Kumtor Gold Project. Feasibility Study, Kilborn Project S566–15, 1993.
23. Osmonvetova, D.K., Modern Ecology in the Area of the Naryn River Upperstream and Predictive Estimates in View of Active Gold Mining, Zap. KRSU, 2011, vol. 11, no. 3.
24. Goncharov, S.A., Termodinamika (Thermodynamics), Moscow: MGGU, 2002.
25. Zienkiewicz, O.C., The Finite Element Method in Engineering Science. London: McGraw-Hill, 1971.
26. Nazarova, L.A., Stress State of a Sloping-Bedded Rock Mass around Working, J. Min. Sci., 1985, vol. 21, pp. 132–135.
27. Nazarova, L.A., Modeling of Volume Stress Fields in Earth Crust Fault Zones, Dokl. AN, 1995, vol. 342, no. 6.
28. Updated RF Construction Norms and Regulations 2.06.05–84. Code 39.13330.2012. Ground Dams.
29. Ishchenko, A.V., Obespechenie fil’tratsionnoi bezopasnosti i effektivnosti protivofil’tratsionnykh ustroistv gidrotekhnicheskikh sooruzhenii (Impermeability and Efficiency of Anti-Seepage Systems and Waterworks), Rostov-on-Don: SKNTSVSH, 2007.


INTERRELATION OF THE ACOUSTIC Q-FACTOR AND STRENGTH IN LIMESTONE
A. S. Voznesensky, Ya. O. Kutkin, and M. N. Krasilov

Moscow State Mining University,
Leninskii pr. 6, Moscow, 119991 Russia
e-mail: al48@mail.ru

Under analysis is the experimental testing of interrelation between the limit of strength and the acoustic Q-factor in terms of Kasimov deposit limestone. The limit of strength is found using two procedures, namely, direct method and interpolation, which are compared. The authors illustrate the advantage of the acoustic Q-factor procedure in assessment of damage and residual strength of rocks as against the method of elastic wave velocities. The resultant relations can be used in assessment of residual strength and remaining life of pillars and roofs in underground excavations.

Rock, strength, acoustic Q-factor, attenuation, dynamic characteristics, damage

DOI: 10.1134/S1062739115010044 

REFERENCES
1. Protod’yakonov, M.M., Teder, R.I., Il’nitskaya, E.I., et al., Raspredelenie i korrelyatsiya pokazatelei fizicheskikh svoistv gornykh porod: sprav. posobie (Distribution and Correlation of Physical Properties of Rocks: Reference Aid), Moscow: Nedra (1981).
2. Dortman, N.B., Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (Physical Properties of Rocks and Minerals), Moscow: Nedra, 1964.
3. Aleksandrov, K.S., Belikov, B.P., and Ryzhova, T.V., Uprugie svoistva porodoobrazuyushchikh mineralov i gornykh porod (Elastic Properties of Rock-Forming Minerals and Rocks), Moscow: Nedra, 1970.
4. Chak, I. S., Takarli, M., and Agbodjan, W.P., Influence of Thermal Damage on Physical Properties of a Granite Rock: Porosity, Permeability and Ultrasonic Wave Evolutions, Construction and Building Materials, 2008, vol. 22(7).
5. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonal’naya dezintegratsiya gornykh porod i ustoichivost’ podzemnykh vyrabotok (Zonal Disintegration of Rocks and Stability of Underground Excavations), Novosibirsk: SO RAN, 2008.
6. Merkulova, V.M., Pigulevsky, E.D., and Tsaplev, V.M., Measurement of Sound Absorption in Rocks under Uniaxial Compression, Izv. AN SSSR, Fiz. Zemli, 1972, no. 3.
7. Merkulova, V.M., Change in Ultrasound Attenuation Coefficient in Rocks after Heating, Akust. Zh. AN SSSR, 2973, no. 6.
8. Tittman, B.R., Abdel-Gawad, M., and Housley, R.M., Elastic Velocity and Q Factor Measurements on Apollo 12, 14, and 15 Rocks, Proc. 3rd Lunar Conference (Supplement 3, Geochimica et Cosmochimica Acta), The M. I. T. Press, 1972, vol. 3.
9. Mashinsky, E.I., Anomalies of Low-Intensity Acoustic Wave Attenuation in Rocks, J. Min. Sci., 2008, vol. 44, no. 4, pp. 345–352.
10. Voznesensky, A.S., Kutkin, Ya.O., and Krasilov, M.N., Estimation of Residual Strength of Roof Bolts by Nondestructive Control Methods, Proc. 20th All-Russian Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2013.
11. Keshavarz, M., Pellet, F.L., and Loret, B., Damage and Changes in Mechanical Properties of a Gabbro Thermally Loaded up to 1000 °C, Pure and Applied Geophysics, 2010, no. 167.
12. David, C., Menendez, B., and Darot, M., Influence of Stress-Induced and Thermal Cracking on Physical Properties and Microstructure of La Peyratte Granite, Int. J. Rock Mech. Min. Sci., 1999,vol. 36(4).
13. Mahmutoglu, Y., Mechanical Behavior of Cyclically Heated Hine Grained Tock, Rock Mechanics and Rock Engineering, 1998, vol. 31(3).
14. http://www.ecogeospro.ru/product/issled/acustik/.
15. Voznesensky, A.S., Shkuratnik, V.L., Vil’yamov, S.V., and Vinnikov, V.A., Acoustic Emission Testing Plants for Heated Rocks, Gorn. Inform.-Analit. Byull., 2007, no. 12.
16. Vil’yamov, S.V., Voznesensky, A.S., Nabatov, V.V., and Shkuratnik, V.L., Acoustic Emission as a Tool for Identification of Limestone Belonging to a Certain Deposit, Gorn. Inform.-Analit. Byull., 2009, no. 11.
17. Voznesensky, A.S., Kutkin, Ya.O., and Krasilov, M.N., Operation Estimation of the Condition of Rock Bolting and Roofs in Underground Mines Using Acoustic Methods. Part I, Nauch. Trudy UkrNDMI NAN Ukr., 2013, no. 13.
18. Monastyrev, A.V., Proizvodstvo izvesti (Lime Production), Moscow: Vyssh. shk., 1971.
19. Voznesensky, A.S. and Vil’yamov, S.V., Features of Acoustic Emission Signals in Gypsum-Containing Rocks under Heating, Gorn. Inform.-Analit. Byull., 2008, no. 8.
20. Shkuratnik, V.L., Voznesensky, A.S., Nabatov, V.V., and Vil’yamov, S.V., Identification of Rock Genotypes Based on Their Acoustic Emission Response to Thermal Treatment. Part I, Nauch. Trudy UkrNDMI NAN Ukr., 2009, no. 5.


NUMERICAL SIMULATION OF ROCK MASS LIMIT STATE USING STAVROGIN’S STRENGTH CRITERION
A. G. Protosenya, M. A. Karasev, and N. A. Belyakov

National Mineral Resources University—University of Mines,
21-aya liniya V.O. 2, Saint-Petersburg, 199026 Russia
e-mail: kaf-sgp@mail.ru

The study covers the issues of strength of rocks under three-dimensional stress state, elastoplastic model with variable parameters of plastic flow, algorithm of problem solving with Stavrogin’s strength, evaluation of the numerical model correctness and the scope of use of the Coulomb criterion. The problem implementation uses Abaqus software. The calculated data on limit state zones around an underground excavation are compared with the strength conditions by Stavrogin and Coulomb.

Rocks, stresses, strength condition, envelope, model, nonlinearity, excavation

DOI: 10.1134/S1062739115010056 

REFERENCES
1. Ruppeneit, K.V., Nekotorye voprosy mekhaniki gornykh porod (Some Questions of Rock Mechanics), Moscow: Ugletekhizdat, 1954.
2. Stavrogin, A.N. and Protosenya, A.G., Plastichnost’ gornykh porod (Rock Plasticity), Moscow: Nedra, 1979.
3. Stavrogin, A.N. and Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Deep-Level Rock Strength and Tunnel Stability), Moscow: Nedra, 1985.
4. Stavrogin, A.N. and Protosenya, A.G., Mekhanika deformirovaniya i razrusheniya gornykh porod (Rock Deformation and Failure Mechanics), Moscow: Nedra, 1992.
5. Stavrogin, A.N. and Tarasov, B. G. Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
6. Protosenya, A.G., Stavrogin, A.N., Chernikov, A.K., and Tarasov, B.G., Governing Equations of State during Deformation of Rocks in the Postlimiting Region, J. Min. Sci., 1981, vol. 17, no. 3, pp. 212–220.
7. Stavrogin, A.N. and Protosenya, A.G., Rock Plasticity in Conditions of Variable Deformation Rates, J. Min. Sci., 1983, vol. 19, no. 4, pp. 245–255.
8. Abaqus Users Manual. Available at: http://50.16.176.52/v6.13/.
9. RF State Standard 21153.8–88. Rocks. 3D Compression Strength Limit Estimation, Moscow, 1989.


EFFECT OF DESORPTION NONEQUILIBRIUM ON STRUCTURE OF SHOCK AND RAREFACTION WAVES IN COAL BED
A. V. Fedorov and A. V. Shul’gin

Khristianovich Institute of Theoretical and Applied Mechanics,
Siberian Branch, Russian Academy of Sciences,
ul. Institutskaya 4/1, Novosibirsk, 630090 Russia
e-mail: fedorov@itam.nsc.ru

The authors propose a physico-mathematical model to describe nonequilibrium filtration and diffusion of gas in coal in the framework of heterogeneous medium mechanics considering physical desorption. The model consists of a set of nonhomogeneous parabolic equations with. In terms of problems on propagation of compression and rarefaction waves, effect of nonequilibrium desorption on parameters of these waves is revealed. The problem on initiation and steady-state of a shock wave in coal is solved.

Nonequilibrium methane desorption kinetics, shock waves, rarefaction waves

DOI: 10.1134/S1062739115010068 

REFERENCES
1. Krichevsky, R.M., Methane Flow from Coal in Entry Ways, Byull. MakNII, 1947, no. 16.
2. Khristianovich, S.A., Gas Pressure Distribution at the Moving Free Surface of Coal, Izv. AN SSSR, OTN, 1953, no. 2.
3. Fedorov, A.V. and Fedorchenko, A.I., Mathematical Modeling of Methane Flow in Coal Beds, J. Min. Sci., 2009, vol. 45, no. 1, pp. 9–21.
4. Hall, G. and Watt, J.M. (Eds.), Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, 1976.


ENERGY FLOWS IN PROBLEMS ON INFLUENCE OF PRESSING TOOL ON HALF-PLANE
G. L. Lindin and T. V. Lobanova

Novokuznetsk Institute (Division), Kemerovo State University,
ul. Tsiolkovskogo 23, Novokuznetsk, 654041 Russia
e-mail: lindins@ngs.ru
Siberian State Industrial University,
ul. Kirova 42, Novokuznetsk, 654007 Russia

The authors have plotted lines of energy flow in the problems on uniform vertical force applied at the boundary of an elastic half-plane and on indentation of a smooth pressing tool in a rigid-plastic medium. The influence of stresses on displacement velocities is analyzed. As an example, formation of compaction zone under ram block is studied.

Energy flow lines, stress and displacement distribution, energy barrier

DOI: 10.1134/S106273911501007X

REFERENCES
1. Revuzhenko, A.F. and Klishin, S.V., Energy Flux Lines in a Deformable Rock Mass with Elliptical Openings, J. Min. Sci., 2009, vol. 45, no. 3, pp. 201–206.
2. Umov, N.A., Izbrannye sochineniya (Selectals), Moscow–Leningrad: Gostekhizdat, 1950.
3. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continua), Moscow: Fizmatgiz, 1959.
4. Kramarenko, V.I. and Revuzhenko, A.F., Flow of Energy in a Deformed Medium, J. Min. Sci., 1988, vol. 24, no. 6, pp. 536–540.
5. Timoshenko, S. and Goodier, J., Theory of Elasticity, McGraw Hill Book Company, 1951.
6. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of Mathematical Theory of Elasticity), Moscow: Nauka, 1966.
7. Beine, R.A., Verdichtungswirkung der fallmasse und lastausbreitung in nichtbindigen boden bei der dynamischen intensivverdichtung, Schriftenreihe des Institutes fur Grundbau Wasserwesen und Verkehrswesen, 1986, no. 11.
8. Kachanov, L.M., Osnovy teorii plastichnosti (Basics of the Plasticity Theory), Moscow: Nauka, 1990.


PREDICTION OF PHYSICO-MECHANICAL PROPERTIES OF HYDRAULIC FILL BASED ON ELECTRICAL SOUNDING
S. M. Prostov, N. A. Smirnov, and S. P. Bakhaeva

Gorbachev Kuzbass State Technical University,
ul. Vesennyaya 26, Kemerovo, 650000 Russia
e-mail: psm.kem@mail.ru
KUZBASS-NIIOGR Innovation Company,
Pionerskii bulv. 4a, Kemerovo, 650054 Russia

The article presents the prediction procedure for physico-mechanical properties of mine waste based on the data of geological and geophysical surveying, including electrical resistivity tomography, in order to establish connection between physical properties of the material. In terms of a hydraulic fill at an open pit coal mine, the authors predict the change in the physico-mechanical properties of the hydraulic fill under a dump embankment.

Hydraulic fill, physico-mechanical properties, regression analysis, electrical resistivity tomography, specific electrical resistivity, geophysical forecast

DOI: 10.1134/S1062739115010081 

REFERENCES
1. Kostyukov, E.V., Prostov, S.M., and Bakhaeva, S.P., Dynamics of Evolution of Permeability Zones in a Separation Embankment of a Hydraulic Fill by the Geoelectrical Method, Vestn. KuzGTU, 2004, no. 3.
2. Smirnov, N.A. and Prostov, S.M., Prediction of Water Content of a Hydraulic Fill by the Electrophysical Method, Vestn. KuzGTU, 2011, no. 4.
3. Nikulin, N.Yu., GeoRadar Monitoring in the Analysis of Reinforced Rock Mass Properties, Vest. KuzGTU, 2013, no. 3.
4. Starovoitov, A.V., Pyatikova, A.M., Shalaeva, N.V., and Kalashnikov, A.Yu., Georadiolocation of Voids, Inzh. Izysk., 2013, no. 13.
5. Starovoitov, A.V., Romanova, A.M., and Kalashnikov, A.Yu., Capacity of Georadiolocation in Studying Weak Zones in the Upper Cross Section, Inzh. Izysk., 2012, no. 4.
6. Rasskazov, I.Yu., Shkabarnya, G.N., and Shkabarnya, N.G., Electrical Tomography-Based Imaging of Mineral Deposits, with Complex Geology, J. Min. Sci., 2013, vol. 49, no. 3, pp. 388–394.
7. Rasskazov, I.Yu., Shkabarnya, G.N., and Shkabarnya, N.G., Electrical Tomography Exploration of Sliding-Hazardous Pitwall Rock Masses, J. Min. Sci., 2013, vol. 49, no. 5, pp. 772–778.
8. Chapovsky, E. G. Inzhenernaya geologiya. Osnovy inzhenerno-geologicheskogo izucheniya gornykh porod (Geological Engineering. Principles of Engineering Geology of Rocks), Moscow: Vyssh. shk., 1975.
9. Gal’perin, A.M., Upravlenie sostoyaniem namyvnykh massivov na gornykh predpriyatiyakh (Hydraulic Fill Control in Mining), Moscow: Nedra, 1988.
10. Popov, V.N., Shpakov, P.S., and Yunakov, Yu.L., Upravlenie ustoichivost’yu kar’ernykh otkosov: uchebnik dlya vuzov (Slope Stability Control in Open Pit Mines: Higher Education Textbook), Moscow: Gornaya kniga, 2008.
11. Khmelevsky, V.K. and Shevnin, V.A. (Eds.), Elektrorazvedka metodom soprotivlenii (Electric Exploration Based on the Resistivity Method), Moscow: MGU, 1984.
12. Prostov, S.M., Khyamyalyainen, V.A., Gutsal, M.V., and Bakhaeva, S.P., Geoelektricheskii kontrol’ zon ukrepleniya glinistykh gornykh porod (Geoelectrical Control of Reinforcement Zones in Clayey Rocks), Tomsk: Tomsk. Univ., 2005.
13. Prostov, S.M., Kostyukov, E.V., and Bakhaeva, S.P., Prognoz ustoichivosti gruntovykh damb (Forecasting of Stability of Earth Dams), Kemerovo–Moscow: Kuzbassvuzizdat, 2006.
14. Prostov, S.M. and Khyamyalyainen, V.A., Interrelations of Electrophysical Properties of Clay Rocks Their Porosity and Moisture Saturation, J. Min. Sci., 2006, vol. 42, no. 4, pp. 349–359.
15. Sergeev, E.M. (Ed.), Teoreticheskie osnovy inzhenernoi geologii. Mekhaniko-matematicheskie osnovy (Theoretical Basics of Engineering Geology. Mechanical–Mathematical Principles), Moscow: Nedra, 1986.


ROCK FAILURE


PHYSICAL SIMULATION OF STONE BLOCK CUTTING UNDER IMPACT ACTION ON PLASTIC SUBSTANCE IN DRILL HOLE
P. N. Tambovtsev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: tambovskiyp@mail.ru

The author describes physical simulation of natural stone block cutting using a plastic substance and specifies factors influencing energy input and quality of the processes. Recommendations on impact load application sequence, pattern of drill holes and sizes of cut stone blocks are given.

Rock mass, line of drill holes, plastic substance, tool, impact, crack, block cutting

DOI: 10.1134/S106273911501010X

REFERENCES
1. Kyu, N.G. and Chernov, O.I., RF patent no. 2131032, Byull. Izobret., 1999, no. 15.
2. Kyu, N.G., Particular Issues Associated with Fluid Fracturing of Rocks by Plastic Materials, J. Min. Sci., 2011, vol. 47, no. 4, pp. 450–459.
3. Tambovtsev, P.N., Experimental Investigation into the Impact Fluid Fracturing of Rock Blocks, J. Min. Sci., 2004, vol. 40, no. 3, pp. 265–272.
4. Petreev, A.N. and Tambovtsev, P.N., Impact Loading of a Hard Rock via Plastic Substance in a Drill Hole, J. Min. Sci., 2006, vol. 42, no. 6, pp. 592–599.
5. Karasev, Yu.G. and Baka, N.T., Prirodnyi kamen’, dobycha blochnogo i stenovogo kamnya: ucheb. posobie (Natural Stone, Stone Block and Masonry Block Production: Educational Aid), Saint-Petersburg: SPb. Gorn. Univ., 1997.
6. Kazaryan, Zh.A., Prirodnyi kamen’: dobycha, obrabotka, primenenie. Spravochnik (Natural Stone: Production, Processing, Use. Reference Book), Moscow: Nauka, 2002.
7. Nalimov, V.V. and Chernova, N.A., Statisticheskie metody planirovaniya ekstremal’nykh eksperimentov (Statistical Planning Techniques for Extremal Experiments), Moscow: Nauka, 1965.


DETERMINATION OF HYDROFRACTURE GEOMETRY IN. A. PRODUCTION RESERVOIR
E. N. Sher and I. V. Kolykhalov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ensher@sibmail.ru

The article describes numerical modeling of growth of five successive hydraulic fractures in the directions transverse to the well, in plane and axisymmetric elastic problems, under assumption of perfect breakdown fluid. The zone of influence of the existing created fractures on the newly initiating hydrofractures is defined, and the pressure for a new fracture to grow is evaluated. Parameters governing distortion of fractures are determined. The calculations in the framework of the plane and axisymmetric problems are compared.

Hydraulic fracturing, hydrofracture, axisymmetric fracture, overburden pressure, low-permeability rocks

DOI: 10.1134/S1062739115010111 

REFERENCES
1. Deimbacher, F.X., Economides, M.J., and Jensen, O.K., Generalized Performance of Hydraulic Fractures with Complex Geometry Intersecting Horizontal Wells, SPE 25505, Production Operations Symposium, 1993, Oklahoma, USA.
2. Ushakov, A.S., Analysis of Hydrofracturing Efficiency in Horizontal Wells in Western Siberia, Neftegaz. Delo, 2010, no. 2.
3. Rahman, M.M., Hossain, M.M., et al., Analytical, Numerical and Experimental Investigations of Transverse Fracture Propagation from Horizontal Wells, J. Petrol. Science & Engineering, 2002, vol. 35.
4. Crosby, D.G., Rahman, M.M., et al., Single and Multiple Transverse Fracture Initiation from Horizontal Wells, J. of Petroleum Science & Engineering, 2002, vol. 35, nos. 3 and 4.
5. Kresse, O., Weng, X., et al., Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations, Rock Mechanics and Rock Engineering, 2013, vol. 46.
6. Sher, E.N. and Kolykhalov, I.V., Propagation of Closely Spaced Hydraulic Fractures, J. Min. Sci., 2011, vol. 47, no. 6, pp. 741–750.
7. Sher, E.N., Kolykhalov, I.V. and Mikhailov, A.M., Modeling Propagation of Multiple Axially Symmetric Hydrofractures, J. Min. Sci., 2013, vol. 49, no. 5, pp. 741–748.
8. Dong, C.Y. and de Pater, C.J., Numerical Implementation of Displacement Discontinuity Method and Its Application in Hydraulic Fracturing, Computer Meth. Appl. Mech. and Eng., 2001, vol. 191.
9. Crouch, S.L. and Starfield, A.M., Boundary Element Methods in Solid Mechanics, J. Engineering Geology and Hydrogeology, 1984, vol. 17, pp. 399–400.
10. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow: Nauka, 1974.
11. Peach, Ì. and Koehler, J.S., The Forces Exerted on Dislocations and the Stress Fields Produced by Them, Physical Review, 1950, vol. 80, no. 3.


ROCK ABRASIVENESS TESTING
A. S. Tanaino

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: tanaino@misd.nsc.ru

The problem of rock abrasiveness testing consists in the incompatibility of data obtained using different methods. To this effect, the author offers a method for qualitative evaluation of potential abrasiveness of rocks using their physico-mechanical properties arranged on the canonical scale of structure-and-hierarchy representation.

Abrasiveness, size and shape of grains, rock-forming mineral hardness, porosity, intergrain bonding, moisture content

DOI: 10.1134/S1062739115010123 

REFERENCES
1. Shreiner, L.A., Mekhanicheskie i abrazivnye svoistva gornykh porod (Mechanical Properties and Abrasiveness of Rocks), Moscow: Gostoptekhizdat, 1958.
2. Baron, L.I. and Kuznetsov, V.A., Abrazivnost’ gornykh porod pri dobyvanii (Rock Abrasiveness in Cutting), Moscow: AN SSSR, 1961.
3. Lyubimov, N.I., Printsipy klassifikatsii i effektivnogo razrusheniya gornykh porod pri razvedochnom burenii (Principles of Classification and Efficient Destruction of Rocks in Exploration Drilling), Moscow: Nedra, 1967.
4. Spivak, A.I., Abrazivnost’ gornykh porod (Rock Abrasiveness), Moscow: Nedra, 1972.
5. Abramson, M.G., Baidyuk, B.M., Zavaretsky, V.S., et al., Spravochnik po mekhanicheskim i abrazivnym svoistvam gornykh porod neftyanykh i gazovykh mestrorozhdenii (Reference Book on Mechanical Properties and Abrasiveness of Rocks in Oil and Gas Reservoirs), Moscow: Nedra, 1985.
6. Brown, E.T., Rock Characterization, Testing and Monitoring. ISRM Suggested Methods, International Society for Rock Mechanics, Oxford, Pergamon Press, 1981.
7. West, G., Rock Abrasiveness Testing for Tunnelling, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1989, vol. 26, no. 2.
8. Ewendt, G., Erfassung der Gesteinsabrasivitat und Prognose des Werkzeugverschlei?es beim maschinellen Tunnelvortrieb mit Diskenmei?eln, Bochumer geol. u. geot. Arbeiten, 1989, 33.
9. Plinninger, R., Kasling, H., and Thuro, K., Wear Prediction in Hardrock Excavation Using the Cerchar Abrasiveness Index (CAI), Proc. Eurock 2004 & 53rd Geomechanics Colloquium, 2004.
10. Rostami, J., Ozdemir, L., Bruland, A., and Dahl, F., Review of Issues Related to Cerchar Abrasiveness Testing and Their Implications on Geotechnical Investigations and Cutter Cost Estimates, Proc. ETC, 2005.
11. Artsimovich, G.V., Mekhanofizicheskie osnovy sozdaniya porodorazrushayushchego burovogo instrumenta (Mechanophysical Basis for Rock-Destructive Drilling Tool), Novosibirsk: Nauka, 1985.
12. Shtumpf, G.G., Ryzhkov, Yu.A., Shalamanov, V.A., and Petrov, A.I., Fiziko-tekhnicheskie svoistva gornykh porod i uglei Kuznetskogo basseina (Physico-Technical Properties of Rocks and Coal in the Kuznetsk Basin), Moscow: Nedra, 1994.
13. Bieniawski, Z.T., Engineering Classification of Jointed Rock Masses, Trans. South African Institute Civil Engineering, 1973, vol. 15.
14. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P., and Rozenbaum, M.A., USSR Discovery no. 400, Byull. Izobret., 1992, no. 1.
15. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Representation Scale for Hierarchies in the Science on Rocks), Novosibirsk: Nauka, 2011.


MINERAL MINING TECHNOLOGY


UTILIZATION OF RENEWABLE ENERGY SOURCES IN HARD MINERAL MINING
D. R. Kaplunov, M. V. Ryl’nikova, and D. N. Radchenko

Research Institute of Comprehensive Exploitation of Mineral Resources–IPKON,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: rylnikova@mail.ru

In focus is the current objective of energy efficiency improvement in mining in Russia and in other countries of the world. The world tendencies toward new unconventional renewable energy sources and their introduction in closed-cycle resource-saving technologies are reviewed. In the capacity of renewable energy sources, the authors discuss lithological pressure and elastic vibration of rock mass, kinetic energy of gravity flow of backfill mixtures and fluids during backfilling and mine drainage, potential energy of gravity force of heavy trucks, energy of return air flows in mine ventilation and this energy recovery, etc. The authors think that conversion of these kinds of energy into electric energy during hard mineral mining will allow a solution to ecological problems and enable development of allied branches in “small power engineering,” including essential reduction of external energy consumption in underground mines.

Energy efficiency, hard mineral mining, unconventional renewable energy sources, conversion

DOI: 10.1134/S1062739115010147 

REFERENCES
1. http://alvip.ru/proektirovanie/jenergojeffektivnye_tehnologii.
2. RF Ministry of Energy. Energy Saving and Efficiency. Available at: http://minenergo.gov.ru/activity/energoeffektivnost.
3. http: // www.bosch.ru/ru/ru/news room_1/topics_1/energy_efficiency/energy_efficiency_now.html.
4. http://www.guardian.co.uk/environment/2009/jul/16/energy-efficiency.
5. Il’kovsky, K.K and Timofeev, D.I., Vision of Future Energetics, Gorny Zh., 2012, no. 12.
6. Chinakal, N.A., Sistema razrabokti so shchitovym krepleniem: rukovodstvo dlya inzhenerov, tekhnikov, studentov (Working with Shield Support: Guidelines for Engineers, Technicians and Students), Moscow–Leningrad: Gostoptekhizdat, 1943.
7. Bronnikov, D.M., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep Level Ore Mining), Moscow: Nedra, 1982.
8. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Sovershenstvovanie geotekhnologii osvoeniya zhelezorudnykh udaroopasnykh mestorozhdenii v usloviyakh deistviya prirodnykh i tekhnogennykh faktorov (Improvement of Geotechnologies for Rockburst-Hazardous Iron Ore Mining under the Effect of Natural and Induced Factors), Novosibirsk: Nauka, 2008.
9. Kaplunov, D.R., Leizerovich, S.G., and Tomaev, V.K., Energy Reproduction in Backfilling, Gorny Zh., 2013, no. 4.
10. https://www.industry.usa.siemens.com/drives/us/en/electric-drives/Documents/DRV-SINAMICS-family-brochure.pdf.
11. http://erasib.ru/articles/hoist-eratonfr-efficiency.
12. Ryl’nikova, M.V. and Turkin, I.S., Prospects for Underground Hydroelectric Plant Construction in Abandoned Mine Field, Marksheid. Vestn., 2014, no. 5.
13. Kaplunov, D.R., Rylnikova, M.V., and Eks, V.V., Usage of Modular Backfill Preparation Plant in Underground Ore Mining, Proc. 11th Int. Symp. Mining with Backfill, Perth, 2014.
14. Hughes, T.R. and Gray, A.H., The Modular Python Processing Plant—Designed for Underground Preconcentration. Gekko Systems Pty Ltd., Ballarat, Victoria, Australia. Available at: http://gekkos.com/documents/043TheModularPythonProcessingPlantDesignedForUndergroundPreConcentration.pdf
15. Kaplunov, D.R., Ryl’nikova, M.V., Radchenko, D.N., and Korneev, Yu.V., Movable Backfill Preparation Plants in Mineral Mining with Backfilling, Gorny Zh., 2013, no. 2.
16. Rodriguez, R. and Diaz, M.B., Analysis of the Utilization of Mine Galleries as Geothermal Heat Exchangers by Means of a Semi-Empirical Prediction Method, Renew. Energy, 2009, vol. 34, no. 7.


RATIONAL DEVELOPMENT OF NOBLE METAL PLACER MINING WASTE IN THE EAST OF RUSSIA
V. S. Litvintsev

Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: litvinzev@igd.khv.ru

The discussion involves the issues relating rational development of natural noble metal placers and the placer mining waste, their resource potential and basic trends in mining, processing and beneficiation. It is found that the determinants of profitable development of a technogenic object (mine waste) is its pre-restructuring aimed at generation of a new structure and at increase in value of reserves adapted to the chosen mining and processing technologies. The author substantiates the necessity and advisability of innovative technologies for placer mining waste development based on formation of concentration zones of commercial value components in dumps. The developed ways of technology modernization for gold washing machines enable increase in recovery of gold and other valuable associate components within a single work cycle.

Natural placer, placer mining waste, morphology, gold fineness, placer development estimation criteria, mining waste development technology

DOI: 10.1134/S1062739115010159 

REFERENCES
1. Zabrodsky, G.S., Stavsky, A.P., Mikhailov, B.K., and Nekrasov, A.I., Geological Exploration of Hard Minerals in Russia: Reserves Reproduction and Financing, Min. Res. Ross. Ekonom. Upravl., 2011, no. 3.
2. Braiko V. N. and Ivanov V. N., Summary of Precious Metals and Precious Stones Mining and Processing Industry Performance for 2010 and Future Growth Prospects, Min. Res. Ross. Ekonom. Upravl., 2011, no. 3.
3. Litvintsev, V.S., Resource Potential of Placer Mining Waste, J. Min. Sci., 2013, vol. 49, no. 1, pp. 99–105.
4. Bykhovsky, L.Z and Sporykhina, L.V., Mining Waste as a Source of Minerals and Raw Materials: State-of-the-Art and Problems, Min. Res. Ross. Ekonom. Upravl., 2011, no. 4.
5. Kavchik, B.K. and Pyatakov, V.G., Geological Structure of Technogenic Placers and Its Influence on the Choice of a Development Method, Zolotodobycha, 2010, no. 135.
6. Petunina, O.N., Bondarenko, V.P., and Cherkasov, A.D., Dynamics and Changes in the Condition of the Hard Mineral Resources Based on the Data of the State Balance of Mineral Resources (2004–2011), Min. Res. Ross. Ekonom. Upravl., 2012, no. 4.
7. Zvereva, V.P., Tailings Storages in the Far East—Technogenic Deposits and Mineral and Raw Materials Resources Russia Might Lose, Proc. 14th Int. Conf. Placers and Deposits of Mantle of Waste: Current Issues of Exploration and Development, Novosibirsk: Apel’sin, 2010.


TECHNICAL-AND-ECONOMIC ANALYSIS OF ROOM-AND-PILLAR EFFICIENCY IN INAGLINSKAYA MINE IN THE SOUTH YAKUTIA COAL BASIN
A. A. Ordin, A. M. Nikol’sky, and A. Yu. Tsivka

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru
EREL LLC,
pr. Geologov 55, Neryungri, 678960 Republic of Sakha (Yakutia), Russia

The authors give brief information on Inaglinskaya Mine planning within the Inaglinsky open pit mining lease in the South Yakutia Coal Basin and report the outcomes of technical-and-economic analysis of the mine construction and operation. The article presents formulation and solution of the problem on lag modeling and optimization of the mine design capacity.

Room-and-pillar mining, technical-and-economic analysis, lag modeling, optimization, design capacity, mine

DOI: 10.1134/S1062739115010160 

REFERENCES
1. Nikol’sky, A.M., Ordin, A.A., Tsivka, A.Yu., Neverov, A.A., and Neverov, S.A., Design Solutions on Extraction of Remaining Reserves of Inaglinsky Open Pit Mine Using Room-and-Pillar Method, Proc. Int. Conf. High Technologies of Mineral Mining and Utilization, Novokuznetsk, 2013.
2. Ordin, A.A., Dinamicheskie modeli optimizatsii proektnoi moshchnosti shakhty (Dynamic Models of Mine Design Capacity Optimization), Novosibirsk: IGD SO AN SSSR, 1991.
3. Ordin, A.A. and Klishin, V.I., Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Lag Modeling-Based Optimization of Process Variables for Mines), Novosibirsk: Nauka, 2009.
4. Ordin, A.A., Nikol’sky, A.M., and Golubev, Yu.G., Lag Modeling and Design Capacity Optimization at Operating Diamond Placer Mines Solur and Vostochny, Republic of Sakha (Yakutia), J. Min. Sci., 2012, vol. 48, no. 3, pp. 515–524.


SELECTION OF HIGH-STRENGTH DIMENSION STONE CUTTING METHOD, CONSIDERING NATURAL JOINTING
G. D. Pershin, N. G. Karaulov, and M. S. Ulyakov

Nosov Magnitogorsk State Technical University,
pr. Lenina 38, Magnitogorsk, 455000 Russia
e-mail: pshenichnaya_e@mail.ru

The authors prove feasibility and efficiency of high-strength stone wire saw cutting in rock mass with subvertical and low-angle joints as well as drilling-and-wedge cutting of stone into marketable size blocks on the working site. The article presents and substantiates the procedure for rational selection of technology for high-strength stone preparation for cutting, considering geological conditions (shape of mineral body, orientation and spacing of joints), local temperature, as well as physico-mechanical properties and mineralogical composition of rocks.

High-strength stone, preparation technology, rock mass jointing, combination method

DOI: 10.1134/S1062739115010172 

REFERENCES
1. Aglyukov, Kh.I., Povyshenie kachestva tekhnologii dobychi blochnogo granita. Ekonomika, upravlenie, kachestvo: mezhvuz. sb. nauch. tr. (Improvement of Granite Block Cutting Technology Quality. Economy, Management, Quality: Interinstitutional Collection of Scientific Papers), Magnitogorsk: MGTU, 2003.
2. Dubrovsky, A.B. and Ulyakov, M.S., Selection of Equipment for Nizhne-Sanarsk Grandiorite Cutting, Gorny Zh., 2011, no. 5.
3. Aglyukov, Kh.I., Nalog na dobychu poleznykh iskopaemykh (Mineral Mining Tax), Magnitogorsk: MGTU, 2010.
4. Pershin, G.D., Karaulov, N.G., Ulyakov, M.S., et al., Features of Diamond-Wire Saws Application for Rock Overburden Removal at Marble Quarry Construction, SWorld, 2013, vol. 14, issue 13.
5. Aglyukov, Kh.I., Justification of Block Granite Cutting Technology Efficiency, Dobycha, obrabotka i primenenie prirodnogo kamnya: sb. nauch. tr. (Natural Stone Cutting, Shaping and Use: Collection of Scientific Papers), Magnitogorsk: MGTU, 2012.
6. Pshenichnaya, E.G., Gorbatova, E.A., Karaulov, N.G., et al., Technical and Economic Validation of High-Strength Natural Stone Cutting Technology, Dobycha, obrabotka i primenenie prirodnogo kamnya: sb. nauch. tr. (Natural Stone Cutting, Shaping and Use: Collection of Scientific Papers), Magnitogorsk: MGTU, 2012.
7. Aglyukov, Kh.I., Efficiency of Granite Breakstone Production, Dobycha, obrabotka i primenenie prirodnogo kamnya: sb. nauch. tr. (Natural Stone Cutting, Shaping and Use: Collection of Scientific Papers), Magnitogorsk: MGTU, 2009.
8. Ulyakov, M.S., Justification of Combination Method for High-Strength Stone Cutting, Cand. Tech. Sci. Dissertation, Magnitogorsk: MGTU, 2013.
9. Bychkov, G.V. and Kokunin, R.V., Optimized Method to Open Up Natural Stone Beds at Potential and Operating Deposits, Dobycha, obrabotka i primenenie prirodnogo kamnya: sb. nauch. tr. (Natural Stone Cutting, Shaping and Use: Collection of Scientific Papers), Magnitogorsk: MGTU, 2007.
10. Pashchenko, K.G., Bakhmatov, Yu.F., Frolushkina, K.A., et al., Influence of Process Parameters on Breakage of Wire in No-Jet Drawing, Proc. 67th Sci. Conf., Magnitogorsk: MGTU, 2009.
11. Pashchenko, K.G., Bakhmatov, Yu.F., and Golubchik, E.M., Influence of Plastic Tension–Flexure on the Wire Properties in Scale Removal and Drawing, Steel, 2011, vol. 41, no. 3.
12. Pashchenko, K.G., Bakhmatov, Y.F., and Golubchik, E.M., Influence of Plastic Tension–Flexure on the Wire Properties in Scale removal and Drawing, Steel in Translation, 2011, vol. 41, no. 3.
13. Pershin, G.D., Karaulov, N.G., and Ulyakov, M.S., Research of High-Strength Dimension Stone Mining Technological Schemes in Russia and Abroad, SWorld, 2013, vol. 11, issue 2.
14. Velikanov, V.S., Realizatsiya podkhodov po sovershenstvovaniyu ergonomicheskikh pokazatelei kar’ernykh ekskavatorov (Approaches to Improvement of Ergonomic Characteristics of Mine Shovels), Magnitogorsk: MGTU, 2011.
15. Pershin, G.D., Pshenichnaya, E.G., and Ulyakov, M.S., Influence of Control Mode on Output of Wire Saw, Dobycha, obrabotka i primenenie prirodnogo kamnya: sb. nauch. tr. (Natural Stone Cutting, Shaping and Use: Collection of Scientific Papers), Magnitogorsk: MGTU, 2012.
16. Velikanov, V.S., Testing Procedures and Training Units in Advanced Vocational Training of Mining Machine Operators, Gorny Zh., 2012, no. 9.
17. Chirkov, A.S., Dobycha i pererabotka stroitel’nykh gornykh porod: spravochnik dlya vuzov (Cutting and Shaping of Rocks for Construction: University Reference Book), Moscow: MGTU, 2001.
18. Ulyakov, M.S., Improvement of High-Strength Dimensional Stone Cutting in Complicated Ground Conditions, SWorld, 2012, vol. 8, issue 4.


MINE AEROGASDYNAMICS


DELINEATION OF SOIL BODY AREA EXPOSED TO THERMAL EFFECT OF SUBWAY STATIONS AND TUNNELS
A. M. Krasyuk, I. V. Lugin, and A. Yu. P’yankova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: krasuk@cn.ru

The mathematical model is developed for describing temperature variation in soil body surrounding subway stations and tunnels, considering seasonal variation of air temperature, soil freezing–thawing and induced heat flow from the subway. Using the finite element method, the authors calculate temperature field in soil body surrounding subway stations and tunnels at various depths. Based on the numerical experiments, the thermal effect of shallow subway stations and tunnels on the surrounding soil body is estimated. The article offers the estimation procedure for delineation of influence zone of subway structures on temperature of surrounding soil. It is found that the zone of thermal effect of a subway structure grows with the depth of the subway structure occurrence. The dimension of the mentioned zone is conditioned by amount of heat produced in the underground structures of subway.

Subway, thermal effect zone, temperature, station, tunnel, soil

DOI: 10.1134/S1062739115010184 

REFERENCES
1. Dai, G. and Vardy, A., Heat Transfer in Train/Tunnel Annulus, Proc. 9th Int. Symp. Aerodynamics and Ventilation of Vehicle Tunnels “Developments for the 21st Century,” Aosta Valley, Italy: Earth Tech., 1997.
2. Vermeer, P.A. and Nico Ruse, M.T., Tunnel Heating Stability in Drained Ground, Tunneling, Great Britain: British Tunnelling Society, 2002, no. 6.
3. Goy, L., Fabre, D., and Menard, G., Modeling of Rock Temperatures for Deep Alpine Tunnel Projects, Rock Mechanics and Rock Engineering, 1996, vol. 29, no. 1.
4. Krasyuk, A.M., Lugin, I.V., and P’yankova, A.Yu., Circulatory Air Rings and Their Influence on Air Distribution in Shallow Subways, J. Min. Sci., 2010, vol. 46, no. 4, pp. 431–437.
5. Krasyuk, A.M. and Lugin, I.V., Heat Transfer in Shallow Subway Tunnels, J. Min. Sci., 2008, vol. 44, no. 6, pp. 622–627.
6. Kulikov, Yu.G. and Dubnov, Yu.D., Metodicheskie ukazaniya po ispytaniyu vechnomerzlykh glinistykh gruntov v polevykh usloviyakh (Instructional Guidelines on Field Testing of Clayey Ground in Permafrost Zone), Moscow: Glavtransproekt, 1969.
7. Construction Norms and Regulations SNiP 23–01–99*. Stroitel’naya klimatologiya (Construction Climatology), Moscow: Gosstroi Rossii, 1999.
8. Tsodikov, V.Ya., Ventilyatsiya i teplosnabzhenie metropolitenov (Subway Ventilation and Heating), Moscow: Nedra, 1975.
9. Lugin, I.V. and P’yankova, A.Yu., Change in Heat Loss from Rooms of the Oktyabrskaya station for 24 Years of Operation of Novosibirsk Subway, Proc. 3rd Int. Conf. Theoretical Basis for Heat and Gas Supply and Ventilation, Moscow: MGSU, 2009.
10. Osadchi, G.B., Terms of Efficient Use of Heat Pumps in Russia. Part II: Factors of Influence on the Efficiency of Heat Transformation by Heat Pump, Kholodil’shchik.RU, 2012, no. 6.


MINERAL DRESSING


INTEGRATED PROCESSING TECHNOLOGY FOR HEMATITE–MARTITE ORE
A. V. Kurkov, A. V. Egorov, and S. N. Shcherbakova

Research Institute of Chemical Technologies, Rosatom,
Kashirskoe sh. 33, Moscow, 115409 Russia
e-mail: avkurkov@vniiht.ru

For recovery of iron oxides from disseminated iron ore, the flotation technology is developed based on using organophosphorus compounds as primary collectors. Selective preliminary removal of impurities and iron oxide flotation from wet magnetic separation tailings and directly from fine disseminated hematite ore ensures production of quality hematite–martite concentrates with the iron content of 64–66%. The option of by-production of gold from quartz present in hematite flotation tailings is illustrated.

Beneficiation, iron ore, hematite, martite, flotation, collector, organophosphorus compounds, concentrate

DOI: 10.1134/S1062739115010196 

REFERENCES
1. Pol’kin, S.I., Flotatsiya rud redkikh metallov i olova (Rare Metal and Tin Flotation), Moscow: Gos. Nauch.-Tekh. Izd. Gorn. Dela, 1960.
2. Ostapenko, P.E., Obogashchenie zheleznykh rud (Iron Ore Dressing), Moscow: Nedra, 1977.
3. Lima, N.P., Valadao, G. E. S., and Peres, A. E. C., Effect of Amine and Starch Dosages on the Reverse Cationic Flotation of an Iron Ore, Minerals Engineering, 2013, vol. 45.
4. Arantes, R.S. and Lima, R. M. F., Influence of Sodium Silicate Modulus on Iron Ore Flotation with Sodium Oleate, International Journal of Mineral Processing, 2013, vol. 125.
5. Uwadiale, G. G. O.O., Flotation of Iron Oxide and Quartz—A Review, Mineral Processing and Extractive Metallurgy Review, 1992, vol. 11.
6. Rocha, L., Cancado, R. Z. L., and Peres, A. E. C., Iron Ore Slimes Flotation, Minerals Engineering, 2010, vol. 23, nos. 11–13.
7. Ma, X., Marques, M., and Gontijo, C., Comparative Studies of Reverse Cationic/Anionic Flotation of Vale Iron Ore, International Journal of Mineral Processing, 2011, vol. 100, pp. 179–183.
8. De Mesquita, I. M. S., Lins, F.F., and Torem, M.I., Interaction of a Hydrophobic Bacterium Strain in a Hematite–Quartz Flotation System, International Journal of Mineral Processing, 2003, vol. 71, nos. 1–4.
9. Mei, G.J., Rao, P., and Yu, Y.F., Flotation Separation of Hematite and Iron-Containing Silicate Using Ammonium Hexafluorosilicate Depressant, Proc. 24th Int. Mineral Processing Congress, Science Press, Beijing, 2008, vol. 1.
10. Yang, H., Tang, Q., Wang, Ch., and Zhang, J., Flocculation and Flotation Response of Rhodococcus Erythropolis to Pure Minerals in Hematite Ores, Minerals Engineering, 2013, vol. 45.
11. Pavlovic, S. and Brandao, H. R. G., Adsorption of Starch, Amilose, Amilopectin and Glucose Monomer and Their Effect on the Flotation of Hematite and Quartz, Minerals Engineering, 2003, vol. 16, no. 11.
12. Araujo, A.C., Viana, P. R. M., and Peres, A. E. C., Reagents in Iron Ores Flotation, Minerals Engineering, 2005, vol. 18, no. 2.
13. Quast, K.B., Review Flotation Using 12-Carbon Chain Collectors, Minerals Engineering, 2000, vol. 13, no. 13.
14. Quast, K.B., Flotation of Hematite Using C6–C18 Saturated Fatty Acids, Minerals Engineering, 2006, vol. 19.
15. Turrer, H. D. G. and Peres, A. E. C., Investigation on Alternative Depressants for Iron Ore Flotation, Minerals Engineering, 2010, vol. 23.
16. Buckley, A.N. and Parker, G.K., Adsorption of n-Octanohydroxamate Collector on Iron Oxide, International Journal of Mineral Processing, 2013, vol. 121.
17. Kurkov, A.V. and Pastukhova, I.V., Flotation Method for Ores of Rare Metal and Tin, RU patent, 2010, no. 2381073.
18. Kurkov, A. and Pastukhova, I., Computer Modeling of the Structure and Action of a New Class of Organophosphorous Collectors, Proc. 14th Balkan Mineral Processing Congress, Tuzla, Bosnia and Herzegovina, 2011, vol. II.
19. Kurkov, A.V. and Sarychev, G.A., Mechanism of Action of Flotation Reagents in a Non-Sulfide Flotation System Based on the Concepts of Supramolecular Chemistry, Proc. 26th International Mineral Processing Congress, New Delhi, India, 2012.
20. Kurkov, A.V., Zvonarev, E.N., Shcherbakova S. N., and Sarychev, G.A., RF patent no. 2494818, Byull. Izobret., 2012, no. 28.
21. Chernyshov, N.M., Molotkov, S.P., Petrov, S.V., et al., Distribution and Occurrence Forms of Platinoids and Gold in Mikhailovsky Ferruginous Qaurtzites, Kursk Magnetic Anomaly, Geolog. Razved., 2003, no. 5.


ESTIMATE OF COLLECTING FORCE OF FLOTATION AGENT
S. A. Kondrat’ev and N. P. Moshkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru
Lavrentiev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrentieva 15, Novosibirsk, 630090 Russia
e-mail: nikolay.moshkin@gmail.com

The authors compare collecting activity of carboxylic acids and surface pressures of their films on water surface. It is found that these parameters correlate, and the surface pressure of the films depends on the length, saturation and branching of hydraulic radical and the availability of substituents. The problem on liquid removal from the film between air bubble and mineral particle is solved numerically. It is shown that the bulk force on the liquid in the film is conditioned by the surface pressure of molecules. The force of a flotation agent is defined as the force of the agent on the liquid in the film. The volumetric liquid flow from the film is related with the surface tension of agent forms active at the particle–bubble interface. The authors propose the method of estimating collecting activity of physically attached agents by the value of force the agent exerts on liquid in the film.

Flotation, flotation activity, surface tension, liquid film, lubrication theory equations, physical adsorption.

DOI: 10.1134/S1062739115010202 

REFERENCES
1. Kondrat’ev, S.A., Estimate of Flotation Activity of Collecting Agents, Obog. Rud, 2010, no. 4.
2. Kondrat’ev, S.A., Activity and Selectivity of Carboxylic Acids as Flotation Agents, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1039–1046.
3. Abramzon, A.A. and Gaevoi, G.M., Poverkhnostno-aktivnye veshchestva: spravochnik (Surface-Active Substances: Reference Guide), Leningrad: Khimiya, 1979.
4. Smith, T., Monolayers on Water, Theoretical Equation for the Liquid Expanded State, Journal of Colloid and Interface Science, 1967, vol. 23.
5. Hukki, R.T. and Vartiainen, O., An Investigation of the Collecting Effects of Fatty Acids in Tall Oil on Oxide Minerals, Particularly on Ilmenite, Mining Engng., 1953, vol. 5, no. 7.
6. Aleinikov, N.A., Nikishin, G.I., Ogibin, Yu.P., and Petrov, A.D., Flotation Properties of Branched Carboxylic Acids, Zh. Prikl. Khim., 1962, vol. 35, no. 9.
7. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, 1962.
8. Zuev, A.L. and Kostarev, K.G., Peculiarities of Concentration–Capillary Convection, Usp. Fiz. Nauk, 2008, vol. 178, no. 10.
9. Loitsyansky, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquid and Gas), Moscow: Nauka, 1987.
10. Pukhnachev, V.V., Problem on Equilibrium of Free Nonisothermal Film of Liquid, Prikl. Mekh. Tekh. Fiz., 2007, vol. 48, no. 3.
11. Gaver, D.P. and Grotberg, J., The Dynamics of a Localized Surfactant on a Thin Film, Journal of Fluid Mechanics, 1990, vol. 213.
12. Peterson, E.R. and Shearer, M., Radial Spreading of Surfactant on a Thin Liquid Film, Appl. Math. Res. Express, 2010, doi:10.1093/amrx/abq015.
13. Jensen, O. E. and Grotberg, J.B., The Spreading of Heat or Soluble Surfactant along a Thin Liquid Film, Physics of Fluids, 1992, nî. 5(1).
14. Levy, R., Shearer, M., and Witelski, T., Gravity-Driven Thin Liquid Films with Insoluble Surfactant: Smooth Traveling Waves, European Journal of Applied Mathematics, 2008, vîl. 18, nî. 6.
15. Borgas, M. and Grotberg, J.B., Monolayer Flow on a Thin Film, Journal of Fluid Mechanics, 1988, vol. 193.


MODELING HYDRODYNAMIC EFFECT ON FLOTATION SELECTIVITY. PART I: AIR BUBBLE DIAMETER AND TURBULENT DISSIPATION ENERGY
V. D. Samygin and P. V. Grigor’ev

National University of Science and Technology MISiS,
Leninskii pr. 4, Moscow, 119049 Russia
e-mail: visamiguin@yandex.ru
Enforcer Engineering,
Ryazanskii pr. 24, Bld. 2, Moscow, 109428 Russia

The computer experiments on air bubble attachment and detachment, with ore particles of 36 fractions with different size and copper content display the influence of air bubble diameter and energy dissipation on flotation selectivity. The concentration reached 80 at the optimized bubble diameter of 265 µm, which is 5–8 times higher than with the air bubble diameter of 1000–2000 µm standard for impeller flotation machines.

Model, selectivity, flotation, bubble, dissipation, subprocess, dissociation

DOI: 10.1134/S1062739115010214 

REFERENCES
1. Mitrofanov, S.I., Effect of Pulp Flow Rate on Flotation Rate and Selectivity, Tsvet. Met., 1941, no. 17.
2. Rubinstein, J.B. and Samygin, V.D., Effect of Particle and Bubble Size on Flotation Kinetics, Frothing in Flotation, 1998, vol. 2.
3. Schubert, H. and Bischofberger, C., On the Optimization of Hydrodynamics in Flotation Processes, Proc. 13th Int. Mineral Processing Congress, 1979, vol. 2.
4. Massinaei, M., Kolahdoozan, M., Noaparast, M., Oliazadeh, M., Yianatos, J., Shamsadini, R., and Yarahmadi, M., Hydrodynamic and Metallurgical Characterization of Industrial Columns in Rougher Circuit, Minerals Engineering, 2009, vol. 22.
5. Dobby, G.S. and Finch, J.A., Mixing Characteristics of Industrial Flotation Columns, Chemical Engineering Science, 1985, vol. 40(7).
6. Finch, J.A. and Dobby, G.S., Column Flotation, Oxford: Pergamon, 1990.
7. Changunda K. Deglon and Harris, M., Investigating the Effect of Energy Input on Flotation Kinetics in an Oscillating Grid Flotation Cell, Minerals Engineering, 2008, vol. 21.
8. Rulyov, N.N., Turbulent Microflotation of Ultrafine Minerals, Mineral Processing and Extractive Metallurgy, 2008, vol. 117, no. 1.
9. Massinaei, M., Mixing Characteristics of Industrial Columns in Rougher Circuit, Minerals Engineering, 2007, vol. 20.
10. Aslan, A. and Boz, H., Effect of Air Distribution Profile on Selectivity at Zinc Cleaner Circuit, Minerals Engineering, 2010, vol. 23, Nos. 11–13.
11. Samygin, V., Filippov, L., Matinin, A., Lekhatinov, Ch., and Tertyshnikov, M., New Multiple-Zone Flotation Cell—Device for Increasing Separation Selectivity, Proc. XV Balkan Mineral Processing Congress BMPC 2013, Sofia: Publishing House St. Ivan Rilski, ISBN 978–954–353–217–9, 2013, vol. 2.
12. Goryachev, B.Y., Nikolaev, À.À., and Ils’ina, Å.Y., Analysis of Flotation Kinetics of Particles with the Controllable Hydrophobic Behavior, J. Min. Sci., 2010, vol. 46, no. 1, pp. 72–77.
13. Koh, P. T. L. and Schwarts, M.P., CFD Modelling of Bubble–Particle Attachments in Flotation Cells, Mineral Engineering, 2006, vol. 19.
14. Yoon, R.H. and Luttrell, G.H., The Effect of Bubble Size on Fine Particle Flotation, Mineral Processing and Extractive Metallurgy Review, 1989, vol. 5.
15. Dai, Z., Fornasiero, D., and Ralston, J., Particle–Bubble Attachment in Mineral Flotation, Journal Colloid and Interface Science, 1999, vol. 217, no. 1.
16. Schulze, H.J., Hydrodynamics of Bubble–Mineral Particle Collisions, Mineral Processing and Extractive Metallurgy Review, 1989, vol. 5.
17. Jameson, G.J., The Effect of Surface Liberation and Particle Size on Flotation Rate Constants, Minerals Engineering, 2012, vols. 36–38.
18. Kondrat’ev, S.A., Study of the Rupture of Gas Bubbles in Turbulent Liquid Streams, J. Min. Sci., 1987, vol. 23, no. 5, pp. 646–468.
19. Kondrat’ev, S.A. and Bochkarev, G.R., Stabilization of Bubble Size in a Flotation Cell, J. Min. Sci., 1998, vol. 34, no. 3, pp. 272–277.


INTEGRATED TECHNOLOGY FOR PRODUCTION OF NANOMATERIALS FROM POOR ORE AND WASTE
Yu. A. Mirgorod and S. G. Emel’yanov

South-Western State University,
ul. 50 let Oktyabrya 94, Kursk, 305040 Russia
e-mail: yu_mirgorod@mail.ru

The authors generalize the research aimed at integrated production of nanomaterials. Mixes of metal ions are concentrated and separated in ion flotation. In micellar solutions of extracted ions, nanoparticles of metals or their oxides are obtained. Nanoparticles are converted in nanomaterials. The article discusses physico-technical problems of ion flotation, production of nanoparticles in direct micelles and properties of nanomaterials.

Technology, ion flotation, flotoextraction, direct micelles, metal nanoparticles, metal oxide nanoparticles, nanomaterials

DOI: 10.1134/S1062739115010226 

REFERENCES
1. Chanturia, V.A., Kozlov, A.P., Matveeva, T.N., and Lavrinenko, A.A., Innovative Technologies and Extraction of Commercial Components from Unconventional and Difficult-to-Process Minerals and Mining-and-Processing Waste, J. Min. Sci., 2012, vol. 48, no. 5, pp. 904–913.
2. Mirgorod, Yu.A. and Emelyanov, S.G., Technology of Producing Nanopowders of Metals and Metal Oxides from the Waste of Metallurgy, Nanotech Italy, Promoting Responsible Innovation, Venice, 2011.
3. Mirgorod, Yu.A., Borshch, N.A., and Yurkov, G.Yu., Production of Nanomaterials from Aqueous Solutions Modeling Hydrometallurgy Rejects, Zh. Fiz. Khim., 2011, no. 8.
4. Nicol, S.K., Galvin, S.K., and Engel, M.D., Ion Flotation—Potential Applications to Mineral Processing, Minerals Engineering, 1992, nî. 5.
5. Doyle, F. M. Ion Flotation—Its Potential for Hydrometallurgical Operation, Int. J. Miner. Process., 2003, vol. 72.
6. Mirgorod, Yu.A. and Borshch, N.A., Thermodynamics and Kinetics of Flotoextraction with Cationic and Anionic Surface Active Substance, Izv. Yugo-Zap. Gos. Univ., Ser: Fiz. Khim., 2011, no. 1.
7. Chanturia, V.A., Nedosekina, T.V., and Gapchich, A.O., Improving Gold Flotation Selectivity by using New Collecting Agents, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1031–1038.
8. Morgan, J.D., Napper, D.H., Warr, G.G., and Nicol, S.K., Kinetics of Recovery of Hexadecyltrimethyl Ammonium Bromide by Flotation, Langmuir, 1992, nî. 8.
9. Liu, Z. and Doyle, F.M., A Thermodynamic Approach to Ion Flotation: II. Metal Ion Selectivity in the SDS–Cu–Ca and SDS–Cu–Pb Systems, Coll. Surf. A: Physicochem. Eng. Asp., 2001, nî. 178.
10. Mirgorod, Yu.A., Kurdykov, A.V., and Postnikov, E.B., Thermodynamic Models of Alkaline-Earth Metal Ion Flotation, Russ. J. Phys. Chem., 2005, nî. 8.
11. Doyle, F.M. and Lui, Z., The Effect of Triethylenetetraamine (Trien) on the Ion Flotation of and , J. Coll. Int. Sci., 2003, nî. 258.
12. Mirgorod, Yu.A. and Efimova, N.A., Synthesis of Super Paramagnetic Platinum/Nickel Hybrids in Direct Micelles of Cationic SAS, Zh. Fiz. Khim., 2008, no. 3.
13. Mirgorod, Yu.A. and Efimova, N.A., Interconnection between Diameters of Water Pool of Direct Micelles and Diameter of Cadmuim Sulfate Nanoparticles, Zh. Prikl. Khim., 2007, no. 9.
14. Mirgorod, Yu.A., Thermodynamic Analysis of the Dynamic Structure of Micellar Solution of Sodium Alkyl Sulphate, J. Struct. Chem., 2008, nî. 5.
15. Mirgorod, Yu.A. and Efimova, N.A., Contact and Water-Separated Hydrophobic Interaction in Micellar Solutions of SAS, Zh. Fiz. Khim., 2007, no. 10.
16. Mirgorod, Yu.A., Borshch, N.A., Borodina, V.G., Yurkov, G.Yu., and Timakov, D.I., Producing Gold Nanoparticles from Scrap, Khim. Tekhnol., 2012, no. 9.
17. Mirgorod, Yu.A. and Borodina, V.G., Preparation and Bactericidal Properties of Silver Nanoparticles in Aqueous Tea Leaf Extract, Inorg. Mater., 2013, nî. 10.
18. Mirgorod, Yu.A., RF patent no. 2424339, Byull. Izobret., 2011, no. 20.
19. Mirgorod, Yu.A., Emel’yanov, S.G., and Borshch, N.A., RF patent no. 2464088, Byull. Izobret., 2012, no. 29.
20. Mirgorod, Yu.A., Emel’yanov, S.G., and Borshch, N.A., RF patent no. 2468861, Byull. Izobret., 2012, no. 34.
21. Mirgorod, Yu.A., Borshch, N.A., Fedosyuk, V.M., and Yurkov, G.Yu., Structure and Properties of Nanoparticles of Cobalt Ferrite Synthesized in the System of Direct Micelles of Amphiphiles with Ion Flotation, Zh. Fiz. Khim., 2012, no. 3.
22. Maslobrod, S.N., Mirgorod, Yu.A., Borodina, V.G., and Borshsch, N.A., Effect of Aqueous Dispersion Systems with Silver and Copper Nanoparticles on Seed Germination, Elektron. Obrab. Mater., 2014, no. 4.


SULFIDATION OF REBELLIOUS OXIDIZED LEAD AND ZINC MINERALS IN AQUEOUS VAPOR ENVIRONMENT
I. G. Antropova and A. Yu. Dambaeva

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences,
ul. Sakh’yanovoi 6, Ulan-Ude, 670047 Russia
e-mail: inan@binm.bscnet.ru
East-Siberia State University of Technology and Management,
ul. Klyuchevskaya 42, Ulan-Ude, 670013 Russia

The author state feasibility of deep sulfidation of rebellious oxidized lead and zinc minerals under calcination with pyrite concentrate in the aqueous vapor environment. It is shown that interaction between oxidized lead and zinc compounds and iron sulfide in the superheated vapor with sulfide formation takes place at the solid–gas interface, namely, MO–H2S—under sulfidation of heterolyte and beudantite; PbSO4–H2S—under sulfidation of plumbojarosite.

Sulfidation, rebellious oxidized lead and zinc minerals, superheated aqueous vapor

DOI: 10.1134/S1062739115010238 

REFERENCES
1. Abramov, A.A., Puti sovershenstvovaniya tekhnologii obogashcheniya i pererabotki okislennykh i smeshannykh rud. Pererabotka okislennykh rud (Ways to Improve Processing of Oxidized and Complex Ores. Oxidized Ore Beneficiation), Moscow: Nauka, 1985.
2. Chanturia, V.A. and Trofimova, E.A., Pererabotka okislennykh rud (Processing of Oxidized Ores), Moscow: Nauka, 1985.
3. Li Yong, Wang Ji-kun, Wei Chang, Liu Chun-Xia, Jiang Ji-Bo, and Wang Fan, Sulfidation Roasting of Low Grade Lead–Zinc Oxide Ore with Elemental Sulfur, Min. Eng., 2010, no. 23.
4. Antropova, I.G., Gulyashinov, A.N., Lamuev, V.A., and Paleev, P.L., RF patent no. 2364639, Byull. Izobret., 2009, no. 23.
5. Dambaeva, A.Yu., Antropova, I.G., Gulyashinov, A.N., and Paleev, P.L., Complex Process for Treatment of Rebellious Oxidized Lead Ore, Gorn. Inform.-Analit. Byull., 2011, no. 1.
6. Antropova, I.G. and Khaludorov, D.L., On Kinetics of Lead Sulfide Formation in Sulfidizing Calcination in Superheated Aqueous Vapor Environment, Zh. Prikl. Khim., 2008, vol. 81, issue 5.


MINING ECOLOGY


ENTROPY ANALYSIS OF PROCESS WASTEWATER COMPOSITION IN MINERAL MINING REGION
A. B. Logov, V. N. Oparin, V. P. Potapov, E. L. Schastlivtsev, and N. I. Yukina

Kemerovo Division, Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences,
ul. Rukavishnikova 21, Kemerovo, 65005 Russia
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: oparin@misd.nsc.ru

The article offers the entropy method for detecting contamination clusters and anomalous high toxic substance content in water bodies of a mineral mining region in terms of Bunguro-Chumysh district in Kuzbass. Specificity of composition of various water kinds and their ingredients is identified, diagnostic signs of various contamination sources are revealed, integral characteristics obtained from combinations of water ingredients are ranked, and distribution of ingredients in various kind water relative to MAC value is analyzed.

Entropy method, contamination, ingredients, water bodies, open pit and underground mine meltwater, Kuzbass coal mines

DOI: 10.1134/S1062739115010251 

REFERENCES
1. Oparin, V.N., On Problem of Formation and Development of Focal Zones of Catastrophy Events in Mining and Natural Systems: Energy Approach, publ. in Ecological Strategy in Mining Industry as Formation of New Outlook in Utilization of Mineral Resources, All-Russian Sci. Tech. Conf. with Foreign Participants, vol. 1, Saint-Petersburg, Apatity: Renome, 2014.
2. Adushkin, V.V. and Oparin, V.N., From the Alternating Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
3. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistve na ob’ekty nedropol’zovaniya (Modern Geodynamics of a Rock Mass in the Upper Lithosphere: Origin, Parameters, Effect on Mineral Resources), Novosibirsk: SO RAN, 2008.
4. Oparin, V.N., Kozyrev, A.A., and Sashurin, A.D., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Earth’s Crust Destruction and Self-Organizing Processes in Heavy Technogenic Impact Areas), Novosibirsk: SO RAN, 2012.
5. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46, no. 6, pp. 666–671.
6. Potapov, V.P., Oparin, V.N., Logov, A.B., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechanical-Geodynamic Control Geoinformation System with Entropy Analysis of Seismic Events (in Terms of Kuzbass), J. Min. Sci., 2013, vol. 49, no. 3, pp. 482–488.
7. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vol. 50, no. 1, pp. 142–154.
8. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy dlya seismodeformatsionnogo monitoringa tekhogennykh zemletryasenii i gornykh udarov (Processes and Systems for Seismodeformation Monitoring of Technogenic Earthquakes and Rockbursts), Novosibirsk: SO RAN, 2009, vol. 1, 2010, vol. 2.
9. Pevzner, M.E., Gornaya ekologiya (Mining Ecology), Moscow: MGTU, 2003.
10. Mikhailov, Yu.V. and Kovorova, V.V., Mining Ecology as Provision for Ecological Safety in Exploitation of Mining Resources, Marksheid. Vest., 2011, no. 3.
11. Sergeev, V.I., Shimko, T.G., Danchenko, N.N., Kuleshova, M.L., Petrova, E.V., and Svitoch, N.A., Approbation of the Procedure for Evaluation of the Underground Water Safety in the Ash-Dump Area at Artemovsk Boiler Plant, Geoekol. Inzh. Geolog. Geokriol., 2009, no. 4.
12. Akhmet’eva, N.P., Lapina, E.E., and Kudryashova, V.V., Sorption Properties of Rocks in Aeration Zone and their Role in Protection of Underground Waters against Pollution, Geoekol. Inzh. Geolog. Geokriol., 2006, no. 4.
13. Krzhizh, L., Vittlingerova, Z., Pashkovskii, I.S., and Khaloupka, D., Influence of Flood Situations on Water Quality in Underground Water Resources, Geoekol. Inzh. Geolog. Geokriol., 2006, no. 5.
14. Alimova, G.S., Zemtsova, E.S., Chemagin, A.A., Popova, E.I., Dudareva, I.A., Tokareva, A.Yu., and Khakimzyanova, G.Kh., Hydrochemistry of Surface Waters and Microzoobenthos of the Lower Irtysh, Voda: Khim. Ekol., 2014, no. 5 (71).
15. Schastlivtsev, E.L., Pushkin, S.G., Yukina, N.I., and Zhukova, I.A., Estimation of Technogenic Impact of Coal Mines on Water Ponds, GIAB, 2013, no. OV6.
16. Schastlivtsev, E.L., Pushkin, S.G., and Yukina, N.I., Possible Ways to Up-Date Systems for Monitoring of Mine and Mine-Pit Waters at Coal Mines, GIAB, 2009, no. ÎV7.
17. Kantor, E.A., Afanas’eva, E.S., Safarova, V.I., and Fat’yanova, E.V., Analysis of Chloride Pollution of the Belaya River within Sterlitamak Area, Voda: Khim. Ekol., 2014, no. 6 (72).
18. Bogush, A.A., Letov, S.V., and Miroshnichenko, L.V., Distribution and Forms of Heavy Metals in Drainage Streams and Hydrodump at Belovo Zinc Smelter, the Kemerovo Region, Geoekol. Inzh. Geolog. Geokcriol., 2007, no. 5.
19. Alieva, V.I., Lomonosov, I.S., and Grebenshchikova, V.I., Dynamics of Technogenic Microelements In-Flow to Bratsk Water-Storage Lake, Geoekol. Inzh. Geolog. Geokriol., 2009, no. 3.
20. Mal’tsev, A.E., Leonova, G.A., Bogush, A.A., and Bulycheva, T.M., Ecological and Geochemical Evaluation of Anthropogenic Pollution of Ecosystems of Watered Pits in Novosibirsk, Ekol. Prom. Proizv., 2014, no. 2 (86).
21. Ksenofontov, B.S. and Titov, K.V., Modeling of Wastewater Flotation Treatment, Ekol. Prom. Proizv., 2014, no. 2 (86).
22. Pozdnyakov, S.P. and Preobrazhenskaya, A.E., Numeric Modeling Estimation of Evaporator-Transpiration Unloading of Underground Waters, Geoekol. Inzh. Geolog. Geokriol., 2009, no. 5.
23. Gazaev, M.A., Agoeva, E.A., and Zhinzhakova, L.Z., Comparative Analysis of Compositions of River Waters Sampled at Baksan and Chereksk High-Mountain Canons, Voda: Khim. Ekol., 2014, no. 6 (72).
24. Konov, V.I., Investigation into Basic Factors Effecting Water Quality in Small Rivers in Open-Gold-Mining Areas in the Chita Region, Geoekol. Inzh. Geolog. Geokriol., 2008, no. 2.
25. Chevychelov, A.P. and Kuznetsova, L.I., Variations in Geochemical Parameters of Surface Waters in Industrial Areas in Southern Yakutia, Voda: Khim. Ekol., 2014, no. 6 (72).
26. Mironenko, V.A. and Rumynin, V.G., Problemy gidroekologii (Hydroecology Problems), vol. 3 (book 1), Moscow: MGTU, 1999.
27. Logov, A.B., Zamaraev, R.Yu., and Logov, A.A., Analysis of the State of the Unique Object Systems, Vychisl. Tekhnol., 2005, vol. 10, no. 5.
28. Logov, A.B., Zamaraev,R.Yu., and Logov, A.A., Simulation of Trends in Behavior of Elements of Unique Object Systems, Vychisl. Tekhnol., 2005, vol. 10, no. 5.
29. Logov, A.B., Zamaraev,R.Yu., and Logov, A.A., Entropy Method Algorithms to Present Properties of an Object in the Phase Space, Vychisl. Tekhnol., 2005, vol. 10, no. 6.


MEASUREMENT OF VEGETATION MANTLE CHANGE IN THE ZONE OF INFLUENCE OF STARY OSKOL–GUBKIN IRON ORE INTEGRATED WORKS
E. A. Terekhin and O. M. Samofalova

Federal–Regional Center for Space and Earth Monitoring of Man-Made and Natural Assets,
Belgorod State National Research University,
ul. Pobedy 86, Belgorod, 30815 Russia
e-mail: terekhin@bsu.edu.ru

The authors discuss current condition of forests and lands in the neighborhood of Stary Oskol–Gubkin Iron Ore Integrated Works. The rate of change in the coverage area and condition of pinery between 1986 and 2012 is explored. The types and areal of change of forests are revealed. Using satellite and in situ data, intensity of auto-healing of open pit dump areas in the period from 1988 through 2012 is studied.

Open pit — dump areas, vegetation mantle, pinery, auto-healing, Landsat, NDVI, the Belgorod Region, Kursk Magnetic Anomaly (KMA)

DOI: 10.1134/S1062739115010263 

REFERENCES
1. Chepelev, O.A. and Lomivorotova, O.M., Optic Aerosol Analyzer Investigation into Dust Emission at Tailing Dumps at Lebedinsky Mining and Processing Integrated Works, Problemy Reg. Ekol., 2011, no. 2.
2. Ermak, N.B. and Rusin, E.V., Evaluation of Forest Ranges Viability in Recultivated Dump Areas at Coal Mines, Vestnik KemGU, 2010, no. 1.
3. Chepelev, O.A., Lomivorotova, O.M., Ukrainsky, P.A., and Terekhin, E.A., Investigation into Relation between Snow Dust Condition and its Spectral Reflectivity, Izv. Samar. Nauchn. Tsentra RAN, 2010, vol. 12, nos. 1–4.
4. Lisetsky, F.N., Sviridova, A.V., Kukharuk, N.S., Goleusov, P.V., and Chepelev, O.A., Accumulation of Heavy Metals in Crop Products in Technogenesis Zones, Vesti Orienb. Gos. Univers., 2008, no. 10(92).
5. Lisetsky, F.N., Borovlev, A.E., Chepelev, O.A., Terekhin, E.A., and Lomivorotova, O.M., Monitoring Man-Induced Impact in Operating and Fresh Production Areas (the Belgorod Region as an Example), Ekol. Sist. Prib., 2011, no. 7.
6. Kalashnikov, A.T., Tekhnologiya dobychi i pererabotki zheleznykh rud na kar’erakh (Open Mining and Processing of Iron Ores), Moscow: Nedra, 1993.
7. Babets, A.M., Terent’ev, M.V., and Cherkashenko, N.A., Mining Operations and Ecological Problems in Kursk Magnetic Anomaly Area, GIAB, 2000, no. 11.
8. Lychagin, E.V., Sergeev, S.V., and Sinitsa, I.V., Investigation into Dusting of Iron-Ore Tailing Dumps and Development of Processes for their Stabilization, Vest. Udmurt. Univer., 2009, nos. 6–1.
9. Kalabin, G.V., Gorny, V.I., and Kritsuk, S.G., Satellite Monitoring of Vegetation Mantle Response to the Sorsk Copper-Molybdenum Mine Impact, J. Min. Sci., 2014, vol. 50, no. 1, pp. 155–162.
11. Terekhin, E.A., Application of Satellite Data to Analyze Many-Years Changes in Forests in the Belgorod Region, Sovr. Problemy Distants. Zondir. Zemli iz Kosmosa, 2013, vol. 10, no. 2.
11. Terekhin, E.A., Process for Mapping of Many-Years Forest Changes from the Analysis of their Spectral Characteristics Based on Different-Time Satellite Data Series, Issled. Zemli iz Kosmosa, 2013, no. 5.
12. Virk, R. and King, D., Comparison of Techniques for Forest Change Mapping Using Landsat Data in Karnataka, India, Geocarto Intern., 2006, vol. 21, no. 4.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå