Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2014 год » JMS, Vol. 50, No. 6, 2014

JMS, Vol. 50, No. 6, 2014


GEOMECHANICS


ROCK DEFORMATION AROUND STOPES AT DEEP LEVELS
M. V. Kurlenya, V. E. Mirenkov, and V. A. Shutov

The authors offer an approach to estimating deformation of rock mass around a stope (zonal disintegration) at deep levels. The algorithm of geomechanical condition of rocks is developed, and the ranges of stresses and strains in the zone of influence of a stope are identified.

Stope, physical phenomena, rock, deep levels, analytical solution, Young modulus, boundary conditions

REFERENCES
1. Mirenkov, V.E., Finite Stress in Fracture Mechanics, Engineering Fracture Mechanics, 2004, vol. 48, no. 1.
2. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., et al., Interaction of Geomechanical and Physicomechanical Process in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.
3. Nazarova, L.A., Nazarov, L.A., Epov, M.I., and El’tsov, I.N., Evolution of Geomechanical and Electro-Hydrodynamic Fields in Deep Well Drilling in Rocks, J. Min. Sci., 2013, vol. 49, no. 5, pp. 704–714.
4. Chanyshev, A.I. and Abdulin, I.M., Stress–Strain State of Enclosing Rock Mass around an Arbitrary Cross-Section Excavation by Measurement of Displacements of the Excavation Walls, J. Min. Sci., 2014, vol. 50, no. 1, pp. 18–24.
5. Shkuratnik, V.L. and Novikov, E.A., Correlation of Thermally Induced Acoustic Emission and Ultimate Compression Strength in Hard Rocks, J. Min. Sci., 2012, vol. 48, no. 4, pp. 629–635.
6. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., and Rozenbaum, M.A., USSR Discovery no. 400, Byull. Izobret., 1992, no. 1.
7. Mirenkov, V.E., Zonal Disintegration of Rock Mass around an Underground Excavation, J. Min. Sci., 2014, vol. 50, no. 1, pp. 33–37.
8. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of the Mathematical Elasticity Theory), Moscow: Nauka, 1966.
9. Li, K.P. and Carden, W.P., Simulation of Sprungback, Intern. J. Mech. Sci., 2002, vol. 44.
10. Geng, L. and Wagoner, R.H., Role of Plastic Anisotropy and Its Evolution on Sprungback, Int. J. Mech. Sci., 2002, vol. 44.
11. Gau, J.-T. and Kinzel, G.L, An Experimental Investigation of the Influence of the Bauschinger Effect on Sprungback Predictions, J. Mater. Process. Technol., 2001, vol. 108.
12. Krasnovsky, A.A. and Mirenkov, V.E., Calculation of Stress–Strain State in a Rock Mass with an Oil Formation, J. Min. Sci., 2008, vol. 44, no. 2, pp. 138–145.


STABILITY AND CREEPING OF LANDSLIDE SLOPE
V. N. Zakharov, O. N. Malinnikova, V. A. Trofimov, and Yu. A. Filippov

The article describes the method of estimating potential instability of natural and man-made slopes based on the generalized Mohr–Coulomb failure criterion considering stress–strain state of rocks. The most probable sliding surface is defined by step-wise iteration using the method of local variations. The authors emphasize the requirement to assess the condition and behavior of a landslide body during dynamic displacement in order to spot its final position, and adduce examples.

Landslides, geological processes, stress–strain state, shearing, finite element method, ANSYS

REFERENCES
1. Rekomendatsii po kolichestvennoi otsenke ustoichivosti opolznevykh sklonov (Recommendations on Quantitative Estimation of Stability of Landsliding-Prone Slopes), Moscow: Stroiizdat, 1984.
2. Rekomendatsii po vyboru metodov rascheta koeffitsienta ustoichivosti sklona i opolznevogo davleniya (Recommendations on Choosing Calculation Methods for Slope Stability Factor and Sliding Pressure), Moscow: TsBNTI, 1986.
3. Rukovodstvo po proektirovaniyu i ustroistvu zaglublennykh inzhenernykh sooruzhenii (Guidelines on Planning and Layout of Deep Engineering Structures), Moscow: Stroiizdat, 1986.
4. Kuznetsov, S.V. and Trofimov, V.A., Algorithm and Search Method for the Critical Surfaces in the Vicinity of Mined-Out Spaces, J. Min. Sci., 2005, vol. 41, no. 2, pp. 123–128.


COMPARATIVE STUDY OF RHEOLOGICAL PROPERTIES OF SUSPENSIONS BY COMPUTER SIMULATION OF POISEUILLE AND COUETTE FLOWS
V. A. Kuzkin, A. M. Krivtsov, and A. M. Linkov

The article presents results of numerical experiments performed to evaluate the effective rheological properties of a mixture of a fluid with solid particles. The numerical simulation of the Couette and Poiseuille flows shows that in the both cases, the effective viscosity and non-Newtonian properties of the suspension coincide to the accuracy of standard deviation. The authors define the area of applicability of Newtonian fluid model to modeling fluid and proppant mix and determine conditions for plugs at high concentrations of proppant.

Hydraulic fracture, proppant, suspension, effective properties, Poiseuille and Couette flows, particle dynamics

REFERENCES
1. Mueller, S., Llewellin, E.W., et al., The Rheology of Suspensions of Solid Particles, Proc. R. Soc. A, 2010, vol. 466.
2. Einstein, A., Eine neue Bestimmung der Molekuldimensionen, Ann. Phys., 1906, vol. 19.
3. Brady, J.F., The Einstein Viscosity Correction in n Dimensions, Int. J. Mult. Flow, 1983, vol. 10.
4. Abedian, B. and Kachanov, M.L., On the Effective Viscosity of Suspensions, Int. J. Eng. Sci., 2010, vol. 48.
5. Hashin, Z. and Shtrikman, S., A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials, J. Mech. Phys. Sol., 1963, vol. 11.
6. Mooney, M., The Viscosity of a Concentrated Suspension of Spherical Particles, J. Colloid Sci., 1951, vol. 6.
7. Maron, S.H. and Pierce, P. E. Application of Ree-Eyring Generalized Flow Theory to Suspensions of Spherical Particles, J. Colloid Sci., 1956, vol. 11.
8. Krieger I. M. and Dougherty, T.J., A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres, T. Soc. Rheol., 1959, vol. 3.
9. Herschel, W.H. and Bulkley, R., Konsistenzmessungen von Gummi-Benzollsungen, Kolloid Zeitschrift, 1926, vol. 39.
10. Economides, M.J. and Nolte, K.G., Reservoir Stimulation, Prentice Hall, Englewood Cliffs, New Jersey, 1989.
11. Adachi, J., Siebrits, E., et al., Computer Simulation of Hydraulic Fractures, Int. J. Rock Mech. Mining Sci., 2007, vol. 44.
12. Hoover, W.G., Molecular Dynamics, Lecture Notes in Physics, 1986, vol. 258, Springer, Berlin.
13. Krivtsov, A.M., Deformirovanie i razrushenie tverdykh tel s mikrostrukturoi (Deformation and Fracture of Solids with Microstructure), Moscow: Fizmatlit, 2007.
14. Foss, D.R. and Brady, J.F., Structure, Diffusion and Rheology of Brownian Suspensions by Stokesian Dynamics Simulations, J. Fluid Mech., 2000, vol. 407.
15. Martys, N.S., Study of a Dissipative Particle Dynamics Based on Approach for Modeling Suspensions, J. Rheol., 2005, vol. 49.
16. Martys, N.S., George, W.L., et al., A Smoothed Particle Hydrodynamics-Based Fluid Model with a Spatially Dependent Viscosity: Application to Flow of a Suspension with a Non-Newtonian Fluid Matrix, Rheol. Acta, 2010, vol. 49.
17. Ladd, A. J. C., Colvin, M.E., et al., Application of Lattice–Gas Cellular Automata to the Brownian Motion of Solids in Suspension, Phys. Rev. Let., 1988, vol. 60.
18. Kuzkin, V.A., Krivtsov, A.M., and Linkov, A.M., Proppant Transport in Hydraulic Fractures: Computer Simulation of Effective Properties and Movement of the Suspension, Proc. 41 Summer-School Conference Advanced Problems in Mechanics, 2013.
19. Kuzkin, V.A., Krivtsov, A.M., and Linkov, A.M., Computer Simulation of Effective Viscosity of Fluid–Proppant Mixture Used in Hydraulic Fracturing, J. Min. Sci., 2014, vol. 50, no. 1, pp. 1–9.
20. Verlet, L., Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard–Jones Molecules, Phys. Rev., 1967, vol. 159.
21. Le-Zakharov, A.A. and Krivtsov, A.M., Molecular Dynamics Investigation of Heat Conduction in Crystals with Defects, Doklady Physics, 2008, vol. 53.
22. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W.F., Di Nola, A., and Haak, J.R., Molecular-Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, vol. 81.
23. Boek, E.S., Coveney, P.V., and Lekkerkerker, H. N. W., Computer Simulation of Rheological Phenomena in Dense Colloidal Suspensions with Dissipative Particle Dynamics, J. Phys. Cond. Mat., 1996, vol. 8.
24. Berryman, J.G., Random Close Packing of Hard Spheres and Disks, Phys. Rev. A, 1983, vol. 27.


DOWNHOLE UNBALANCE VIBRATION EXCITER NEAR-FIELD ANALYSIS
V. V. Skazka, S. V. Serdyukov, and M. V. Kurlenya

The article reports numerical investigation of near-field region of a downhole unbalance vibration exciter. It is found that vibration intensity is spatially variable and depends on vibration frequency. The authors specify the vibration exciter work mode required to ensure maximum impact on coal-and-rock mass in the vicinity of degassing holes at the limited power of the vibration exciter drive.

Coal-and-rock mass, vibration impact, downhole unbalance vibration exciter, numerical modeling, near-field range, wave field

REFERENCES
1. Kurlenya, M.V. and Serdyukov, S.V., Methane Desorption and Migration in Thermodynamic Inequilibrium Coal Beds, J. Min. Sci., 2010, vol. 476, no. 1, pp 50–56.
2. Kurlenya, M.V. and Serdyukov, S.V., Reaction of Fluids of an Oil-Producing Stratum to Low-Intensity Vibro-Seismic Action, J. Min. Sci., 1999, vol. 35, no. 2, pp. 113–119.
3. Skazka, V.V., Serdyukov, S.V., Erokhin, G.N., and Serdyukov, A.S., Near-Field Range of the Direct-Impact Seismic Source, J. Min. Sci., 2013, vol. 49, no. 1, pp. 60–67.
4. Krutin, V.N. and Faizulin, V.S., Theory of Borehole-to-Borehole Sounding, Fiz. Zemli, 1993, no. 7.
5. Richard, L. and Gibson, Jr., Seismic Sources in Cased Boreholes, Geophysics, 1994, vol. 59, no. 2.
6. Cheng, C.H., Elastic Wave Propagation in a Fluid-Filled Borehole and Synthetic Acoustic Logs, Geophysics, 1981, vol. 46, no. 7.
7. Bouchon, M. and Denis P. Schmitt, Full-Wave Acoustic Logging in an Irregular Borehole, Geophysics, 1989, vol. 54, no. 6.
8. Kostin, V.I., Reshetova, G.V., and Cheverda, V.A., Numerical Modeling of 3D Acoustic Logging Using Multiprocessor Computation Systems, Mat. Modelir., 2008, vol. 20, no. 9.
9. Kozyar, V.F., Belokon’, D.V., Kozyar, N.V., et al., Acoustic Logging in Wells—State-of-the-Art and Development Trends (Review of Domestic and Foreign Sources of Information), NTV Karotazhnik, 1999, issue 63.
10. Sneddon, I.N. and Berry, D.S., The Classical Theory of Elasticity, Elasticity and Plasticity, S. Flugge (Ed.), Springer–Verlag, 1958.
11. Rekach, V.G., Rukovodstvo po resheniyu zadach teorii uprugosti (Manual on Elasticity Theory Problem Solving), Moscow: Vyssh. Shk., 1966.
12. Novozhilov, V.I., Teoriya uprugosti (Theory of Elasticity), Leningrad: Sudpromgiz, 1958.
13. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.
14. Kurlenya, M.V. and Serdyukov, S.V., Determination of the Region of Vibroseismic Action on an Oil Deposit from the Daylight Surface, J. Min. Sci., 1999, vol. 35, no. 4, pp. 333–340.


EFFECT OF EXTERNAL PULSED LOW-ENERGY IMPACT ON DESTRUCTION OF PRE-LOADED ROCK SPECIMENS
A. G. Vostretsov and G. E. Yakovitskaya

The authors study the influence of external pulsed low-energy impact (blows) applied to different rock specimens exposed to loading up to failure on the electromagnetic radiation record layout.

Mechanical instability, rock specimens, loading to failure, external pulsed impact, electromagnetic radiation, trigger effect

REFERENCES
1. Vorob’ev, A.A., Zavadovskaya, E.K., and Sal’nikov, V.N., Change in Conductance and Radio Radiation in Rocks and Minerals under Physicochemical Processes in Them, Dokl. AN SSSR, 1975, vol. 220, no. 1.
2. Perel’man, M.E. and Khatiashvili, N.G., Radio Radiation under Brittle Failure of Dielectrics, Dokl. AN SSSR, 1981, vol. 256, no. 4.
3. Sobolev, G.A., Osnovy prognoza zemletryasenii (Basis of Earthquake Prediction), Moscow: Nauka, 1993.
4. Petukhov, I.M., Vinokur, B.Sh., and Smirnov, V.A., Integrated Prediction Method for Rockburst Hazard in Coal Mines, Bezop. Truda Prom., 1969, no. 10.
5. Sobolev, G.A. and Ponomarev, A.V., Geological Medium Failure Dynamics under Trigger Effect of Liquids, Fiz. Zemli, 2011, no. 10.
6. Adushkin, V.V., Trigger Effect in Landsliding, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: GEOS, 2010.
7. Kocharyan, G.G., Remote Initiation of Dynamic Events, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: GEOS, 2010.
8. Avagimov, A.A., Zeigarnik, V.A., and Okunev, V.I., Parametric Characteristics of Mechanical Instability Evolution, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: IDG RAN, 2013.
9. Psakh’e, S.G., Shil’ko, E.V., Astafurov, A.V., and Grigor’ev, A.S., Possibility of Assessing the Approach of Ultimate Shear Stresses at Active Interfaces in Block Media, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: IDG RAN, 2013.
10. Kocharyan, G.G., Deformation of Fault Zones and Initiation Potential of Seismic Vibrations, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: IDG RAN, 2013.
11. Kozyrev, A.A., Fedotova, Yu.V., and Zhuravleva, O.G., Monitoring Seismic Activity Variation and Searching Indications of Strong Induced Seismic Events, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: IDG RAN, 2013.
12. Maibuk, Z.-Yu.Ya., Trigger Effects under Change in the Stress–Strain State of Ore-Bearing Rocks, Proc. All-Russian Workshop on Trigger Effects in Geosystems, Moscow: IDG RAN, 2013.
13. Yakovitskaya, G.E., Metody i tekhnicheskie sredstva diagnostiki kriticheskikh sostoyanii gornykh porod na osnove elektromagnitnoi emissii (Methods and Equipment for Critical State Diagnosis in Rocks Based on Electromagnetic Emission), Moscow: Parallel’, 2008.
14. Kurlenya, M.V., Vostretsov, A.G., Kulakov, G.I., and Yakovitskaya, G.E., Registratsiya i obrabotka signalov elektromagnitnogo izlucheniya pri razrushenii gornykh porod (Recording and Processing of Electromagnetic Emission in Rock Failure), Novosibirsk: SO RAN, 2000.


ROCK FAILURE


THEORETICAL BACKGROUND OF LARGE-SCALE AND SELECTIVE BLASTING EFFECT ON ROCKS UNDER COMPLEX GROUND CONDITIONS
S. D. Viktorov, V. M. Zakalinsky, and A. A. Osokin

This is the first attempt to analyze theoretically large-scale blasting effect on rocks in complex ground conditions, including selective breaking. The authors consider utilization of the direction effect of blast energy using different charge designs, which is implemented as replacement of large diameter charge with a round of smaller size charges with equivalent total energy. Under discussion are new options of blast energy transfer and distribution in rocks.

Open pit mining, underground mining, geotechnology, stripping, explosive, structure of rocks, scale of breaking, charge design

REFERENCES
1. Viktorov, S.D., Eremenko, A.A., Zakalinsky, V.M., and Mashukov, I.V., Tekhnologiya krupnomasshtabnoi vzryvnoi otboiki na udaroopasnykh rudnykh mestorozhdeniyakh Sibiri (Large-Scale Blasting Technology for Rockburst-Hazardous Ore Mining in Siberia), Novosibirsk: Nauka, 2005.
2. Viktorov, S.D., Galchenko, Y.P., Zakalinsky, V.M., and Rubtsov, S.K., Razrushenie gornykh porod kumulyativnymi zaryadami (Rock Breaking by Cumulative Charges), K. N. Trubetskoy (Ed.), Moscow: Nauchtekhlitizdat, 2006.
3. Lavrent’ev, M.A., Cumulative Charge and Its Operation Mechanisms, Usp. Mat. Nauk, 1957, vol. 12, no. 4.
4. Trubetskoy, K.N., Galchenko, Yu.P., and Zakalinsky, V.M., New Trend in Drilling-and-Blasting in Open Pit Mining, Perspektivy osvoeniya nedr—kompleksnoe reshenie aktual’nykh problem: nauchnye chteniya im. N. V. Mel’nikova (Prospects for Mineral Mining—Integrated Solution to Urgent Problems: N. V. Mel’nikov’s Lectures), K. N. Trubetskoy (Ed.), Moscow: IPKON RAS, 2002.
5. Eremenko, A.A., Sovershenstvovanie tekhnologii burovzryvnykh rabot na zhelezorudnykh mestorozhdeniyakh Zapadnoi Sibiri (Improvement in Drilling-and-Blasting Technologies for Iron Ore Mining in Western Siberia), Novosibirsk: Nauka, 2013.
6. Galchenko, Yu.P., Cumulative Effect in Rock Destruction of Deconcentrated Charges, Zap. Gorn. Inst., 2007, vol. 171.
7. Bud’ko, A.V. and Zakalinsky, V.M., Theory of the Action of Clusters of Closely Spaced Blastholes, J. Min. Sci., 1965, vol. 1, no. 6, pp. 641–647.
8. Viktorov, S.D., Frantov, A.E., Zakalinsky, V.M., and Galchenko, Yu.P., RF patent no. 2511330, Byull. Izobret., 2014, no. 10.
9. Viktorov, S.D., Zakalinsky, V.M., Osokin, A.A., and Shlapin, A.V., Physical Model of Mineral Block Intensive Development by Blasting with an Energy- and Resource-Saving Geotechnology at Great Depths, Proc. 7th World Conference on Explosives and Blasting, 2013.
10. Rakishev, B.R., Vskrytie kar’ernykh polei i sistemy otkrytoi razrabotki (Mine Field Uncovering and Open Pit Mining Methods), Almaty: MOiN RK, 2013.


MINERAL DRESSING


ENTRAINMENT AND TRUE FLOTATION OF. A. NATURAL COMPLEX ORE SULFIDE
A. Abidi, K. Elamari, A. Bacaoui, and A. Yacoubi

This study attempts to assess the contribution of entrainment and true flotation in the overall recovery by the laboratory tests performed on a natural complex sulphide ore, provided by la Compagnie Miniere des Guemassa (Morocco), and the effect of two different collectors, Potassium Amyl Xanthate (PAX) and Sodium di-isobutyl di-thiophosphinate (Aerophine 3418A), on the two contributions. Overall recovery and true recovery were fitted to first kinetic model and modified flotation parameters were calculated to measure of flotation separation selectivity of chalcopyrite, galena and sphalerite over gangue and pyrrhotite. To estimate the entrainment, Ross method was the most suitable in the case of complex sulphide ore with high content of pyrrhotite. Trahar method overestimates the effect of entrainment.

Froth flotation, true flotation, entrainment, potassium amyl xanthate, Aerophine 3418A, complex ore sulfide

REFERENCES
1. Savassi, O.N., Alexander, D.J., Franzidis, J.P., and Manlapig, E. V., An Empirical Model for Entrainment in Industrial Flotation Plants, Minerals Engineering, 1998, no. 11(3).
2. Seaman, D.R., Manlapig, E.V., and Franzidis, J.P., Selective Transport of Attached Particles across the Pulp–Froth interface, Minerals Engineering, 2006, no. 19.
3. Qi Min, Yuan-Yuan Duan, Xiao-Feng Peng, Arun S. Mujumdar, Chien Hsu, and Duu-Jong Lee, Froth Flotation of Mineral Particles: Mechanism, Drying Technology, 2008, no. 26.
4. Klassen, V. and Mokrousov, V., An Introduction to the Theory of Flotation, Butterworths, London, 1963.
5. Schulze, H., Physico-Chemical Elementary Processes in Flotation, Elsevier, Amsterdam, 1984.
6. Ross,V.E., Flotation and Entrainment of Particles during Batch Flotation Tests, Mineral Engineering, 1990, vol. 3, no. 3/4.
7. Trahar, W.J., A Rational Interpretation of the Role of Particle Size in Flotation, Int. J. Mineral Processing, 1981, no. 3.
8. Warren, L.J., Ultrafine Particles in Flotation, M. H. Jones, J. T. Woodcock (Eds.), Principles of Mineral Flotation, Australian IMM, Melbourne, 1984.
9. Kirjavainen, V.M., Review and Analysis of Factors Controlling the Mechanical Flotation of Gangue Minerals, Int. J. Mineral Processing, 1996, no. 46(1–2).
10. Zheng, X., Johnson, N.W., and Franzidis, J.P., Modelling of Entrainment in Industrial Flotation Cells: Water Recovery and Degree of Entrainment, Minerals Engineering, 2006, no. 19(11).
11. Neethling, S.J. and Ciliers, J.J., The Entrainment fFctor in Froth Flotation: Model for Particle Size and Other Operating Parameter Effects, Int. J. Mineral Processing, 2009, no. 93.
12. Ekmekci, Z., Brashaw, D.J., Harris, P.J., and Buswell, A.M., Interactive Effects of the Type of Milling Media and CuSO4 Addition on the Flotation Performance of Sulphide Minerals from Merensky Ore. Part II: Froth Stability, Int. J. Mineral Processing, 2006, no. 78.
13. Yianatos, J. and Contreras, F., Particle Entrainment Model for Industrial Flotation Cells, Powder Technology, 2010, vol. 197.
14. Konopacka, Z. and Drzymala, J., Types of Particles Recovery–Water Recovery Entrainment Plots Useful in Flotation Research, Adsorption, 2010, no. 16.
15. Moys, M., Mass Transport in Flotation Froths, Mineral Processing and Extractive Metallurgy Review, 1989, no. 5(1–4).
16. George P., Nguyen A. V., and Jameson G. J. Assessment of True Flotation and Entrainment in the Flotation of Submicron Particles by Fine Bubbles, Minerals Engineering, 2004, no. 17.
17. Ucurum M. and Bayat O. Effects of Operating Variables on Modified Flotation Parameters in the Mineral Separation, Separation and Purification Technology, 2007, no. 55.
18. Emin Cafer Cilek. The Effect of Hydrodynamic Conditions on True Flotation and Entrainment in Flotation of a Complex Sulphide Ore, Int. J. Mineral Processing, 2009, no. 90.


MINING ECOLOGY


INTEGRATED ASSESSMENT OF THE ENVIRONMENTAL CONDITION BY THE DATA OF THE REMOTE SENSING IN THE HIGH-LOADED INDUSTRIAL AREAS
V. N. Oparin, V. P. Potapov, and O. L. Giniyatullina

The article reviews the experience gained in the integrated assessment of the environmental condition of the regions exposed to high industrial load, the basic approaches to satellite image processing and the sequence of analysis of natural components. As an example, the authors assess the environmental condition of a coal mining region in Kuzbass.

Remote sensing, integrated assessment, ecological monitoring

REFERENCES
1. Sazykin, A.V., Ekologicheskoe pravo (Ecolaw), Moscow: EKSMO, 2008.
2. Konecny, G., Geoinformation. Remote Sensing, Photogrammetry and Geographic Information Systems, London, New York: Taylor&Francis, 2003.
3. Purkis, S. and Klemas, V., Remote Sensing and Global Environmental Change, UK, USA: Wiley- Blackwell, 2011.
4. Wang, Y., Remote Sensing of Coastal Environments, USA, 2010.
5. Tolmacheva, N.I., Kosmicheskie metody issledovanii v meteorologii. Interpretatsiya sputnikovykh izobrazhenii (Satellite Survey Techniques in Meteorology. Satellite Image Interpretation), Perm: PGNIU, 2012.
6. Davis, S.M., Landgrebe, D.A., and Phillips, T.L., Remote Sensing: The Quantitative Approach, New-York: McGraw Press, 1978.
7. Ris, U.G., Osnovy distantsionnogo zondirovaniya (Basics of Remote Sensing), Moscow: Tekhnosfera, 2006.
8. Shovengerd, R.A., Distantsionnoe zondirovanie. Metody i modeli obrabotki izobrazhenii (Remote Sensing. Image Processing Methods and Models), Moscow: Tekhnosfera, 2010.
9. Haralick, R.M., Shanmugam, K., and Dinstein, I., Textural Features for Image Classification, IEEE Trans. on Systems, Man and Cybernetics, 1973, vol. 3.
10. Znu, C. and Yang, X., Study of Remote Sensing Image Texture Analysis and Classification Using Wavelet, International Journal of Remote Sensing, 1998, vol. 19, no. 16.
11. Liano, K., Xu, S., Wu, J., and Zhu, Q., Spatial Estimation of Surface Soil Texture Using Remote Sensing Data, Soil Science and Plant Nutrition, 2013, vol. 59, no. 4.
12. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Andreeva, N.V., Water Body Pollution Monitoring in Vigorous Coal Extraction Areas Using Remote Sensing Data, J. Min. Sci., 2012, vol. 48, no. 5, pp. 934–940.
13. Chepelev, O.A., Lomivorotova, O.M., Ukrainskii, P.A., and Terekhin, E.A., Izuchenie svyazi zapylennosti snega s ego spektral’noi otrazhatel’noi sposobnost’yu (Study of the Connection of Dust Content and Spectral Reflectivity of Snow), Belgorod: Fed.-Reg. Tsentr Aerokosm. Nazem. Monit. Ob. Prir. Res., 2010.
14. Gareth Rees W., Remote Sensing of Snow and Ice, Boca Raton, FL: Taylor & Francis Group, 2006.
15. Lupyan, E.A. and Savorskii, V.P., Basic Products of Remote Sensing Data Processing, Sovr. Probl. Dist. Zond. Zem. i Kosm., 2012, vol. 9, no. 2.
16. Cherepanova, A.S., Vegetation Indexes, Geomatika, 2011, no. 2.
17. Potapov, V.P. and Mikov, L.S., Development of GIS elements for Radar Data Processing for Resolving Objectives of a Mining Area, Gorn. Inform.-Analit. Byull., 2013, Special Issue no. 6.
18. Hariharan, P., Basic of Interferometry, Sydney: Academic Press, 2007.
19. Deshifrovanie mnogozonal’nykh aerokosmicheskikh snimkov. Metodika i resul’taty (Multizonal Satellite Image Decoding. Procedure and Results), Moscow: Nauka, 1982.
20. Aduskin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Parts I–III, J. Min. Sci., 2012, vol. 48, no. 2; 2013, vol. 49, no. 2; 2013, vol. 50, no. 4.
21. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vo. 50, no. 1, pp. 142–154.
22. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.V., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46, no. 6, pp. 666–671.
23. Oparin, V.N., Kozyrev, A.A., Sashurin, A.D., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Earth’s Crust Destruction and Self-Organization in the Areas of Heavy Production Load), Novosibirsk: SO RAN, 2012.
24. Oparin, V.N., Methodological Basis for Multilayer Geomechanical–Geodynamic Safety Monitoring for Mining in Tectonically Active Areas, Proc. 6th Int. Conf. Problems and Ways of Innovation-Based Development of Mining Industry, Almaty, 2013.
25. Potapov, V.P., Oparin, V.N., Logov, A.B., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechanical-Geodynamic Control Geoinformation System for Entropy Analysis of Seismic Events (In Terms of Kuzbass), J. Min. Sci., 2013, vol. 49, no. 3, pp. 492–488.
26. Oparin, V.N., Fundamental Problems of Ground Surface Improvement under High Production Load, Proc. Int. Conf. Deep Open Pit Mines, Apatity–Saint-Petersburg, 2012.


NEW METHODS AND INSTRUMENTS IN MINING


ACOUSTIC EMISSION IN COMPOSITES AND APPLICATIONS FOR STRESS MONITORING IN ROCK MASSES
P. V. Nikolenko and V. L. Shkuratnik

Experimental research is focused on the effect exerted by natural anisotropy orientation in some composites on the acoustic emission sensitivity of sensors. Acoustic emission is related with the angle of load application and lamination orientation in a composite. Based on cyclic test data, it is shown that the load application angle has significant influence on acoustic emission memory effect up to its complete vanishing. Considering the revealed mechanisms, the authors propose the method of stress–strain state control in mine design elements.

Stress–strain state, control, composites, anisotropy, acoustic emission, acoustic emission memory effect

REFERENCES
1. Yamshchikov, V.S., Shkuratnik, V.L., and Lavrov, A.V., Memory Effects in Rocks (Review), J. Min. Sci., 1994, vol. 30, no. 5, pp. 463–473.
2. Holcomb, D.J., Using Acoustic Emission to Determine In Situ Stress: Problems and Promise, Geomechanics, 1983, vol. 57.
3. Hardy, H.R. jr., Zhang, D., and Zelanko, J.C., Recent Studies of the Kaiser Effect in Geological Materials, Proc. 4th Conf. AE/MA in Geologic Structures and Materials, Clausthal-Zellerfeld: Trans. Tech. Publications, 1989.
4. Yoshikawa, S. and Mori, K., A New Method for Estimation of the Crustal Stress from Rock Samples: Laboratory Study in the Case of Uniaxial Compression, Technophysics, 1981, vol. 74, pp. 323–39.
5. Filimonov, Y.L., Lavrov, A.V., Shafarenko, Y.M., and Shkuratnik, V.L., Memory Effects in Rock Salt under Triaxial Stress State and Their Use for Stress Measurement in Rock Mass, Rock Mechanics and Rock Engineering, 2001, vol. 34.
6. Yamshchikov, V.S., Shkuratnik, V.L., and Lykov, K.G., Stress Measurement in a Rock Bed Based on Emission Memory Effects, J. Min. Sci., 1990, vol. 26, no. 2, pp. 122–127.
7. Baranov, V.M., Gritsenko, A.I., Krasevich, A.M., et al., Akusticheskaya diagnostika i kontrol’ na predpriyatiyakh toplivno-energeticheskogo kompleksa (Acoustic Diagnostics and Control in Fuel and Energy Industry), Moscow: Nauka, 1998.
8. Shkuratnik, V.L. and Nikolenko, P.V., Application of Kaiser Effect in Epoxy Resin with Quartz Filler to Stress Assessment in Rock Mass: Collected Paper, Gorn. Inform.-Analit. Byull., Special Issue, 2012.
9. Shkuratnik, V.L. and Nikolenko, P.V., Using Acoustic Emission Memory of Composites in Critical Stress Control in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 4, pp. 544–549.
10. Nikolenko, P.V. and Tsarikov, A.Yu., Laboratory Bench for Mechanical and Acoustic Emission Tests of Composite Specimens, Gorn. Inform.-Analit. Byull., 2013, no. 4.
11. Shkuratnik, V.K., Nikolenko, P.V., and Korchak, A.V., RF patent no. 2485314, Byull. Izobret., 2013, no. 17.


KARIER MULTICHANNEL MEASUREMENT SYSTEM FOR DEEP OPEN PIT WALLS MONITORING
V. I. Vostrikov and N. S. Polotnyanko

Karier multichannel measurement system is fitted with wireless displacement sensors that communicate via radiochannel and have independent supply, which greatly improves their portability and performance. The data transmission channel between an operator in the Information Acquisition Center and the open pit mine survey service facilitates on-line analysis and relevant decision-making toward safer mining.

Measurement system, monitoring, open pit mines, sensor

REFERENCES
1. Baryakh, A.A., South African Engineering Safari, Gorn. ekho, 2006, no. 6.
2. Dem’yanov, V.V., Avtomatizirovannaya telekommunikatsionnaya sistema kontrolya ustoichivosti bortov kar’era (Automated Telecommunication System for Slope Stability Monitoring in Open Pit Mines), Kemerovo: KGU, 2009.
3. Dimaki, A.V. and Psakh’e, S.G., Spaced Monitoring Systems for Displacements in Block Geomedia, Designed Based on Sdvig-4MR Complex, J. Min. Sci., 2009, vol. 45, no. 2, pp. 194–200.
4. Vostrikov, V.I., Ruzhich, V.V., and Federyaev, O.V., Monitoring Rockfall-Hazardous Sites in Open Pit Walls, J. Min. Sci., 2009, vol. 45, no. 6, pp. 620–627.
5. Vostrikov, V.I. and Oparin, V.N., Multichannel Instrumentation System for Strain and Displacement Measurements, Proc. 2009 Int. Symp. Mechatronic and Biomedical Engineering and Applications, Taiwan, 2009.


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2024. Информация о сайте