Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2014 ãîä » JMS, Vol. 50, No. 5, 2014

JMS, Vol. 50, No. 5, 2014


GEOMECHANICS


MECHANICS OF GRANULAR MEDIA: SOME BASIC PROBLEMS AND APPLICATIONS
A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: revuzhenko@yandex.ru

In focus are the applied problems of the mechanics of granular media in the context of mining engineering. The author illustrates the relationship of the mechanics of granular media, plasticity theory, rock mechanics, synergetics and other sciences. Trends of the further research effort are indicated.

Granular medium, dilatancy, stress, strain

DOI: 10.1134/S1062739114050019 

REFERENCES
1. Shemyakin, E.I., Stress Waves under Underground Blasting in Rocks, Prikl. Mekh. Tekh. Fiz., 1963, no. 5.
2. Zvorygin, L.V. and Kurlenya, M.V., Letopis’ Instituta gornogo dela Sibirskogo otdeleniya RAN (Chronicle of the Institute of Mining, Siberian Branch, Russian Academy of Sciences), Novosibirsk: Novosibirskii pisatel’, 2004.
3. Chinakal, N.A., Dzyubenko, V.T., Marevich, N.V., and Zharkov, M.M., Shchitovaya sistema razrabotki (Shield Mining Method), Novosibirsk: Nauka, 1972.
4. Dubynin, N.G., Vysokoproizvoditel’naya tekhnologiya vypuska i dostavki rudy (High Production Ore Drawing and Hauling), Novosibirsk: Nauka, 1969.
5. Revuzhenko, A.F., Simplest Flows of Granular Medium, Dokl. AN SSSR, 1988, vol. 303, no. 1.
6. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanism of Deformation of a Granular Material under High Shear, J. Min. Sci., 1974, vol. 10, no. 3, pp. 374–377.
7. Bobryakov, A.P. and Revuzhenko, A.F., Uniform Displacement of a Granular Material. Dilatancy, J. Min. Sci., 1982, vol. 18, no. 5, 373–379.
8. Revuzhenko, A.F., Mekhanika sypuchei sredu (Mechanics of Granular Medium), Novosibirsk: OFSET, 2003.
9. Revuzhenko, A.F., Mechanics of Granular Media, Berlin, Heidelberg: Springer-Verlag, 2006.
10. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Probable Mechanism of Mass Transfer of the Earth, Dokl. AN SSSR, 1983, vol. 272, no. 5.
11. Bobryakov, A.P. and Revuzhenko, A.F., Complex Loading of Free-Flowing Materials with Breaks in Trajectory. Procedure and Experimental Results, J. Min. Sci., 1994, vol. 30, no. 5, pp. 456–462.
12. Dimov, A.I. and Revuzhenko, A.F., Class of Exact Solutions to Equations of Granular Medium Statics, Prikl. Mekh. Tekh. Fiz., 1983, no. 3.
13. Umov, N.A., Izbrannye sochineniya (Selectals), Moscow-Leningrad: Gos. izd. tekhn.-teor. lit-ry, 1950.
14. Love, A. E. N., Matematicheskaya teoriya uprogosti (Mathematical Theory of Elasticity), Moscow–Leningrad: NKTI SSSR, 1935.
15. Revuzhenko, A.F. and Klishin, S.V., Energy Flux Lines in a Deformable Rock Mass with Elliptical Openings, J. Min. Sci., 2009, vol. 45, no. 3, pp. 201–206.
16. Revuzhenko, A.F. and Klishin, S.V., Numerical Method of Continuum Solid Deformation Modeling Equivalently to a Preset Discrete Element Model, Fiz. Mezomekh., 2012, vol. 15, no. 6.
17. Kachanov, L.M., Osnovy teorii plastichnosti (Basic Plasticity Theory), Moscow: Nauka, 1969.
18. Sokolovsky, V.V., Statika sypuchei sredy (Granular Medium Statics), Moscow: Fizmatgiz, 1960.
19. Bushmanova, O.P. and Revuzhenko, A.F., Plastic Deformation under Shearing Localization in a Discrete System of Lines, Fiz. Mezomekh., 2002, vol. 5, no. 3.
20. Revuzhenko, A.F., Bobryakov, A.P., and Kosykh, V.P., Flow of a Friable Medium with Possible Unlimited Slip over the Localization Surfaces, J. Min. Sci., 1997, vol. 33, no. 3, pp. 217–221.
21. Revuzhenko, A.F., Kosykh, V.P., and Bobryakov, A.P., Localized Plastic Flow of Geomedium around Plastic Inclusion, J. Min. Sci., 1998, vol. 34, no. 6, pp. 491–497.
22. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Nonsymmetry of Plastic Flow in Converging Nonsymmetrical Channels, Dokl. AN SSSR, 1979, vol. 246, no. 3.
23. Revuzhenko, A.F., Variational Formulation of Boundary Value Problems on Failure, Prikl. Mekh. Tekh. Fiz., 1980, vol. 4.
24. Revuzhenko, A.F., Nonlocal Measures of Finite Deformations, Prikl. Mekh. Tekh. Fiz., 1993, no. 6.
25. Lavrikov, S.V. and Revuzhenko, A.F., Stability of a Block Mass around a Working, J. Min. Sci., 1991, vol. 27, no. 1, pp. 32–38.
26. Prigozhin, I., Ot sushchestvuyushchego k voznikayushchemu (Going from Existing toward Arising), Moscow: Nauka, 1985.
27. Bobryakov, A.P., Kosykh, V.P., and Revuzhenko, A.F., Temporary Structures during the Deformation of Granular Media, J. Min. Sci., 1990, vol. 26, no. 2, pp, 128–137.
28. Mikenina, O.A. and Revuzhenko, A.F., To the Phenomenon of Self-Organizing Deformation of a Granular Material in a Rotating Cylindrical Reservoir, J. Min. Sci., 2006, vol. 42, no. 6, pp. 563–569.
29. Gilbert, D. and Kon-Fossen, S., Naglyadnaya geometriya (Visual Geometry), Moscow: Nauka, 1981.
30. Deresevich, G., Mechanics of Granular Medium, Problemy mekhaniki (Problems of Mechanics), Moscow: IL, 1961.
31. Revuzhenko, A.F., Prilivnye volny i napravlennyi perenos mass Zemli (Tidal Waves and Directional Mass Transfer in the Earth System), Novosibirsk: Nauka, 2013.
32. Adushkin, V.V., Garnov, V.V., Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Spivak, A.A., Alternating Response of Rocks to Dynamic Impacts, Dokl. AN SSSR, 1992, vol. 323, no. 2.
33. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Dynamics of Block Rock Mass Deformation), Moscow: Akademkniga, 2003.
34. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4.
35. Revuzhenko, A.F., Matematicheskii analiz funktsii nearkhimedovoi peremennoi: spetsializirovannyi matematicheskii apparat dlya opisaniya strukturnykh urovnei geosredy (Mathematical Analysis of Functions of Non-Archimedean Variable: Application-Specific Mathematical Tool for Description of Structural Levels in a Geomedium), Novosibirsk: Nauka, 2012.
36. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii v primerakh i zadachakh: ucheb. posobie dlya studentov vuzov (Mechanics of Underground Structures in Examples and Problems: Higher Education Aid), Moscow: Nedra, 1987.
37. Dubnishcheva, T.Ya., Kontseptsiya sovremennogo estestvoznaniya: ucheb. posobie (Concept of the Modern Natural Science: Educational Aid), Moscow: Akademiya, 2003.


ESTIMATION OF STATE AND PROPERTIES OF VARIOUS-SCALE GEOMECHANICAL OBJECTS USING SOLUTIONS OF INVERSE PROBLEMS
L. A. Nazarov, L. A. Nazarova, O. M. Usol’tseva, and O. A. Kuchai

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: larisa@misd.nsc.ru
Trofimuk Institute of Petroleum Gas Geology and Geophysics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 2, Novosibirsk, 630090 Russia
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

The authors comment on features of formulation and structure of input data for the inverse problems used in rock mechanics to estimate state and properties of natural and anthropogenic objects at various spatial scales. The article gives examples of using solutions of inverse problems in coal bed degassing monitoring, based on data on changes of pressure in hydraulic props in the overlying bed, and in assessment of deformation parameters of inclusions, based on data of uniaxial compression tests of artificial heterogeneous specimens.

Rock mass, geomechanics, inverse problem, objective function, degassing, laboratory test, spatial scale

DOI: 10.1134/S1062739114050020 

REFERENCES
1. Jaeger, J.C., Cook, N. G. W., and Zimmerman, R., Fundamentals of Rock Mechanics, 4th Edition, Wiley-Blackwell, 2007.
2. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan, E.V., Osnovy mekhaniki gornykh porod (Fundamentals of Rock Mechanics), Leningrad: Nedra, 1989.
3. Nazarova, L.A., Estimating the Stress and Strain Fields of the Earth’s Crust on the Basis of Seismotectonic Data, J. Min. Sci., 1999, vol. 35, no. 1, pp. 26–35.
4. Nazarov, L.A. and Nazarova, L.A., Method of Geodetic Measurement Data Interpretation for Restoration of Stress–Strain State of Rock Mass, Dokl. RAN, 2004, vol. 395, no. 5.
5. Nazarova, L.A. and Nazarov, L.A., Estimating the Long-Term Pillar Safety for Room-and-Pillar Ore Mining, J. Min. Sci., 2006, vol. 42, no. 6, pp. 530–539.
6. Nazarova, L.A. and Nazarov, L.A., Estimate of the Interchamber Pillar Stability Based on the Damage Accumulation Criterion, J. Min. Sci., 2007, vol. 43, no. 6, pp. 575–584.
7. Nazarova, L.A. and Nazarov, L.A., Method for Determination of Impending Earthquake Focal Parameters Based on Daylight Surface Displacement Data, Doklady Earth Sciences, 2009, vol. 427a, no. 6.
8. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Panov, A.V., Estimation of Stresses and Deformation Properties of Rock Masses Based on Solution of Inverse Problem by Measured Displacements at Free Boundaries, Sib. Zh. Industr. Matem., 2012, vol. 15, no. 4.
9. Nazarova Larisa A. and Nazarov Leonid A., Inverse Problems in Geomechanics: Diagnostics and Prediction of the State of Rock Masses with Estimating Their Properties, L. Beilina (Ed.), Applied Inverse Problems: Select Contributions from the First Annual Workshop on Inverse Problems, Springer Proceedings in Mathematics & Statistics 48, 2013.
10. Tarantola, A., Inverse Problem Theory, New York: Elsevier, 1987.
11. Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Problems of Heat Transfer), Moscow: Mashinostroenie, 1988.
12. Ketelaar, V. B. H., Satellite Radar Interferometry: Subsidence Monitoring Techniques, Springer, 2009. 13. Teunissen, P. J. G., Kleusberg, A., Beytler, G., et al., GPS for Geodesy, Springer, 1998.
14. Vasco, D.W., Ferretti, A., and Novali, F., Reservoir Monitoring and Characterization Using Satellite Geodetic Data: Interferometric Synthetic Aperture Radar Observations from the Krechba Field, Algeria, Lawrence Berkeley National Laboratory, 2008.
15. Seredovich, V.A., Komissarov, A.V., Komissarov, D.V., and Shirokova, T.A., Nazemnoe lazernoe skanirovanie (Ground Laser Scanning), Novosibirsk: SGGA, 2009.
16. Nazarov, L.A., Nazarova, L.A., and Artemova, A.I., Statistic Approach to the Equivalent Modeling of Rock Masses, J. Min. Sci., 2009, vol. 45, no. 6, pp. 525–532.
17. Avriel, M., Nonlinear Programming: Analysis and Methods, Dover Publishing, 2003.
18. Nowacki, W., Theory of Assymetric Elasticity, Oxford: Pergamon-Press, 1986.
19. Seidle, J., Foundations of Coalbed Methane Reservoir Engineering, PennWell Books, 2011.
20. Golubev, V.S. and Garibyants, A.A., Geterogennye protsessy geokhimicheskoi migratsii (Heterogeneous Processes of Geochemical Migration), Moscow: Nedra, 1968.
21. Harpalani, S.B. and Chen, G., Estimation of Change in Fracture Porosity of Coal with Gas Emission, Fuel, 1995, vol. 74, no. 10.
22. Brochard, L., Vandamme, M., Pellenq, R.J.-M., and Fen-Chong, T., Adsorption-Induced Deformation of Microporous Materials: Coal Swelling Induced by CO2–CH4, Competitive Adsorption, 2012, vol. 28.
23. Nazarova, L.A., Nazarov, L.A., Karchevsky, A.L., and Vandamme, M., Estimation of Diffusion and Capacity Characteristics of Coal Bed by Gas Pressure Measurements in Hole Based on Inverse Problem Solution, Sib. Zh. Industr. Matem., 2014, vol. 17, no. 1.
24. Protod’yakonov, M.M., Teder, R.I., Il’nitskaya, E.I., et al., Raspredelenie i korrelyatsiya pokazatelei fizicheskikh svoistv gornykh porod: sprav. posob. (Distribution and Correlation of Data on Physical Properties of Rocks: Reference Aid), Moscow: Nedra, 1981.
25. Krepi mekhanizirovannye dlya lav. Mezhgosudarstvennyi standart. GOST 31561–2012 (Powered Longwall Support. Transnational Standard. RF State Standard 31561–2012), Moscow: Standartinform, 2013.
26. Fomin, V.M., Nazarov, L.A., Nazrova, L.A., et al., Experimental Analysis of Filtration Mode in Productive Reservoir in a Block Rock Mass under Nonstationary Treatment, Prikl. Mekh. Tekh. Fiz., 2006, vol. 47, no. 1.
27. Nazarova, L.A., Nazarov, L.A., Polevshchikov, G.Ya., and Romin, R.I., Inverse Problem Solution for Estimating Gas Content and Gas Diffusion Coefficient of Coal, J. Min. Sci., 2012, vol. 48, no. 5, pp. 781–788.
28. Steblov, G.M., Frolov, D.I., and Kuksenko, V.S., Kinematics of the Earth’s Continents, Fiz. Tverd. Tela, 2005, vol. 47, no. 6.
29. Schediegger, A., Principles of Geodynamics, Springer-Vergal, 1963.
30. Khain, V.I. and Lomize, M.G., Geotektonika s osnovami geodinamiki (Geotectonics and Principles of Geodynamics), Moscow: KDU, 2005.
31. Yunga, S.L., Metody i resul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of Studying Seismotectonic Deformations), Moscow: Nauka, 1990.
32. Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost’ prirodnykh massivov (Tectonic Stresses and Rock Mass Strength), Moscow: Akademkniga, 2007.
33. Dyad’kov, P.G., Nazarov, L.A., and Nazarova, L.A., 3D Viscoelastic Model of Central Asia Lithosphere: Methodology of Construction and the Numerical Experiment, Fiz. Mezomekh., 2004, vol. 7, no. 1.
34. http://lupus.gsfc.nasa.gov/global/velocity.html.
35. http://www.unavco.org/community_science/science-support/crustal_motion.
36. Pratt, D., Problems with Plate Tectonics, New Concepts in Global Tectonics Newsletter, 2001, no. 21.
37. Murata, M., Observing Geodynamics from the Analysis of 7.3-Year LAGEOS Data, Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, D. E. Smith and D. L. Turcotte (Eds.), Geodynamics Series, American Geophysical Union, 1993, vol. 23.
38. Sella, G.F., Dixon, T.H., and Mao, A., REVEL: A Model for Recent Plate Velocities from Space Geodesy, J. Geophys. Res., 2002, vol. 07, no. B4.
39. Peltzer, G., and Saucier, F., Present-Day Kinematic of Asia Derived from Geologic Fault Rates, J. Geophys. Res., 1996, vol. 101, no. B12.


CONSTRUCTION OF CONSTITUTIVE EQUATIONS FOR DEFORMABLE MEDIA UNDER COMPLEX LOADING IN TERMS OF STEEL 40X TEST DATA
A. I. Chanyshev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: a.i.chanyshev@gmail.com

The author analyzes the data of triaxial tension test of 40X steel carried out in the Institute of Mining. An eigentensor basis, where relations between increments of stresses and strains are independent of the type of loading and additional loading, is found.

Combined loading, eigentensor basis, elasticity, plasticity

DOI: 10.1134/S1062739114050032 

REFERENCES
1. Hencky, H., Zur theorie plastischer deformationen und der hierdurch im material hervorgerufenen nachspannungen, Zs. f. angew. Math. u. Mech., 1924, vol. 4.
2. Nadai, A., Plasticity: A Mechanics of the Plastic State of Matter, New-Your: McGraw-Hill, 1931.
3. Ilyushin, A.A., Plastichnost’. Ch. 1. Uprugoplastichnye deformatsii (Plasticity. Part I: Elastoplastic Deformations), Moscow–Leningrad: OGIZ, 1948.
4. Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of the Theory of Plasticity), Moscow: Nauka, 1969.
5. Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela: ucheb. posob. dlya vuzov (Mechanics of Deformable Solid: Higher Education Guide), Moscow: Nauka, 1988.
6. Mozharovsky, N.S. and Bobyr’, N.I., Elastoplastic Deformation and Fracture of Materials under Plane Stress and Various Paths of Proportional Loading, Probl. Prochn., 1980, no. 10.
7. Zhukov, A.M., Complex Loading and Plasticity Theories for Isotropic Materials, Izv. AN SSSR, OTN, Mekhan. Mashinostr., 1955, no. 8.
8. Zhukov, A.M. and Rabotnov, Yu.N., Plastic Deformation of Steel under Complex Loading, Inzh. Sb., 1954, no. 8.
9. Naghdi, P.M. and Rowley, J.C., An Experimental Study of Biaxial Stress–Strain Relations in Plasticity, J. Mechanics and Physics of Solids, 1954, vol. 3, pp. 63–80.
10. Budianski, B., Dow, N.F., Peters, R.W., and Shepferd, R.P., Experimental Studies of Polyaxial Stress-Strain Laws of Plasticity, Proc. 1st U. S. Nat. Congr., Appl. Mech., 1951, N. Y., 1952.
11. Doshchinsky, G.A., Experimental Validation of Similarity Law of Deviators in the Plasticity Theory, Izv. TPI, 1974, vol. 188.
12. Shemyakin, E.I., Anisotropy of Plastic State, Chisl. Met. Mekh. Splosh. Sredy, 1973, vol. 4, no. 4 
13. Khristianovich, S.A., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Nauka, 1981.
14. Babakov, V.A., Model of Plastic Body with Internal Friction and Dilatancy, J. Min. Sci., 1987, vol. 23, no. 3, pp. 191–198.
15. Kovrizhnykh, A.M., Conditions of Plastic Deformation Localization in Metals, Dokl. RAN, 1996, vol. 351, no. 5.
16. Chanyshev, A.I., Plastic Deformation of Materials under Complex Loading, Prikl. Mekh. Tekh. Fiz., 1979, no. 4.
17. Zhigalkin, V.M., Mode of Plastic Material Strengthening. Part I, Probl. Prochn., 1980, no. 2.
18. Zhigalkin, V.M., Mode of Plastic Material Strengthening. Part II, Probl. Prochn., 1980, no. 2.
19. Zhigalkin, V.M., Ginzburg, I.E., Semenov, V.N., and Usol’tseva, O.M., Effect of Complex Loading with Partial Unloading on the Nature of Steel Strengthening, J. Min. Sci., 1994, vol. 30, no. 3, pp. 275–280.
20. Annin, B.D. and Zhigalkin, V.M., Povedenie materialov v usloviyakh slozhnogo nagruzheniya (Material Behavior under Complex Loading), Novosibirsk: SO RAN, 1999.
21. Rykhlevsky, Ya., Elastic Energy Resolution and Irreducibility Criteria, Usp. Mekh., 1984, vol. 7, no. 3.
22. Chanyshev, A.I., Plasticity of Anisotropic Media, Prikl. Mekh. Tekh. Fiz., 1984, no. 2.
23. Ñhastenet de Gery J. Une representation intrinseque simple du tenseur de deformation (cas anisotrope) par de operateurs lineares de lespace a trois dimensions, Compte rend us Acad. Sci. Paris, 1959, vol. 248, no. 12.
24. Novozhilov, V.V., Types of Connection between Stresses and Strains in the Initially Isotropic Inelastic Bodies (Geometrical Aspect), Prikl. Matem. Mekh., 1963, vol. 27, no. 5.


MATHEMATICAL MODELING OF STRESS–STRAIN STATE IN ROCK MASS DURING MINING WITH BACKFILL
V. M. Seryakov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: vser@misd.nsc.ru

The article presents a discussion of formulations and methods for solving problems on stress–strain state of surrounding rocks and solidifying backfill developed in the Institute of Mining. As shown, effective algorithms can be obtained with the use of a computational domain that conforms with the rock mass before the first and second mining. The process of driving and backfilling is modeled using the iteration procedures from the initial stress and strain methods. Convergence of the offered iteration procedures is confirmed. Solution of practical problems is exemplified. In the framework of the developed methods and algorithms, the author offers the ways of accounting for incomplete backfill with solidifying mixtures and for rheological properties of surrounding rocks and the backfill.

Rock mass, stress, strain, mineral deposit, stope, mining sequence, backfilling, stiffness matrix, initial stress, initial strain, algorithm, ore body, top-down and ascending mining, insufficient backfill, contact conditions

DOI: 10.1134/S1062739114050044 

REFERENCES
1. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
2. Kuznetsov, S.V., Odintsev, V.N., Slonim, M.E., and Trofimov, V.A., Metodologiya rascheta gornogo davleniya (Overburden Pressure Calculation Methodology), Moscow: Nauka, 1981.
3. Bronnikov, D.M., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep-Level Ore Mining), Moscow: Nedra, 1982.
4. Komissarov, S.N., Upravlenie massivom gornykh porod vokrug ochistnykh prostranstv (Rock Mass Control around Stoping), Moscow: Nauka, 1976.
5. Rodin, I.V., Stress Release and Overburden Pressure, Issledovanie gornogo davleniya (Overburden Pressure Studies), Moscow: Gosgortekhizdat, 1960.
6. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan, E.V., Osnovy mekhaniki gornykh porod (Fundamentals of Rock Mechanics), Leningrad: Nedra, 1989.
7. Baimbetov, M.O. and Seryakov, V.M., Effect of the Order of Performing Clean-Up and Fill Operations on the Stress–Strain State of a Deposit, J. Min. Sci., 1984, vol. 20, no. 4, pp. 254–260.
8. Seryakov, V.M., Calculation of the Stress State of Rocks with Regard for Sequence of Filling Mass Formation, J. Min. Sci., 2001, vol. 37, no. 5, pp. 466–471.
9. Seryakov, V.M., Implementation of the Calculation Method for Stress State in Rock Mass with Backfill, J. Min. Sci., 2008, vol. 44, no. 5 pp. 439–450.
10. Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.
11. Kurlenya, M.V. and Seryakov, V.M., Geomechanical State of Rock Mass Considering Sequence of Mining, Proc. Int. Conf. Problems of Geotechnology and Subsoil Engineering, Ekaterinburg: IGD UrO RAN, 1998.


PRACTICAL EXPERIENCE OF GEOMECHANICAL MONITORING IN UNDERGROUND MINERAL MINING
V. D. Baryshnikov, D. V. Baryshnikov, L. N. Gakhova, and V. G. Kachal’sky

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: vbar@misd.nsc.ru

The article addresses the issues of geomechanical monitoring in underground mineral mining. A brief review covers existing software and hardware for estimation of stress state and properties of rocks and the results of in situ trial of an integrated tool set. The authors offer the geomechanical monitoring structure using a package of instrumental, visual and numerical methods for the assessment of mechanical condition and its alteration in rocks and in structural components of mines. Thereupon, the geomechanical state control system have been developed and introduced in a number of operating mines. For the stability assessment of structural elements in mines and for the decision-making on mining safety, the rock mass limit state criteria are defined.

Monitoring, stress–strain state, mechanical properties of rocks, instrumental observation, numerical modeling

DOI: 10.1134/S1062739114050056 

REFERENCES
1. Kurlenya, M.V., Baryshnikov, V.D., Bobrov, G.F., Popov, S.N., and Fedorenko, V.K., USSR Author’s Certificate no. 877005, Bull. Izobret., 1981, no. 40.
2. Kurlenya, M.V. and Popov, S.N., Teoreticheskie osnovy opredeleniya napryazhenii v gornykh porodakh (Theory of Estimation of Stresses in Rocks), Moscow: Nauka, 1993.
3. Baryshnikov, V.D. and Kachal’sky, V.G., Automated Instrumentation to Measure Rock Mass Stresses in Parallel-Drilled Holes, J. Min. Sci., 2010, vol. 46, no. 3, pp. 338–342.
4. Baryshnikov, V.D. and Kachal’sky, V.G., Firmware to Determine Stresses and Strains in Rocks, Proc. 5th Int. Geomechanics Conf., Varna, Bulgaria, 2012.
5. Baryshnikov, V.D. and Kachal’sky, V.G., Universal Measurement Equipment to Estimate Stress–Strain State and Mechanical Properties of Rocks, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.
6. Baryshnikov, V.D., Kachal’sky, V.G., and Baryshnikov, D.V., Backfill Movement Control by Hole Deviation Survey Method, Proc. 2nd Russia–China Conf. Deep-Level Rock Mechanics and Engineering, Novosibirsk: IGD SO RAN, 2012.
7. Baryshnikov, V.D., Kachal’sky, V.G., and Baryshnikov, D.V., Experimental Estimate of Effective Stresses in Concrete Dam, Geo-Sibir-2013 Conf., Novosibirsk: SGGA, 2013.
8. Baryshnikov, V.D., Baryshnikov, D.V., and Khmelinin, A.P., Experimental Estimation of the Mechanical Condition of Reinforced Concrete Lining in Underground Excavations, Proc. 14th Int. GeoConference SGEM, Albena, Bulgaria, 2014.
9. Guidance Document RD 09–102–95, Gosgortekhnadzor of Russia, 1995.
10. Baryshnikov, D.V. and Saburov, S.V., Directional Survey System Application to Undermined Rockmass Displacement Control, Proc. 5th Int. Geomechanics Conf., Varna, Bulgaria, 2012.
11. Baryshnikov, V.D. and Baryshnikov, D.V., Instrumental Monitoring of Undermined Backfill Subsidence, Gorn. Inform.-Analit. Byull., Special Issue on Russia’s Far East, 2013.
12. Baryshnikov, V.D. and Baryshnikov, D.V., Geomechanical Control of a Protective Pillar under the Water-Bearing Strata, Proc. 5th Int. Geomechanics Conf., Varna, Bulgaria, 2012.
13. Baryshnikov, V.D., Pitwall Rock Mass Stability Control in Open Pit/Underground Mine Transition Zone, Gorny Zh., 2006, no. 10.
14. Oparin, V.N., Baryshnikov, V.D., Vostrikov, V.I., Gakhova, L.N., and Kramskov, N.P., Safety Problems in Kimberlite Mining in Complicated Mining, Geological and Weather Conditions, Gorny Zh., 2011, no. 1.
15. Baryshnikov, V.D., Gakhova, L.N., and Cherepnov, A.N., Geomechanical Assessment and Control of Ore Crown Pillar in Open Pit/Underground Mining Transition Zone, Proc. 21st World Mining Congress, Poland, 2008.
16. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Experimental and Analytical Method for Assessing Stability of Slopes, J. Min. Sci., 2012, vol. 48, no. 4, pp. 609–615.
17. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Effect of Partial Water Flooding on the Stress–Strain State of the Crown Pillar in the Aikhal Mine, J. Min. Sci., 2013, vol. 49, no. 4, pp. 537–543.
18. Baryshnikov, V.D. and Gakhova, L.N., Parameters of Crown Pillar in Transition from Open Pit to Underground Mining, Proc. 5th Int. Geomechanics Conf., Varna, Bulgaria, 2012.
19. Baryshnikov, V.D. and Gakhova, L.N., Geomechanical Estimation of Underground Excavations in Badran Gold Mine Using Systems with Backfill, Proc. Int. Conf. Role of Geomechanics in the Sustainable Development of Mining Industry and Civil Construction, Nesebr, Bulgaria, 2007.


ROCK FAILURE


EFFECT OF LARGE-SCALE BLASTING ON SPECTRUM OF SEISMIC WAVES IN. A. STONE QUARRY
V. N. Oparin, V. F. Yushkin, N. N. Porokhovsky, A. N. Grishin, N. A. Kulinich, D. E. Rublev, and A. V. Yushkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: 114@ngs.ru
Iskitim Quarry, Novosibirsk Open Pit Mine Management JSC,
Komsomolskii pr. 22, Novosibirsk, 630004 Russia
e-mail: porohovskiy@nkuoao.ru
Siberian State Transport University,
ul. D. Kovalchuk 191, Novosibirsk, 630049 Russia
e-mail: gan66@mail.ru

The article discusses the interaction between the groups of explosive charges installed at the free surface of rock exposure along the open pit mine perimeter. The spectrum analysis of the explosion-induced seismic waves shows that peak density frequencies of the seismic waves are governed by the formation of the canonical low-frequency components as a result of successive actuation of explosive charges, and are conditioned by hierarchical block structure of blasted rock masses.

Open pit mine, hierarchical block structure of rocks, limestone, large-scale blast, seismic wave, spectrum analysis, grain-size composition

DOI: 10.1134/S1062739114050068 

REFERENCES
1. Sadovsky M. A., Izbrannye trudy. Geofizika i fizika vzryva (Selectals. Geophysics and Physics of Explosion), Moscow: Nauka, 2004.
2. Fizika vzryva (Physics of Explosion), 2nd Edition, Moscow: Nauka, 1975.
3. Adushkin, V.V. and Spivak, A.A., Podzemnye vzryvy (Underground Explosions), Moscow: Nauka, 2007.
4. Nikiforovsky V. S. and Shemyakin, E.I., Dinamicheskoe razrushenie tverdykh tel (Dynamic Destruction of Solids), Novosibirsk: Nauka, 1979.
5. Brozd, G.L., Raschety vzryvov na EVM (Computer-Aided Calculation of Explosions), Moscow: Mir, 1975.
6. Pokrovsky, G.K. and Fedorov, I.S., Deistvie udara i vzryva v deformiruemykh sredakh (Effect of Blow and Blast in Deformable Media), Moscow: Promstroiizdat, 1957.
7. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., et al., Mekhanichseskii effect podzemnogo vzryva (Mechanical Effect of Underground Explosion), Moscow: Nedra, 1971.
8. Chelidze, T.L., Anomalous High Strain Sensitivity of Conductive Heterogeneous Media, Zh. Eksp. Teor. Fiz., 1981, vol. 87, no. 2(8).
9. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyaniya massivov gornykh porod (Borehole Geophysics Methods for Diagnostics and Monitoring of Stress–Strain State of Rock Masses), Novosibirsk: Nauka, 1999.
10. Oparin, V.N., Principles of Geophysical Well Defectoscopy. Part I: Spectral Analysis and Defect Measures, J. Min. Sci., 1982, vol. 18, no. 6, pp. 468–477.
11. Kurlenya, M.V., Oparin, V.N., Matasova, G.G., Morozov, P.F., Tapsiev, A.P., Tapsiev, G.A., and Fedorenko, B.V., Procedure for Plotting Maps of the Disturbance of Rock Masses from Geophysical Logging Data. Part IV: Some Practical Applications, J. Min. Sci., 1992, vol. 28, no. 2, pp. 114–129.
12. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Some Features of Explosion Response of Rocks in the Near Zone, Dokl. Akad. Nauk, 1987, vol. 293, no. 1.
13. Kurlenya, M.V., Adushkin, V.V., Oparin, V.N., et al., Alternating Response of Rocks to Dynamic Loading, Dokl. Akad. Nauk, 1992, vol. 323, no. 2.
14. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Generation of Elastic Wave Packets under Pulsed Disturbance of Block Structure Media. Pendulum Waves ??, Dokl. Akad. Nauk, 1993, vol. 33, no. 4.
15. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part I: State of the Problem and Measuring Instrument and Computer Complexes, J. Min. Sci., 1996, vol. 32, no. 3, pp. 159–163.
16. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part II: Experimental Methods and Main Results of Physical Modeling, J. Min. Sci., 1996, vol. 32, no. 4, pp. 245–273.
17. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part III: Data of On-Site Observations, J. Min. Sci., 1996, vol. 32, no. 5, pp. 341–361.
18. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. Akad. Nauk, 1979, vol. 24, no. 4.
19. Sadovsky, M.A., Discreteness of Rocks, Fiz. Zemli, 1982, no. 12.
20. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale of Hierarchy Representation in the Sciences on Rocks), Novosibirsk: Nauka, 2011.
21. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics, Part I, J. Min. Sci., 1999, vol. 35, no. 3, pp. 216–230.
22. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics, Part II, J. Min. Sci., 2000, vol. 36, no. 4, pp. 305–326.
23. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.
24. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part II, J. Min. Sci., 2013, vol. 49, no. 2, pp. 175–209.
25. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.
26. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., and Krivetsky, A.V., Mechanical-Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
27. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalous Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no. 1, pp. 1–11.
28. Oparin, V.N., Yushkin, V.F., Anikin, A.A., and Balmashnova, E.G., A New Scale of Hierarchically Structured Representations as a Characteristic for Ranking Entities in a Geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387–401.
29. Mosinets, V.N., Drobyashchee i seismicheskoe deistvie vzryva v gornykh porodakh (Fragmenting and Seismic Effect of Explosion in Rocks), Moscow: Nedra, 1976.
30 . Oparin, V.N., Seredovich, V.A., Yushkin, V.F., Ivanov, A.V., and Prokop’eva, S.A., Application of Laser Scanning for Developing a 3D Digital Model of an Open-Pit Side Surface, J. Min. Sci., 2007, vol. 43, no. 5, pp. 545–554.
31. Programma upravleniya stantsiei seismorazvedochnoi inzhenernoi tsifrovoi “Lakkolit 24-M” (model’ 01). Rukovodstvo operatora (Control Program for Seismic Exploration Engineering Station LAKKOLIT 24-M (Model 01). Operator’s Manual), Moscow: LOGIS (Ramenskoe), 2005.
32. Instruktsiya po primeneniyu neelektricheskoi sistemy initsiirovaniya (Nonelectric Blasting System Manual), Novosibirsk: ISKRA Plant, 2010.
33. Gonorovsky, I.S., Radiotekhnichskie tsepi i signaly (Radio Circuits and Signals), Moscow: Sov. radio, 1963.
34. Kharkevich, A.A., Spektry i analiz (Spectra and Analysis), Moscow: GITL, 1957.


MINERAL MINING TECHNOLOGY


HANDS-ON EXPERIENCE OF SAFE AND EFFICIENT ORE MINING IN SIBERIA
A. A. Eremenko, V. A. Eremenko, A. N. Aleksandrov, and V. N. Koltyshev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: yeryom@misd.nsc.ru
Institute of Problems of Comprehensive Exploitation of Mineral Deposits, Russian Academy of Sciences,
Kryukovskii tupuk 4, Moscow, 111020 Russia
e-mail: eremenko@ngs.ru

The authors report findings on geomechanical assessment of rock masses. The flow charts and parameters of geotechnology for ore extraction by blocks and sections under conditions of rockburst hazard are presented. It is stated that the use of the new mining and blasting technologies results in appreciable economic effect.

Blast, technology, rock, stress, flow chart, block, ore

DOI: 10.1134/S106273911405007X

REFERENCES
1. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Gorno-geologicheskie i geomekhanicheskie usloviya razrabotki zhelezorudnykh mestorozhdenii v Altae-Sayanskoi skladchatoi oblasti (Geological and Geomechanical Conditions of Iron Ore Mining in the Altai-Sayan Folded Region), Novosibirsk: Nauka, 2009.
2. Seryakov, A.V., Effect of Large-Scale Blasting on Distribution of Seismic Events and Aftershocks of the Kochurinsk Earthquake in Gornaya Shoria, Cand. Tech. Sci. Dissertation, Novosibirsk: IGD SO RAN, 2006.
3. Seryakov, V.M. and Volchenko, G.N., Stress Redistribution in Ore Block during Breaking, J. Min. Sci., 2003, vol. 39, no. 1, pp. 15–20.
4. Seryakov, V.M., Calculation of Propagation of Damage Zones in Overlying Rocks in Ore Mining in Gornaya Shoria, Proc. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2010.
5. Eremenko, A.A., Klishin, V.I., Eremenko, V.A., and Filatov, V.N., Feasibility Study of a Geotechnology for Underground Mining at Udachnaya Kimberlite Pipe under the Opencast Bottom, J. Min. Sci., 2008, vol. 44, no. 3, pp. 271–282.
6. Eremenko, A.A., Eremenko, V.A., and Gaidin, A.P., Sovershenstvovanie geotekhnologii osvoeniya zhelezorudnykh udaroopasnykh mestorozhdenii v usloviyakh deistviya prirodnykh i tekhnogennykh faktorov (Improvement of Geotechnology for Rockburst-Hazardous Iron Ore Mining under Natural and Induced Influence), Novosibirsk: Nauka, 2008.
7. Eremenko, V.A., Justification of the Parameters for Geotechnology for Rockburst-Hazardous Iron Ore Mining in Western Siberia, Dr. Tech. Sci. Dissertation, Novosibirsk: IGD SO RAN, 2011.
8. Eremenko, A.A., Eremenko, V.A., and Eruslanova, A.P., Deep-Level Iron Ore Mining under Conditions of High Concentration of Stresses and Seismic Events, Gorn. Inform.-Analit. Byull., 2013, no. 8.
9. Eremenko, A.A., Eremenko, V.A., Shchetinin, E.V., and Shultaev, S.K., Practice of Large-Scale Blasting with the Increased-Diameter Parallel-Contiguous Charges, Gorny Zh., 2013, no. 3.
10. Eremenko, A.A., Eremenko, V.A., Doev, R.A., and Kovrygin, O.A., Geomechanical Analysis of Rock Mass during Complex Ore Mining with Cut-and-Fill Method, Gorn. Inform.-Analit. Byull., 2013, no. 7.
11. Eremenko, A.A., Fedorenko, A.I., and Kopytov, A.I., Provedenie i kreplenie gornykh vyrabotok v udaroopasnykh zonakh zhelezorudnykh mestorozhdenii (Drivage and Support of Excavations in Rockburst-Hazardous Zones of Iron Ore Deposits), Novosibirsk: Nauka, 2008.
12. Eremenko, A.A., Eremenko, V.A., Bashkov, V.I., Aleksandrov, A.N., and Tatarnikov, B.B., Practice of Cutting with Backfilling in Tashtagol Mine, Gorn. Inform.-Analit. Byull., 2013, no. 10.
13. Eremenko, A.A., Eremenko, V.A., Aleksandrov, A.N., Koltyshev, V.N., Shtirts, V.A., Shipeev, O.V., Shcheptev, E.N., and Belyaev, V.S., Experimental Studies Aimed at Mitigation of Aftereffect of Seismic Events in Rockburst-Hazardous Iron Ore Mines, Gorn. Inform.-Analit. Byull., 2013, no. 10.
14. Eremenko, A.A., Eremenko, V.A., Potapov, E.V., Pavlov, D.A., et al., Geomechanical Estimation of Rocks in Zhdanov Underground Mine, Gorn. Inform.-Analit. Byull., 2013, no. 11.
15. Viktorov, S.D., Eremenko, A.A., Zakalinsky, V.M., et al., Tekhnologiya krupnomasshtabnoi vzryvnoi otboiki na udaroopasnykh rudnykh mestorozhdeniyakh Sibiri (Large-Scale Blasting in Rockburst-Hazardous Iron Ore Deposits in Siberia), Novosibirsk: Nauka, 2005.
16. Eremenko, A.A., Sovershenstvovanie tekhnologii burovzryvnykh rabot na zhelezorudnykh mestorozhdeniyakh Zapadnoi Sibiri (Improvement of Drilling-and-Blasting Technology for Iron Ore Bodies in Western Siberia), Novosibirsk: Nauka, 2013.
17. Eremenko, A.A., Kulikov, V.I., Goncharov, A.I., and Shultaev, S.K., Geotechnology for Blind Ore Body in Sheregesh Mine, Gorn. Inform.-Analit. Byull., 2012, no. 4.


EFFECTIVIZATION OF OPEN PIT HARD MINERAL MINING
V. I. Cheskidov, V. K. Norri, G. D. Zaitsev, A. A. Botvinnik, A. S. Bobyl’sky, and A. V. Reznik

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru

The authors show the basic ways of making hard mineral mining with open pit method more efficient. The article gives a review of research aimed at improvement of open pit mining methods, intensification of mining, enhancement of mine safety and final product quality control (in terms of Bakchar iron ore deposit and coal deposits located in the Kuznetsk and Kansk–Achinsk Basins).

Open pit mining, resource-saving technologies, worked out area, ecology, coal produce, quality

DOI: 10.1134/S1062739114050081 

REFERENCES
1. Kurlenya, M.V., Kortelev, O.B., Vasil’ev, E.I., and Cheskidov, V.I., Prospects for Open Pit Mining at Bakchar Iron Ore Project, Gorn. Inform.-Analit. Byull., 2006, no. 4.
2. Molotilov, S.G., Vasil’ev, E.I., Kortelev, O.B., Norri, V.K., Levenson, S.Ya., Gendlina, L.I., and Tishkov, A.Ya., Intensifikatsiya pogruzochno-transportnykh rabot na kar’erakh (Intensification of Loading and Hauling in Open Pit Mines), Novosibirsk: SO RAN, 2000.
3. Koretelev, O.B., Cheskidov, V.I., Molotilov, S.G., and Norri, V.K., Vneshnee otvaloobrazovanie na kar’erakh (External Dumping at Open Pit Mines), Novosibirsk: Zolotye slova, 2009.
4. Molotilov, S.G., Norri, V.K., Cheskidov, V.I., and Mattis, A.R., Nature-Oriented Open Coal Mining Technologies Using Mined-Out Space in an Open Pit. Part I: Analysis of the Current Mineral Mining Methods, J. Min. Sci., 2006, vol. 42, no. 6, pp. 622–627.
5. Cheskidov, V.I., Kortelev, O.B., Mattis, A.R., Molotilov, S.G., Norri, V.K., Zaitsev, G.A., Zaitseva, A.A., et al., Puti povysheniya effektivnosti i ekologicheskoi bezopasnosti otkrytoi dobychi tverdykh poleznykh iskopaemykh (Ways of Improving Efficiency and Ecological Safety of Open Pit Hard Mineral Mining), Novosibirsk: SO RAN, 2010.
6. Mattis, A.R., Cheskidov, V.I., Yakovlev, V.L., Novopashin, M.D., Labutin, V.N., Zaitsev, G.D., Sher, E.N., et al., Bezvzryvnye tekhnologii otkrytoi dobychi tverdykh poleznykh iskopaemykh (No-Blast Technologies for Open Pit Hard Mineral Mining), Novosibirsk: SO RAN, 2007.
7. Oparin, V.N., Cheskidov, V.I., Bobyl’sky, A.S., and Reznik, A.V., The Sound Subsoil Management in Surface Coal Mining in Terms of the Kansk–Achinsk Coal Basin, J. Min. Sci., 2012, vol. 48, no. 3, pp. 585–594.
8. Cheskidov, V.I. and Zaitsev, G.D., Problems of Conversion and Multipurpose Utilization of Siberian Coal, J. Min. Sci., 2013, vol. 49, no. 6, pp. 983–989.
9. Freidina, E.V., Botvinnik, A.A., and Dvornikova, A.V., Coal Quality Control in the Context of International Standards ISO-9000–2000, J. Min. Sci., 2008, vol. 44, no. 6, pp. 585–599.


RESOURCE-SAVING GEOTECHNOLOGIES FOR THICK GENTLY DIPPING COMPLEX ORE DEPOSITS IN THE NORILSK REGION
A. P. Tapsiev, A. M. Freidin, V. A. Uskov, A. N. Anushenkov, P. A. Filippov, A. A. Neverov, and S. A. Neverov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: atapsiev@misd.nsc.ru

The article gives an account of process designs accepted and introduced in mines at Norilsk-1, Talnakh and Oktyabrsky deposits and describes new promising patented mining methods successively trialed at a commercial scale or proposed for industrial testing.

All-embracing improvement of mining methods, overlying rock caving, backfilling, mining processes, recomendations on mining

DOI: 10.1134/S1062739114050093 

REFERENCES
1. Oparin, V.N., Tapsiev, A.P., Bogdanov, M.N., Badtiev, B.P., Kulikov, F.M., and Uskov, V.A., Sovremennoe sostoyanie, problemy i strategiya razvitiya gornogo proizvodstva na rudnikakh Noril’ska (State-of-the-Art, Problems and Strategy of Mining in Norilsk Mines), Novosibirsk: SO RAN, 2008.
2. Oparin, V.N., Rusin, E.P., Tapsiev, A.P., et al., Mirovoi opyt avtomatizatsii gornykh rabot na podzemnykh rudnikakh (The World Experience Gained in Underground Mining Automation), Novosibirsk: SO RAN, 2007.
3. Oparin, V.N., Tapsiev, A.P., and Uskov, V.A., Challenges and New Engineering Solutions on Modernization of Underground Productive Mines, 21st World Mining Congress & Expo 2008 Proc., Poland, Krakow: Gospodarka Surowcami Minerflnymi, 2008, vol. 2, no. 8/1.
4. Bogdanov, M.N., Gorbunov, S.P., Lamzin, A.N., Zaporozhtsev, A.A., Gorbunov, A.G., Arshavsky, V.V., Zberovsky, S.G., Tapsiev, A.P., Oparin, V.N., Freidin, A.M., Uskov, V.A., and Koren’kov, E.N., RF patent no. 2310753, Byull. Izobret., 2007, vol. 32.
5. Freidin, A.M., Uskov, V.A., Koren’kov, E.N., and Filippov, P.A., RF patent no. 2208162, Byull. Izobret., 2003, no. 19.
6. Neverov, S.A., Freidin, A.M., and Neverov, A.A., RF patent no. 2301335, Byull. Izobret., 2007, no. 19.
7. Oparin, V.N., Tapsiev, A.P., and Freidin, A.M., Team R&D Backed Up by the Institute of Mining SB RAS and Norilsk Nickel, Tsvet. Metallurg., 2005, no. 10.
8. Freidin, A.M., Tapsiev, A.P., Uskov, V.A., Nazarova, L.A., Zaporozhtsev, A.A., and Sergunin, M.P., Reequipment and Development of Mining Method at Zapolyarny Mine, J. Min. Sci., 2007, vol. 43, no. 3, pp. 290–299.
9. Tapsiev, A.P., Anokhin, A.G., and Uskov, V.A., RF patent no. 2449125, Byull. Izobret., 2012, no. 12.
10. Reglament tekhnologicheskikh proizvodstvennykh protsessov po primeneniyu kamernykh sistem razrabotki s zakladkoi vyrabotannogo prostranstva i ispol’zovaniem distantsionno upravlyaemogo samokhodnogo oborudovaniya pri vyemke sul’fidnykh rud na Talnakhskikh rudnikakh ZF OAO “GMK Noril’skii nikel’” RTPP-051–2005 (Production Procedures for Cut-and-Fill Mining with Remote-Control Self-Propelled Equipment in Talnakh Sulfide Ore Mines of Polar Division, Norilsk Nickel RTPP-051–2005), Norilsk: ZF OAO “GMK Noril’skii Nikel’,” 2006.
11. Reglament tekhnologicheskikh proizvodstvennykh protsessov po primeneniyu sloevoi sistemy razrabotki s zakladkoi vyrabotannogo prostranstva tverdeyushchimi materialami i raspolozheniem ochistnykh vyrabotok v zashchitnykh zonakh pri vyemke sul’fidnykh rud na Talnakhskikh rudnikakh ZF OAO “GMK Noril’skii nikel’” RTPP-009–2004 (Production Procedures for Slice Mining with Solidifying Backfill, with Stopes Driven in Protected Zones in Talnakh Sulfide Ore Mines of Polar Division, Norilsk Nickel RTPP-009–2004), Norilsk: ZF OAO “GMK Noril’skii Nikel’,” 2004.
12. Freidin, A.M., Vasichev, S.Yu., Ufatova, Z.G., Tapsiev, A.P., and Uskov, V.A., RF patent no. 2454540, Byull. Izobret., 2012, no. 18.
13. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part I: Modern Concept of the Stress State versus Depth, J. Min. Sci., 2012, vol. 48, no. 2, pp. 249–259.
14. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part II: Orebody Tectonotypes and Geomedium Models, J. Min. Sci., 2012, vol. 48, no. 3, pp. 421–428.
15. Anushenkov, A.N., Freidin. A.M., and Shalaurov, V.A., Preparation of Molten Solidifying Fill from Production Waste, J. Min. Sci., 1998, vol. 34, no. 1, pp. 86–90.
16. Tapsiev, A.P., Anushenkov, A.N., Uskov, V.A., Artemenko, Yu.V., and Pliev, B.Z., Development of the Long-Distance Pipeline Transport for Backfill Mixes in Terms of Oktyabrsky Mine, J. Min. Sci., 2009, vol. 45, no. 3, pp. 270–278.
17. Tapsiev, A.P., Anushenkov, A.N., Uskov, V.A., Artemenko, Yu.V., and Pliev, B.Z., Improvement in Productivity of Surface Stowing Facilities for Mines of the Transpolar Branch of the Norilsk Nickel Joint-Stock Company, J. Min. Sci., 2010, vol. 46, no. 3, pp. 265–270.
18. Khubulov, O.Yu., Anushenkov, A.N., Artemenko, Yu.V., and Uskov, V.A., Gain in Productivity of Operating Backfill Plants in Mines of Polar Division of Norilsk Nickel by Means of Modification of Mills, Gorny Zh., 2010, no. 6.
19 . Tapsiev, A.P., Freidin, A.M., Filippov, P.A., et al., Extraction of Gold-Bearing Ore from under the Open Pit Bottom at the Makmal Deposit by Room-and-Pillar Mining with Backfill Made of Production Waste, J. Min. Sci., 2011, vol. 47, no. 3, pp. 324–329.
20. Tapsiev A. P. and Uskov V. A., Increased Ore Extraction from Thin Flat-Dipping Veins Using Self-Propelled Equipment, J. Min. Sci., 2012, vol. 48, no. 4, pp. 694–699.
21. Oparin V. N., Freidin A. M., Tapsiev A. P., et al., Hard Mineral Mining and Raw Material Supply in Russia: Current State and the Challenges, J. Min. Sci., 2013, vol. 49, no. 4, pp. 670–676.
22. Tapsiev, A.P. and Uskov, A.V., Support Design Criteria for Mine Workings in the Zone of Influence of Stoping in Zapolyarny Mine, J. Min. Sci., 2014, vol. 50, no. 4, pp. 680–689.


DIRECTIONAL HYDRAULIC FRACTURING IN DIFFICULT CAVING ROOF CONTROL AND COAL DEGASSING
Yu. M. Lekontsev and P. V. Sazhin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru

The discussion covers the issues of difficult caving roof control in production faces and coal bed degassing. The methods and means meant for the directional hydraulic fracturing and coal degassing are described. The practical results of the method introduction in coal mines in Kuzbass are reported.

Production face, mine, coal bed, directional hydraulic fracturing, coal bed degassing, roof caving

DOI: 10.1134/S106273911405010X

REFERENCES
1. Klishin, V.I., Zvorygin, L.V., Lebedev, A.V., and Savchenko, A.V., Problemy bezopasnosti i novye tekhnologii podzemnoi razrabotki ugol’nykh mestorozhdenii (Safety and New Underground Coal Mining Technologies), Novosibirsk: Novosib. pisat., 2011.
2. Chernov, O.I., Hydrodynamic Stratification of Petrologically Uniform Strong Rocks as a Means of Controlling Intransigent Roof, J. Min. Sci., 1982, vol. 18, no. 2, pp. 102–107.
3. Lekontsev, Yu.M., Sazhin, P.V., and Klishin, V.I., RF patent no. 2394991, Byull. Izobret., 2010, no. 20.
4. Lekontsev, Yu.M. and Sazhin, P.V., RF patent no. 2400624, Byull. Izobret., 2010, no. 27.
5. Lekontsev, Yu.M., Leont’ev, A.V., and Rubtsova, E.V., RF patent no. 2433259, Byull. Izobret., 2011, no. 31.
6. Lekontsev, Yu.M. and Sazhin, P.V., RF patent no. 2480589, Byull. Izobret., 2013, no. 12.
7. Ordin, A.A., Lekontsev, Yu.M., and Sazhin, P.V., RF patent no. 2472939, Byull. Izobret., 2013, no. 2.
8. Lekontsev, Yu.M., Sazhin, P.V., Salikhov, A.F., and Isambetov, V.F., Pushing the Limits of the Directional Hydraulic Fracturing Application Range, Ugol’, 2014, no. 4.


SCIENCE OF MINING MACHINES


ENHANCEMENT OF ENERGY CARRIER PERFORMANCE IN AIR HAMMERS IN UNDERGROUND CONSTRUCTION
B. N. Smolyanitsky and V. V. Chervov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bsmol@misd.nsc.ru

The article concerns with the problem of blow energy increase at the confined air consumption in air hammers used in special underground construction. The solution is the air distribution circuit with an elastic ring valve installed in the back stroke chamber; the valve is closed under mechanical contact with the air hammer housing and opens under action of the elastic force of the material the valve is made of. The use of such valve enables relief of the backward pressure during the direct stroke of the hammer and allows the back stroke length adjustment, which ensures the constant blow energy at the varied air flow.

Air hammer, elastic valve, air flow, blow frequency, blow energy

DOI: 10.1134/S1062739114050111 

REFERENCES
1. Nestle, H., Spravochnik stroitelya: Stroitel’naya tekhnika, konstruktsii i tekhnologii (Builder’s Manual. Construction Machines, Structures and Technologies), Moscow: Tekhnosfera, 2007.
2. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., et al., Sources for Productivity Gain in Vibro- Impact Driving of Steel Elements in Soil in Special Construction Technologies, J. Min. Sci., 2008, vol. 44, no. 5, pp. 490–496.
3. Chervov, V.V., Tishchenko, V.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on the Vibro-Percussion Pipe Penetration Rate in Soil, J. Min. Sci., 2011, vol. 47, no. 1, pp. 85–92.
4. Tupitsyn, K. K., K issledovaniyu mashin udarnogo deistviya s pnevmaticheskimi pul’satorami: preprint no. 2 (Analysis of Percussive Machines with Pneumatic Pulsators: Preprint no. 2), Novosibirsk: IGD SO RAN, 1980.
5. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., Plavskikh, V.D., Rusin, E.P., Smolyanitsky, B.N., Tupitsyn, K.K., and Chepurnoi, N.P., Pnevmoproboiniki (Air Hammers), Novosibirsk: IGD SO RAN, 1990.
6. Nazarov, N.G., Increase in Striking Power of Air Hammers, Gornye mashiny: sb. nauch. tr. (Mining Machines: Collection of Scientific Papers), Novosibirsk: IGD SO AN SSSR, 1980.
7. Klimashko, V.V., Gileta, V.P., and Smolyanitsky, B.N., Blow Energy Intensification for Pipe Driving Machines in Trenchless Underground Services Laying, Mekhanika gornykh porod. Gornoe i stroitel’noe mashinovedenie. Tekhnologiya gornykh rabot (Rock Mechanics. Science of Mining and Construction Machines. Mining Technology), Novosibirsk: IGD SO RAN, 1993.
8. Gileta, V.P., Lipin, A.A., Smolyanitsky, B.N., Kostylev, A.D., and Terskov, A.D., RF patent no. 2090706, Byull. Izobret., 1997, no. 26.
9. Gaun, V.A., Author’s Certificate no. 848615, MPK E21S3/24, Byull. Izobret., 1981, no. 27.
10. Gaun, V.A., Design and Analysis of Downhole Air Hammers with the Increased Blow Energy, Povyshenie effektivnosti pnevmoudarnykh burovykh mashin (Enhanced Performance of Air Percussion Drilling Machines), Novosibirsk: IGD SO AN SSSR, 1987.
11. Petreev, A.M. and Smolyanitsky, B.N., Coordinating the Parameters of an Air Hammer with the Capacity of the Power Source, J. Min. Sci., 1999, vol. 35, no. 2, pp. 181–189.
12. Petreev, A.M. and Smolyanitsky, B.N., Economic Performance and Improvement of Air Hammers, Izv. vuzov, Stroit., 2001, no. 8.
13. Smolyanitsky, B.N., Chervov, V.V., Trubitsyn, V.V., Tishchenko, I.V., and Veber, I.E., New Air Hammer Typhoon for Special Construction, Mekhaniz. Stroit., 1997, no. 7.
14. Smerdin, V.S., Chervov, V.V., and Trubitsyn, V.V., Typhoon-290—A New Generation Air Hammer, Transp. Stroit., 1996, no. 5.
15. Smolyanitsky, B.N., Chervov, V.V., and Skachkov, K.B., New Air Hammers of the Institute of Mining SB RAS, Mekhaniz. Stroit., 2001, no. 12.
16. Chervov, V.V., Smolyanitsky, B.N., Trubitsyn, V.V., and Veber, I.E., RF patent no. 2105881, Byull. Izobret., 1998, no. 6.
17. Chervov, V.V., Smolyanitsky, B.N., Trubitsyn, V.V., and Veber, I.E., RF patent no. 2085363, Byull. Izobret., 1997, no. 21.
18. Cervovas V. V., Smolianickis B. N., Trubicynas V. V., Tiscenko I. V., Veberis I. E., and Gintaras Akulevicius. Naujos kartos pneumosmugines masinos, Mokslas ir Technika, 1998, no. 2.


DOWNHOLE HIGH-PRESSURE AIR HAMMERS FOR OPEN PIT MINING
A. A. Repin, B. N. Smolyanitsky, S. E. Alekseev, A. I. Popelyukh, V. V. Timonin, and V. N. Karpov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: bsmol@misd.nsc.ru
Novosibirsk State Technical University,
pr. K. Marksa 20, Novosibirsk, 630092 Russia

The energy upside potential of downhole air hammers is considered. The article presents the constructional diagram of a new air hammer using high compressed air pressure (up to 3 MPa). The experimental testing of the operating cycle of the air hammer is reported. The authors ascertain the air hammer steel requirements and the steel heat treatment modes to enable extended life of the air hammer parts. Industrial trials of the air hammers are described.

Drilling, downhole air hammer, hole, heat treatment, strength, reliability

DOI: 10.1134/S1062739114050123 

REFERENCES
1. Smolyanitsky, B.N., Repin, A.A., Danilov, B.D., et al., Povyshenie effektivnosti i dolgovechnosti impul’snykh mashin dlya sooruzheniya protyazhennykh skvazhin v porodnykh massivakh (Enhancement of Efficiency and Durability of Impulse-Forming Machines for Long Hole Drilling in Rocks), Novosibirsk: IGD SO RAN, 2013.
2. Repin, A.A. and Alekseev, S.E., Improvement of Layouts and Designs of Downhole Air-Driven Reamers, High-End Technologies of Mineral Mining and Use Conference Proc., Novokuznetsk, 2011.
3. Repin, A.A. and Alekseev, S.E., Development of Large Diameter Hole Drilling Equipment, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.
4. Repin, A.A. and Alekseev, S.E., Trends in Development of Downhole Air Hammers Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2012.
5. Lipin, A.A., Promising Pneumatic Punchers for Borehole Drilling, J, Min, Sci., 2005, vol. 41, no. 2, pp. 157–161.
6. Repin, A.A. and Alekseev, S.E., Design of Higher Compressed Air Pressure Hammers, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.
7. Timonin, V.V., Estimation of Rock Destruction under Dynamic Forcing-In of a Group of Indenters from the Viewpoint of Nonlinear Geomechanics, Proc. Conf Geodynamics and Stress Sate of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2008.
8. Alekseev, S.E., RF patent no. 2090730, Byull. Izobret., 2009, no. 26.
9. Repin, A.A., Alekseev, S.E., and Pyatnin, G.A., RF patent no. 2343266, Byull. Izobret., 2009, no. 1.
10. Repin, A.A., Alekseev, S.E., and Karpov, V.N., RF utility patent no. 121854, Byull. Izobret., 2012, no. 1.
11. Repin, A.A. and Druzhinin, M.M., Resources for Raising Pre-Blow Velocity in Pneumatic Percussion Machines, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2009.
12. Murakami Yukitaka, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, 2002.
13. Popelyukh, P.A., Nikulina, A.A., and Popelyukh, A.I., Influence of External Environment on Reliability of Machine Parts under Dynamic Loading, Nauch. Vestn. NGTU, 2013, no. 4(53).
14. Popelyukh, P.A., Popelyukh, A.I., and Yurkevich, M.R., Combination Thermo-Mechanical Treatment of Steel with Martensite–Bainite Austenization, Obr. Met., 2013, no. 2.
15. Repin, A.A., Alekseev, S.E., Popelyukh, A.I., and Teplykh, A.M., Influence of Nonmetallic Inclusions on Endurance of Percussive Machines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 798–806.
16. Repin, A.A.., Alekseev, S.E., and Popelyukh, A.I., Enhancing Reliability of Parts of Percussion Machines, J. Min. Sci., 2012, vol. 48, no. 4, pp. 669–674.


SAFE DUMPING EQUIPMENT
S. Ya. Levenson and L. I. Gendlina

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: lev@misd.nsc.ru

The authors analyze the existing motor equipment for safe dumping and offer a new engineering decision to the problem using vibrating overburden stackers.

Overburden dump, unstable dump, safety, vibrating overburden stacker, vibrating feeder

DOI: 10.1134/S1062739114050135 

REFERENCES
1. Poltavsky, N.N., Improvement of Dumping with Heavy-Duty Dump Trucks, Proc. Conf. Enhancement of Mine Safety, Kemerovo, 2003.
2. Melik-Gaikazov, I.V., Vinogradov, A.I., Togunov, M.B., and Kampel’, F.B., Machines and Technology of High Dump Formation in Kovdor Open Pit Mine, Gorny Zh., 2009, no. 11.
3. Use of Continuous Action Dumping Machines. Available at: http://multimails. info/gdt8r4part2.html.
4. Conveying Stackers TAKRAF. Available at: http://www.takraf.com/ru/products/ miningequipment.
5. Oborudovanie dlay otkrytykh gornykh rabot. Sandvik Mining and Construction. Katalog-2010 (Open Pit Mining Machines by Sandvik Mining and Construction. Catalogue 2010), Moscow, 2010.
6. Otvaloobrazovateli OSHR (OSHR Stackers). Available at: http://www.nkmz.com/Russian/index.html.
7. Genenergomontazh Company: From Norilsk to Mongolia, Gorn. Prom., 2005, no. 2.
8. Molotilov, S.G., Vasil’ev, E.I., Kortelev, O.B., Norri, V.K., Levenson, S.Ya., Gendlina, L.I., and Tishkov, A.Ya., Intensifikatsiya pogruzochno-transportnykh rabot na kar’erakh (Intensification of Loading and Haulage in Open Pit Mines), Novosibirsk: SO RAN, 2000.
9. Kortelev, O.B., Molotilov, S.G., Norri, V.K., Tishkov, A.Ya., Gendlina, L.I., Levenson, S.Ya., and Samartsev, M.G., Loading Broken Rock at Open-Pit Mines with the Use of Vibrating Equipment, J. Min. Sci., 1994, vol. 30, no. 3, pp. 291–295.
10. Molotilov, S.G. and Norri, V.K., Formation of High Overburden Dumps in Open-Casts, J. Min. Sci., 2007, vol. 43, no. 5, pp. 516–521.
11. Tishkov, A.Ya., Eremenko, Yu.I., and Gendlina, L.I., Vibrational Discharge of Friable Materials, J. Min. Sci., 1994, vol. 30, no. 2, pp. 175–177.
12 . Tishkov, A.Ya., Gendlina, L.I., Eremenko, Yu.I., and Levenson, L.Ya., Vibration Action on Flowing Medium during Its Discharge from a Reservoir, J. Min. Sci., 2000, vol. 36, no. 1, pp. 47–51.
13. Gendlina, L.I., Eremenko, Yu.I., Kulikova, E.G., and Levenson, S.Ya., Improvement of Vibration Discharge of Coherent Materials from Bins, Gorn. Oborud. Elektromekh., 2006, no. 7.
14. Yakovlev, V.L., Mogilat, V.L., Kovalev, M.N., and Gusev, A.I., Problems of Safe Operation of Dump Trucks in Open Pit Mines, Gorn. Inform.-Analit. Byull., 2004, no. 3.
15. Levenson, S.Ya., Gendlina, L.I., Morozov, A.V., Alesik, M.Yu., and Usol’tsev, V.M., Conditions of Efficient Use of Vibration Machines in Dumping with Dump Trucks, Gorn. Inform.-Analit. Byull., 2011, no. 5.
16. Levenson, S.Ya., Gendlina, L.I., Morozov, A.V., and Usol’tsev, V.M., Dumping with Dump Trucks in Open Pit Mines, Gorn. Inform.-Analit. Byull., 2012, no. 11.
17. Levenson, S.Ya., Gendlina, L.I., Eremenko, Yu.I., Morozov, A.V., Protasov, S.I., and Goldobin, V.A., RF patent no. 88004, Byull. Izobret., 2009, no. 30.


MINE AEROGASDYNAMICS


IMPROVEMENT OF SHALLOW SUBWAY TUNNEL VENTILATION PROCEDURES
N. A. Popov, A. M. Krasyuk, I. V. Lugin, S. A. Pavlov, and D. V. Zedgenizov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ivlugin@misd.nsc.ru

The article describes the full-scale tests on temperature in tunnel lining and adjacent soil in shallow subways operating in the extreme continental climate conditions. The mathematical modeling of air flow in the subway tunnel ventilation is presented. The authors have worked out recommendations on architectural concept of escapes from a subway platform. The system offered for air flow control in a ventilation branch consists of a platform fan delivery control channel and a tunnel air flow control channel.

Shallow subway, tunnel, soil, temperature, heat transfer, air distribution, train fire, smoke removal, control system, air flow rate controller

DOI: 10.1134/S1062739114050147 

REFERENCES
1. Krasyuk, À.Ì., Tonnel’naya ventilyatsiya metropolitenov (Tunnel Ventilation of Subways), Novosibirsk: Nauka, 2006.
2. Construction Norms and Regulations 32–02–203: Subways, 2004–01–01, Moscow: Gosstroi Rossii, 2004.
3. Krasyuk, À.Ì., Lugin, I.V., and Chigishev, À.N., Cross Impact of the Ventilation Modes at the Stations of the Subway Line, Metro, 2002, no. 2.
4. Tsodikov, V.Ya., Ventilyatsiya i teplosnabzhenie metropolitenov (Ventilation and Heating Supply of Subways), Moscow: Nedra, 1975.
5. Krasyuk, À.Ì. and Lugin, I.V., Heat Transfer in Shallow Subway Tunnels, J. Min. Sci., 2008, vol. 44, no. 6, pp. 622–627.
6. Sockel, H., Formulae for the Calculation of Pressure Effects in Railway Tunnels, Aerodynamics and Ventilation of Vehicle Tunnels, Luzern, Switzerland, July 2003.
7. Krasyuk, À.Ì. and Lugin, I.V., Investigation of the Dynamics of Air Flows Generated by the Disturbing Action of Trains in the Metro, J. Min. Sci., 2007, vol. 43, no. 6, pp. 655–661.
8. Krasyuk, À.Ì., Lugin, I.V., and Pavlov, S.À., Circulatory Air Rings and Their Influence on Air Distribution in Shallow Subways, J. Min. Sci., 2010, vol. 46, no. 4, pp. 431–437.
9. Kuznetsov, À.S. and Lukin, S.Ì., Flow Algorithms Used to Calculate Air Distribution in Ventilation Networks, J. Min. Sci., 1989, vol. no. 5, pp. 448–454.
10. Krasyuk, À.Ì. and Lugin, I.V., Ventilation Modes in Inflammation of Train in a Subway, J. Min. Sci., 2005, vol. 41, no. 4, pp. 364–372.
11. Adeev, À.À. and Lugin, I.V., Dynamics of Temperature of Smoke Fire Fumes in the Subway Tunnel at Train Fire, Izv. vuzov, Construction, 2012, no. 10.
12. Haack, A. and Schreyer, J., Emergency Scenarios for Tunnels and Underground Stations in Public Transport, Proc. 4th Int. Symp. Tunnel Safety and Security, Frankfurt, Germany, 2010.
13. Ustav professional’noi gornospasatel’noi sluzhby po organizatsii i vedeniyu gornospasatel’nykh rabot na stroitel’stve podzemnykh sooruzhenii (Regulations of Professional Rescue Service on the Arrangement of Rescue Operations at Civil Engineering Works), Moscow: Gosstroi Rossii 2002.
14. Building regulations 32–105–2004: Subways, Moscow: Gosstroi Rossii, 2004.
15. Zedgenizov, D.V., Air Flow Control in a Shallow Subway Ventilation Network, J. Min. Sci., 2009, vol. 45, no. 1, pp. 67–74.


MINERAL DRESSING


JUSTIFICATION AND DEVELOPMENT OF INNOVATIVE TECHNOLOGIES FOR INTEGRATED PROCESSING OF COMPLEX ORE AND MINE WASTE
S. A. Kondrat’ev, V. I. Rostovtsev, G. R. Bochkarev, G. I. Pushkareva, and K. A. Kovalenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru

The article presents the theoretical and experimental research findings aimed to create a basis for the development of innovative integrated processing technologies for complex ore and mine waste. It is found that introduction of nonmechanical energy treatment by an accelerated electron beam in the ore dressing circuits increases rebellious mineral processing data. The features of a flotation unit process are analyzed from the viewpoint of improvement of collecting and selecting abilities of a reagent and relationship between these abilities and molecular structure of the reagent. The authors define flotation activity of reagents and offer a flotation contact formation criterion. It is proved to be effective and promising to use magnesium- and manganese-bearing minerals for sorption purification of mine effluents in order to reduce metal loss in the wastewater discharge and to minimize damage of natural water bodies.

Ore pretreatment, energy treatment, collecting agents, collecting activity, selectivity, sorption, oxidation, brucite, magnesium, manganese ore

DOI: 10.1134/S1062739114050160 

REFERENCES
1. Chanturia, V.À. and Malyarov, P.V., Review of the World Achievements and Prospects for Development of the Technology and Equipment for Disintegration of Minerals in Processing, Proc. Plaksin’s Lectures–2012, Petrozavodsk: KNTS RAN, 2012.
2. Chanturia, V.À. and Bunin, I.Zh., Non-Traditional High-Energy Processes for Disintegration and Exposure of Finely Disseminated Mineral Complexes, J. Min. Sci., 2007, vol. 43, no. 3, pp. 311–330.
3. Bochkarev, G.R., Pushkareva, G.I., and Rostovtsev, V.I., Intensification of Ore Concentration and Sorption Extraction of Metals from Technogenic Raw Material, J. Min. Sci., 2007, , vol. 43, no. 3, pp. 331–340.
4. Kondrat’ev, S.À., Reagenty-sobirateli v elementarnom akte flotatsii (Collecting Agents in Elementary Flotation Act), Novosibirsk: SO RAN, 2012.
5. Kondrat’ev, S.À., Kotova, Î.B., and Rostovtsev, V.I., Intergrain Boundaries in Pretreatment and Processing of Rebellious Minerals and Waste Material: Quantum Physics Ideas, Izv. Komi NTS UrO RAN, 2010, no. 4.
6. Chanturia V. À. and Vigdergauz, V.Å., Theory and Prospects for Industrial Application of Energy of Accelerated Electrons in Mineral Processing, Gorny Zh., 1995, no. 7.
7. Bochkarev, G.R., et. al., Prospects of Electron Accelerators Used for Realizing Effective Low-Cost Technologies of Mineral Processing, Proc. 20th International Mineral Processing Congress, Germany, Clausthal-Zellerfeld, GDMB, 1997, vol. 1.
8. Veigel’t, Yu.P. and Rostovtsev, V.I., Intensifying the Beneficiation of Norilsk Copper-Nickel Ores by Energy Effects, J. Min. Sci., 2000, vol. 36, no. 6, pp. 595–598.
9. Bochkarev, G.R., Veigel’t, Yu.P., and Rostovtsev, V.I., Improvement in Ore Beneficiation Technology of Complex Substance Composition, J. Min. Sci., 1999, vol. 35, no. 5, pp. 536–540.
10. Rostovtsev, V.I., Theory and Practice of Using Electrochemical and Radiation (Accelerated Electrons) Treatment in Ore Pretreatment and Processing, Vestn. ChitGU, 2012, no. 8 (65).
11. Rostovtsev, V.I., Scientific Justification and Development of Stimulating Energy Deposition Methods for Solid and Liquid Phases of Rebellious Minerals, Dr. Tech. Sci. Dissertation, Chita, 2012.
12. Rostovtsev, V.I., Technological and Economic Effect of Nonmechanical Energy Use in Rebellious Mineral Processing, J. Min. Sci., 2013, vol. 49, no. 4, pp. 647–654.
13. Bogdanov, Î.S., Maksimov, I.P., Podnek, À.Ê., and Yanis, N.À., Teoriya i tekhnologiya flotatsii rud (The Theory and Technology of Ore Flotation), O. S. Bogdanova (Ed.)., Moscow: Nedra, 1980.
14. Kulkarni, R.D. and Somasundaran, P., Kinetics of Oleate Adsorption at the Liquid/Air Interface and Its Role in Hematite Flotation, Symposium Series, AIChE, 1975, vol. 71, no. 150.
15. Kondrat’ev, S.À., Estimation of Flotation Activity of Sorbents, Obog. rud, 2010, no. 4.
16. Zhivankov, G.V. and Ryaboi, V.I., Collecting Properties and Surface Activity of Higher Aeroflots, Obog. rud, 1985, no. 3.
17. Somasundaran, P., The Role of Ionomolecular Surfactant Complexes in Flotation, International Journal of Mineral Processing, 1976, Vol. 3.
18. Mitrofanov, S.I. and Sokolova, G.Å., Barite Flotation from Dolomite Limestone by Alkyl Sulfates at Mirgalimsai Processing Plant, Issledovaniya obogatimosti rud tsventykh metallov (Processability of Nonferrous Metal Ore), Moscow: Tsvetmetiformatsiya, 1965,
19. Finch, J.A. and Smith, G.W., Dynamic Surface Tension of Alkaline Dodecylamine Solutions, Journal of Colloid and Interface Science, 1973, vol. 45, no. 1.
20. Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, Ê.À., Natural Sorbent and Catalyst to Remove Arsenic from Natural and Waste Waters, J. Min. Sci., 2010, vol. 46, no. 2, pp. 197–202.
21. Pushkareva, G.I., Effect of Temperature Treatment of Brucite on Its Sorption Properties, J. Min. Sci., 2000, vol. 36, no. 6, pp. 599–602.
22. Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, Ê.À., Natural Sorbent and Catalyst to Remove Arsenic from Natural and Waste Waters, J. Min. Sci., 2010, vol. 46, no. 2, pp. 197–202.
23. Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, Ê.À., Selective Removal of Arsenic from Process Solutions, Proc. Plaksin’s Lectures–2011, Ekaterinburg: Fort Dialog-Iset’, 2011.
24. Maslii, À.I., Belobaba, À.G., Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, Ê.À., Purification of Process Water and Solutions from Ions of Heavy Metals and Arsenic, Khim. Int. Ust. Razv., 2012, no. 3.
25. Bochkarev, G.R., Pushkareva, G.I., and Kovalenko, Ê.À., Sorption Properties of Manganese Ores, J. Min. Sci., 2011, vol. 47, no. 6, pp. 837–841.


NEW METHODS AND INSTRUMENTS IN MINING


PROCEDURE AND EQUIPMENT FOR SEALING COAL BED METHANE DRAINAGE HOLES BY BARRIER SHIELDING
M. V. Kurlenya, S. V. Serdyukov, T. V. Shilova, and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The article presents guidelines, test model design and barrier shield design model aimed to improve the quality of sealing coal bed methane drainage holes by the barrier shielding method.

Coal bed, preliminary methane drainage, degassing hole, sealing, mine hydrofracturing, hydrofracturing equipment, two-component mixtures

DOI: 10.1134/S1062739114050196 

REFERENCES
1. Serdyukov, S.V., Patutin, A.V., Serdyukov, A.S., and Shilova, T.V., RF patent no. 2507378, Byull. Izobret., 2014, no. 5.
2. Kurlenya, M.V., Shilova, T.V., Serdyukov, S.V., and Patutin, A.V., Sealing of Coal Methane Drainage Holes by Barrier Screening Method, J. Min. Sci., 2014, vol. 50, no. 4, pp. 814–818.
3. Provedenie issledovanii i razrabotka prototipa bezopasnoi tekhnologii dobychi metana iz ugol’nykh plastov i podstilayushchikh gornykh porod v shakhtnykh usloviyakh: otchet o NIR (R&D Report: Research and Development of a Prototype Ecology-Friendly Technology for Methane Recovery from Coal and Underlying Rocks in Mines, Novosibirsk: IGD SO RAN, 2012.
4. Martynyuk, P.A., Pavlov, V.A., and Serdyukov, S.V., Assessment of Stress State in Rocks by Deformation Characteristic of Borehole Zone with Hydrofracture, J. Min. Sci., 2011, vol. 47, no. 3, pp. 290–296.
5. Martynyuk, P.A., Approximated Solution to the Problem on Disc Crack Growth in Rocks under Plastic Material Injection, Proc, Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2011.
6. Perkins, T.K. and Kern, L.R., Widths of Hydraulic Fractures, J. Petrol. Technol., 1961, no. 13.
7. Klishin, V.I., Lekontsev, Yu.M., and Sazhin, P.V., RF patent no. 2263776, Byull. Izobret., 2005, no. 31.
8. Haimson, B.C., The Hydrofracturing Stress Measuring Method and Recent Field Results, Int. J. Rock Mech. Min. Sci., 1978, vol. 15, no. 4.
9. Instruktsiya po degazatsii ugol’nykh shakht (Coal Mine Degassing Guidelines), Moscow: IPKON RAN, 2011.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå