Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2014 ãîä » JMS, Vol. 50, No. 4, 2014

JMS, Vol. 50, No. 4, 2014


GEOMECHANICS


WAVE TOMOGRAPHY OF METHANE POCKETS IN COAL BED
M. V. Kurlenya, A. S. Serdyukov, A. A. Duchkov, and S. V. Serdyukov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru
Novosibirsk State University,
ul. Pirogova 2, Novosibirsk, 630090 Russia
Trofimuk Institute of Petroleum–Gas Geology and Geophysics,
Siberian Branch, Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090 Russia

The wave tomography method is a finite difference analog of the classical seismic ray tomography. The computational investigation is reported in the article. The proposed approach allows identification of velocity anomalies in jointed rock zones of methane accumulations if the sizes of these zones are comparable with the dominant wave length of seismic sounding.

Coal bed, methane, jointed rock zones, seismic sounding, wave tomography

DOI: 10.1134/S1062739114040012 

REFERENCES
1. Kurlenya, M.V., Serdyukov, A.S., Serdyukov, S.V., and Cheverda, V.A., Seismic Approach to Location of Methane Accumulation Zones in a Coal Seam, J. Min. Sci., 2010, vol. 46, no. 6, pp. 621–629.
2. Luo, Y. and Schuster, G.T., Wave-Equation Traveltime Inversion, Geophysics, 1991, vol. 56, no. 5.
3. Serdyukov, A.S., Duchkov, A.A., and Nikitin, A.A., Numerical Modeling of the Dynamics of First Arrivals for the Wave Tomography Method, Proc. 10th Int. Conf. Subsoil Use. Mining. New Trends and Technologies in Mineral Prospecting, Exploration and Development. Geoecology, Novosibirsk, 2014. Available at: http://geosiberia-2014.ssga.ru/events/konferencii/conference-2/sekcia-2–2.
4. Serdyukov, A.S., Patutin, A.V., and Shilova, T.V., Numerical Evaluation of the Truncated Singular Value Decomposition within the Seismic Traveltimes Tomography Framework, Zh. SFU, Ser.: Matem. Fiz., 2014, no. 7(2).
5. Sal’nikov, A.S., Kanareikin, B.A., Dolgova, S.V., Dunaeva, K.A., Sagaidachnaya, O.M., and Kharlamov, A.S., Technology and Outcome of the Seismic Tomography of Transmitted Waves in Coal Mines in Kuzbass, Tekhnol. Seismorazv., 2012, no. 2.


FROM THE ALTERNATING-SIGN EXPLOSION RESPONSE OF ROCKS TO THE PENDULUM WAVES IN STRESSED GEOMEDIA. PART III
V. V. Adushkin and V. N. Oparin

Institute of Geosphere Dynamics, Russian Academy of Sciences,
Leninskii pr. 38, Moscow, 119334 Russia
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: admin@nsc.ru
Novosibirsk Sate University,
ul. Pirogova 2, Novosibirsk, 630090 Russia

The authors discuss application of the modern concept on rock mass structure as a hierarchy of blocks and the phenomenological basis of the pendulum wave theory in the context of source areas of destructive events in natural and nature-and-production systems. The phenomenological relationship is set between Zhurkov’s concentration criterion of fracture, experimental criterion of underground excavation “collapse,” canonical structure of spectrum of pendulum waves by Oparin and the long-range action of heavy explosion impacts in geomedia by Sadovsky–Adushkin. The article validates the energy approach to describing transformation of elastic energy of destructive event source areas into kinetic energy of structural elements of these areas. The authors introduce a new notion of “interference seismic emission events.”

Stressed geomedia, hierarchical block structure, source area, destructive event, strength criteria, energy approach, pendulum wave spectrum, underground excavations

DOI: 10.1134/S1062739114040024 

REFERENCES
1. Adushkin, V.V. and Malovichko, A.A. (Eds.), Vzryvy i zemletryaseniya na territorii Evropeiskoi chasti Rossii (Explosions and Earthquakes in the Territory of European Russia), Moscow: GEOS, 2013.
2. Oparin, V.N. et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Crust Destruction and Self-Organization in the Areas of Heavy Production Impact), Novosibirsk: SO RAN, 2012.
3. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics in the Earth’s Crust: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
4. Sobolev, G.A., Osnovy prognoza zemletryasenii (Principles of Earthquake Prediction), Moscow: Nauka, 1993.
5. Myachkin, V.I., Protsessy podgotovki zemletryasenii (Earthquake Growth Processes), Moscow: Nauka, 1978.
6. Kasahara, K., Earthquake Mechanics, Cambridge University Press, 1981.
7. Rodionov, V.N., Sizov, I.A., and Tsevtkov, V.M., Osnovy geomekhaniki (Basic Geomechanics), Moscow: Nedra, 1986.
8. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritel’nye pribory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Measurement Instrumentation for Modeling and In Situ Investigation of Nonlinear Deformation-Wave Processes in Blocky Rock Masses), Novosibirsk: SO RAN, 2007.
9. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seismic and Deformation Monitoring of Induced Earthquakes and Rock Bursts), vol. 1, Novosibirsk: SO RAN, 2010.
10. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seismic and Deformation Monitoring of Induced Earthquakes and Rock Bursts), vol. 2, Novosibirsk: SO RAN, 2010.
11. Rockbursts and Seismicity in Mines, RaSiM5, South African Institute of Mining and Metallurgy, 2001.
12. Kurlenya, M.B., Oparin, V.N., and Eremenko, A.A., Mine Seismic Data Scanning Method, Dokl. RAN, 1993, vol. 333, no. 6.
13. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity in Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003, J. Min. Sci., 2004, vol. 40, nos. 4–6 (Parts I–III), 2005, vol. 41, no. 1 (Part I).
14. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L. V. Kinetics of Seismic Emission in Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.
15. Mendecki, A.J., Keynote Address: Data-Driven Understanding of Seismic Rock Mass Response to Mining, Dynamic Rock Mass Response to Mining–RaSiM5 Proceedings, Johannesburg, 2000.
16. Zhurkov, S.N., Kinetic Concept of Fracture in Solids (Thermofluctuation Mechanism), Vestn. AN SSSR, 1968, no. 3.
17. Zhurkov, S.N., Kuksenko, V.S., and Petrov, V.A., Rock Failure Prediction, Fiz. Zemli, 1977, no. 6.
18. Mansurov, V.A. (Ed.), Physics of Rock Failure Prediction, Proc. 1st Int. Workshop, Krasnoyarsk: SibGAU, 2002.
19. Adushkin, V.A. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.
20. Adushkin, V.A. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, Part II, J. Min. Sci., 2013, vol. 49, no. 2, pp. 175–209.
21. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Formation of Elastic Wave Packets under Impulse Excitation in Blocky Media. Pendulum Waves ??, Dokl. RAN, 1993, vol. 333, no. 4.
22. Oparin, V.N., Energy Criterion of Bulk Rock Failure, Miner’s Week–2009 Proc., Moscow: MGGU, 2009.
23. Oparin, V.N., Pendulum Waves and “Geomechanical Temperature,” Proc. 2nd Russia–China Forum on Nonlinear Geomechanics and Geodynamics in Deep-Level Mining, Novosibirsk: IGD SO RAN, 2012.
24. Oparin, V.N., Basic Methodology for Multi-Level Geomechanics–Geodynamics Safety Monitoring in Mining in Tectonically Active Areas, Proc. 6th Int. Conf. Innovation Development in Mining: Problems and Prospects, Almaty, 2013.
25. Bychkov, I. V. Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Science, J. Min. Sci., 2014, vol. 50, no. 1, 142–154.
26. Adushkin, V.V. and Spivak, A.A., Podzemnye vzryvy (Underground Explosions), Moscow: Nauka, 2007.
27. Adushkin, V.V. and Spivak, A.A., Geomekhanika krupnomasshtabnykh vzryvov (Large-Scale Blast Geomechanics), Moscow: Nedra, 1993.
28. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics in Blocky Rock Masses), Moscow: Akademkniga, 2003.
29. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4.
30. Sadovsky, M.A., Discreteness of Rocks, Fiz. Zemli, 1982, no. 12.
31. Kurlenya, M.V. and Oparin, V.N., Scale Factor of Phenomenon of Zonal Disintegration of Rock and Canonical Series of Atomic and Ionic Radii, J. Min. Sci., 1996, vol. 32, no. 2, pp. 81–90.
32. Oparin, V.N., Yushkin, V.F., Akinin, A.A. and Balmashnova, E.G., A New Scale of Hierarchically Structured Representations as a Characteristic for Ranking Entities in a Geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387–401.
33. Oparin, V.N. and Tanaino, A. S. Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale for Hierarchy Representation in Rock Science in Mining), Novosibirsk: Nauka, 2011.
34. Sadovsky, M.A., Adushkin, V.V., and Spivak, A.A., Dimension of Irreversible Deformation Zones under Blasting in a Block-Structured Medium, Izv. AN SSSR, Fiz. Zemli, 1989, no. 9.
35. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., et al., Mekhanicheskii effekt podzemnogo vzryva (Mechanical Effect of Underground Explosion), Moscow: Nedra, 1971.
36. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., et al., Phenomenon of Zonal Disintegration of Rocks around Underground Excavations, Dokl. AN SSSR, 1986, vol. 289, no. 5.
37. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A. et al., Zonal’naya dezintegratsiya gornykh porod i ustoichivost’ podezmnykh vyrabotok (Zonal Disintegration of Rocks and Underground Opening Stability), Novosibirsk: SO RAN, 2008.
38. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Relations of Linear Block Dimensions of Rock to Crack Opening in the Structural Hierarchy of Masses, J. Min. Sci., 1993, vol. 29, no. 3, pp. 197–203.
39. Oparin, V.N. and Simonov, B.F., Nonlinear Deformation-Wave Processes in the Vibrational Oil Geotechnologies, J. Min. Sci., 2010, vol. 46, no. 2, pp. 95–112.
40. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part II, J. Min. Sci., 2000, vol. 36, no. 4, pp. 305–326.
41. Itogi nauchnoi i nauchno-organizatsionnoi deyatel’nosti za 2008 god (Research and Scientific-Organization Activity Resume for 2008), Novosibirsk: IGD SO RAN, 2009.
42. Itogi nauchnoi i nauchno-organizatsionnoi deyatel’nosti za 2012 god (Research and Scientific-Organization Activity Resume for 2012), Novosibirsk: IGD SO RAN, 2013.
43. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part II: Experimental Methods and Main Results of Physical Modeling, J. Min. Sci., 1996, vol. 32, no. 4, pp. 245–273.
44. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part III: Data of On-Site Observations, J. Min. Sci., 1996, vol. 32, no. 5, pp. 341–361.
45. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, J. Min. Sci., 1997, vol. 33, no. 1, pp. 1–11.
46. Vostrikov, V.I., Oparin, V.N., and Chervov, V.V., On Some Features of Solid-Body Motion under Combined Vibrowave and Static Actions, J. Min. Sci., 2000, vol. 36, no. 6, pp. 523–528.
47. Tishchenko, I.V., Chervov, V.V, and Gorelov, A.I., Effect of Additional Vibration Exciter and Coupled Vibro-Percussion Units on Penetration Rate of Pipe in Soil, J. Min. Sci., 2013, vol. 49, no. 3, pp. 450–458.
48. Li, Li-ping, Theoretical Analysis of Rock Burst Induced by Anomalously Low Friction Effect in Deep Block Media Mass, Proc. 3rd Sino-Russian Joint Scientific-Technical Forum on Deep-Level Rock Mechanics and Engineering, China, Nanjing, 2013.
49. Yakovitskaya, G.E., Metody i tekhnicheskie sredstva diagnostiki kriticheskikh sostoyanii gornykh porod na osnove elektromagnitnoi emissii (Methods and Means for Detection of Limit States in Rocks Based on Electromagnetic Emission), V. N. Oparin (Ed.), Novosibirsk: Parallel’, 2008.
50. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Geomechanical Conditions for Quasi-Resonances in Geomaterials and Block Media, J. Min. Sci., 1998, vol. 34, no. 5, pp. 379–386.
51. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Some Features of Rock Response to Blasting in Near Zone, Dokl. AN SSSR, 1987, vol. 293, no. 1.
52. Kurlenya, M.V., Oparin, V.N., Akinin, A.A., Yushkin, V.F. et al., On Some Features of Evolution of Harmonic Acoustic Signals in Loading Block Media with a Cylindrical Cavity, J. Min. Sci., 1999, vol. 35, no. 6, pp. 566–586.
53. Kurlenya, M.V., Oparin, V.N., Balmashnova, E.G., and Vostrikov, V.I., On Dynamic Behavior of “Self-Stressed” Block Media. Part I: One-Dimensional Mechanico-Mathematical Model, J. Min. Sci., 2001, vol. 37, no. 1, pp. 1–9.
54. Oparin, V.N., Balmashnova, E.G., and Vostrikov, V.I., On Dynamic Behavior of “Self-Stressed” Block Media. Part II: Comparison of Theoretical and Experimental Data, J. Min. Sci., 2001, vol. 37, no. 5, pp. 455–461.
55. Kurlenya, M.V., Oparin, V.N., Matasova, G.G., Morozov, P.F., Tapsiev, A.P., Tapsiev, G.A., and Fedorenko, B.V., Procedure for Plotting Maps of the Disturbance of Rock Masses from Geophysical Logging Data. Part III: Comparative Analysis of Geophysical Maps of Rock Mass Disturbance with Geological Data, J. Min. Sci., 1992, vol. 28, no. 2, pp. 105–113.
56. Oparin, V.N., Principles of Geophysical Well Defectoscopy. Part I: Spectral Analysis and Defect Measures, J. Min. Sci., 1982, vol. 18, no. 6, 468–477.
57. Kurlenya, M.V. and Oparin, V.N., Sign-Variable Reaction of Rocks to Dynamic Impacts, J. Min. Sci., 1990, vol. 26, no. 4, pp. 291–300.
58. Glushikhin, V.P. (Ed.), Metodicheskie ukazaniya po issledovaniyu proyavlenii gornogo davleniya na modelyakh iz ekvivalentnykh materialov (Instructional Guidelines on Studying Events due to Rock Pressure on Models Made of Equivalent Materials), Leningrad: VNIMI, 1976.
59. Gol’din, S. V. Yushin, V.I., Ruzhich, V.V. and Smekalin, O.P., Slow Motions—A Myth or Reality? Fizicheskie osnovy prognozirovaniya razrusheniya gornykh porod (Basic Physics of Rock Failure Prediction), Krasnoyarsk: SibGAU, 2002.
60. Guberman, Sh.A., D-Waves and Earthquakes. Theory and Analysis of Seismic Observations, Vychisl. Seismol., 1972, issue 12.
61. Zhadin, V.V., Connection of Strong Earthquakes in Time and Space, Izv. AN SSSR, Fiz. Zemli, 1984, no. 1.
62. Mogi, K., Bull Earthquake, Res. Inst. Univ. Tokyo, 1968, vol. 46.
63. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., Seryakov, V.M., and Krivetsky, A.V., Mechanical–Electromagnetic Transformations in Rocks on Failure, J. Min. Sci., 2013, vol. 49, no. 3, pp. 343–356.
64. Vikulin, A.V., XX Russian Conference on Geodynamics and Stress State of the Earth’s Interior, Vestn. KRAUNTs. Nauki o Zemle, 2013, no. 2, issue 22.
65. Kuksenko, V.S., Manzhikov, B.Ts., and Mansurov, V.A., Growth of Failure Micro-Source, Fiz. Zemli, 1985, no. 7.
66. Kuksenko, V.S., et al., Nucleation of Submicroscopic Cracks in Stressed Solids, Int. J. Fracture Mechanics, 1975. vol. 11, no. 4.
67. Tamuzh, V.P. and Kuksenko, V.S., Mikromekhanika razrusheniya polimernykh materialov (Failure Micromechanics in Polymeric Materials), Riga: Zinatne, 1978.
68. Petrov, B.A., Bashkarev, A.Ya., and Vettegren’, V.I., Fizicheskie osnovy prognozirovaniya razrusheniya konstruktsionnykh materialov (Basic Physics of Failure Prediction in Structural Materials), Saint-Petersburg: Politekhnika, 1993.
69. Vettegren’, V.I., Kuksenko, V.S., Svetlov, V.N., and Kryuchkov, M.A., Kinetics and Hierarchy of Failure of Materials under Loading, Proc. 1st Workshop Basic Physics of Rock Failure Prediction, Krasnoyarsk: SibGAU, 2002.
70. Sadovsky, M.A., Kedrov, O.K., and Pasechnik, I.P., Seismic Energy and Volume of Source Areas of Crust Earthquakes and Underground Blasts, Dokl. AN SSSR, 1985, vol. 283, no. 5.
71. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, J. Min. Sci., 1999, vol. 35, no. 3, pp. 216–230.
72. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennye protsessy v zemnoi kore (opasnosti i katastrofy) (Production-Induced Processes in Crust: Hazards and Accidents), Moscow: INEK, 2005.
73. Adushkin, A.A. and Kocharyan, G.G., Proc. 2nd Russian Conference Trigger Effects in Geosystems, Moscow: GEOS, 2013.
74. Oparin, V.N., Usol’tseva, O.M., Semenov, V.N., and Tsoi, P.A., Evolution of Stress–Strain State in Structured Rock Specimens under Uniaxial Loading, J. Min. Sci., 2013, vol. 49, no. 5, pp. 677–690.


EXPERIMENTAL DETERMINATION OF DEVIATION FROM COAXILAITY OF STRESS AND STRAIN TENSORS IN GRANULAR MEDIA
A. P. Bobryakov and A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: revuzhenko@yandex.ru

The theoretical basis and practical implementation of a complex loading device with instrumentation for mechanical properties of granular medium are described in the article. Thereupon, the procedure to determine the deviation from coaxiality of stress and strain tensors is developed. The authors report test data obtained on sand of various grain size. It has been found that rotation of strain tensor axes outruns rotation of stress tensor axes by an approximate angle of 21°.

Stress, strain, coaxiality, granular medium, complex loading, rotation of axes

DOI: 10.1134/S1062739114040036 

REFERENCES
1. Kocharyan, G.G., Markov, V.Ê., Ostapchuk, À.À., and Pavlov, D.V., Mesomechanics of Shear Resistance along Fracture with Filling, Physical Mesomechanics, 2013, vol. 16, no. 5.
2. Lomize, G.Ì., Ivashchenko, I.N., and Zakharov, Ì.N., Deformability of Clay Soil under Composite Loading, Soil Mechanics and Foundation Engineering, 1970, no. 6, pp. 382–386.
3. Zakharov, Ì.N. and Ivashchenko, I.N., On Deformability of Soils in a Complex Stress State, Journal of Applied Mechanics and Technical Physics, 1971, no. 6, pp. 962–966.
4. Zakharov, Ì. N. Some Problems of Soil Mechanics under Complex Loading, Prikl. Mekh., 1973, vol. 9, no. 11.
5. Zakharov, Ì.N. and Ivashchenko, I.N., To the Theory of Plastic Flow of Soils, Izv. AN SSSR, Mekh. Tverd. Tela, 1972, no. 2.
6. Revuzhenko, À. F. Mechanics of Granular Media, Springer-Verlag Berlin Heidelberg, 2006.
7. Bobryakov, À.P. and Revuzhenko, À.F., Uniform Displacement of Granular Material. Dilatancy, J. Min. Sci., 1982, vol. 18, no. 5, pp. 373–379.


MICRO- AND NANO-INDENTATION APPROACH TO STRENGTH AND DEFORMATION CHARACTERISTICS OF MINERALS
S. D. Viktorov, Yu. I. Golovin, A. N. Kochanov, A. I. Tyurin, A. V. Shuklinov, I. A. Shuvarin, and T. S. Pirozhkova

Institute of Problems of Comprehensive Exploitation of Mineral Resources,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: victorov_s@mail.ru
Nanotechnologies and Nanomaterials Education and Research Center,
Tambov State University,
Zashchitnyi per. 7, Tambov, 392000 Russia
e-mail: golovin@tsu.tmb.ru

In focus are methodology and effect of micro- and nano-indentation method in studying local deformation and failure of rocks. By micro- and nano-indentation, numerical values of Young’s modulus, and hardness of rocks and minerals have been obtained. The values of fracture toughness are obtained for separate minerals and at grain boundary. The authors highlight the use perspectiveness of the described method in estimating strength and deformation characteristics of rocks.

Rock, local failure, micro- and nano-indentation, method, indenter, indentation, physico-mechanical properties, rock-forming mineral hardness, fracture toughness, determination, structure

DOI: 10.1134/S1062739114040048 

REFERENCES
1. Trubetskoy, K.N., Potapov, M.G., Vinitsky, K.E., Mel’nikov, N.N., et al., Otkrytye gornye raboty: spravochnik (Opencast Mining: Reference Guide), Moscow: Gornoe byuro, 1994.
2. Oparin, V.N., Tanaino, A.S., and Yushkin, B.F., Discrete Properties of Entities of a Geomedium and Their Canonical Representation, J. Min. Sci., 2007, vol. 43, no. 3, pp. 221–236.
3. Il’nitskaya, E.I., Teder, R.I., Vatolin, E.S., and Kuntysh, M.F., Svoistva gornykh porod i metody ikh opredeleniya (Properties of Rocks and Estimation Methods), Moscow: Nedra, 1969.
4. Shreiner, L.A., Mekhanicheskie i abrazivnye svoistva gornykh porod (Mechanical and Abrasive Properties of Rocks), Moscow: Gostoptekhizdat, 1958.
5. Baron, L.I., Gorno-tekhnologicheskoe porodovedenie (Rock Science in Mining and Engineering), Moscow: Nauka, 1977.
6. Oparin, V.N. and Tanaino, A.S., Assessment of Abrasivity by Physico-Mechanical Properties of Rocks, J. Min. Sci., 2009, vol. 45, no. 3, pp. 240–249.
7. Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindetation and Capabilities), Moscow: Mashinostroenie, 2009.
8. Bushan, B. (Ed.), Springer Handbook of Nanotechnology, Berlin: Springer, 2007.
9. Fischer-Cripps, A.C., Nanoindentation, New York, Dordrecht, Heidelberg, London: Springer, 2011.
10. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiment, J. Mater. Res., 1992, vol. 7, no. 6.
11. Oliver, W.C. and Pharr, G.M., Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, vol. 19, no. 1.
12. Golovin, Yu.I., Nano-Indentation and Mechanical Properties of Solids in Submicroscopic Volumes, Subsurface Layers and Films (Review), Fiz. Tverd. Tela, 2008, vol. 50, no. 12.
13. Golovin, Yu.I., Tyurin, A.I., and Farber, B.Ya., Time-Dependent Characteristics of Materials and Micromechanisms of Plastic Deformation on a Submicron Scale by a New Pulse Indentation Technique, Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, vol. 82, no. 10 SPEC.
14. Golovin, Yu.I., Iunin, Yu.L., and Tyurin, A.I., Velocity Susceptibility of Hardness of Crystal Materials under Dynamic Nano-Indentation, Dokl. RAN, 2003, vol. 392, no. 3.
15. Golovin, Yu.I., Tyurin, A.I. and Khlebnikov, V.V., Effect of Dynamic Nano-Indentation Modes on the Velocity Susceptibility Coefficient and Hardness of Bodies with Various Structures, Zh. Tekh. Fiz., 2005, vol. 75, no. 4.
16. Golovin, Yu.I., Dub, S.N., Ivolgin, V.I., Korenkov, V.V., and Tyurin, A.I., Kinetic Features of Deformation of Solids in Nano- and Micro-Volumes, Fiz. Tverd. Tela, 2005, vol. 47, no. 6.
17. Golovin, Yu.I. and Tyurin, A.I., Dynamics of Early-Stage Micro-Indentation on Ionic Crystals, Izv. RAN, Ser. Fiz., 1995, vol. 59, no. 10.
18. Anan’ev, P.P., Golovin, Yu.I., Ermakov, S.V., Kupryashkin, A.M., Plotnikova, A.V., and Tyurin, A.I., Effect of Magnetic–Pulsed Treatment on Fracture Toughness Coefficient at Phase Interface in Ferrous Quartzite, Gorn. Inform.-Analit. Byull., 2013, no. 2.
19. Tyurin, A.I., Shuvarin, I.A., and Pirozhkova, T.S., Influenza del tipo e dell’entita delle condizioni di carico applicato penetratore duttile-fragile transizione, Italian Science Review, 2014, vol. 1(10).
20. Palmqvist, S., Method att BestammaSegheten hos Spread hos Spread Material, SarskiltHardmetaller, Jernkortorests Ann., 1957, vol. 141.
21. Illarionov, A.A., Petrografiya i mineralogiya zhelezistykh kvartsitov Mikhailovskogo mestorozhdeniya Kurskoi Magnitnoi Anomalii (Petrography and Mineralogy of Ferrous Quartzite, Mikhailovsk Deposit, Kursk Magnetic Anomaly), Moscow: Nauka, 1965.
22. Mel’nikov, N.V., Rzhevsky, V.V., and Protod’yakonov, M.M., Spravochnik (kadastr) fizicheskikh svoistv gornykh porod (Reference Guide (Cadastre) on Physical Properties of Rocks), Moscow: Nedra, 1975.
23. Rzhevsky, V.V. and Novik, G.Ya., Osnovy fiziki gornykh porod (Basic Physics of Rocks), Moscow, 1984.


ROCK FAILURE


LIMIT STATE AND FAILURE CRITERIA FOR MEDIA WITH PERFECT COHESION AND FLOWABILITY
O. A. Mikenina and A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: revuzhenko@yandex.ru

The authors suggest formulating limit state and failure criteria using the known and new stress tensor invariants. The new stress tensor invariants are constructed as average and shear stresses, as well as their ratios in all areas intersected by principal directions of stress tensor. The use of the obtained limit conditions is exemplified in terms of deriving equations of geomedium deformation based on the associated flow law.

Rocks, strength, limit state, invariants, stresses

DOI: 10.1134/S106273911404005X

REFERENCES
1. Vinogradov, V.V., Geomekhanika upravleniya sostoyaniem massiva vblizi gornykh vyrabotok (Geomechanics of Control of a Rock Mass near Mine Openings), Kiev: Naukova dumka, 1989.
2. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
3. Litvinsky, G.G., Analiticheskaya teoriya prochnosti gornykh porod i massivov (Analytical Theory of Strength of Rocks and Rock Masses), Donetsk: Nord-Press, 2008.
4. Novozhilov, V.V., Teoriya uprogosti (Theory of Elasticity), Moscow: Sudpromgiz, 1956.
5. Revuzhenko, A.F., Rock Failure Criteria Based on New Stress Tensor Invariants, J. Min. Sci., 2014, vol. 50, no. 3, pp. 437–442.
6. Radaev, Yu.N., An Attainable Lower Estimate of 3D Coulomb–Tresca Invariant by Systems of “2D” Shear Stresses, Vestn. ChGPU Yakovlev, Ser. Mekh. Predel. Sost., 2012, no. 4(14).


GEOMECHANICAL VALIDATION OF THE PARAMETERS AND TECHNIQUE FOR DAMPING LAYER IN THE VICINITY OF UNDERGROUND EXCAVATION FOR OVERBURDEN PRESSURE RELIEF
A. A. Eremenko, V. M. Seryakov, and L. N. Gakhova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: eremenko@ngs.ru

The data on stress–strain state around an underground excavation in an unstable rock mass are reported. For overburden pressure relief, it is proved necessary to create a damping layer, and the related drilling-and-blasting parameters are determined. Zones of probable fracture of rock mass under camouflet blasting are identified.

Stress, strain, rock mass, underground excavation, dynamic events, blasting

DOI: 10.1134/S1062739114040061 

REFERENCES
1. Tekhnologicheskii reglament dlya razrabotki proekta “Vskrytie i otrabotka nizhnikh gorizontov Orlovskogo mestorozhdeniya (na vospolnenie vybyvayushchikh moshchnostei)” (Production Procedures for Project Development “Gaining Access and Extraction of Deeper Levels of Orlovsky Deposit (Replenishment of Productive Capacities)”), Ust-Kamenogorsk: DGP Vniitsvetmet, 2001.
2. Gakhova, L.N., Solving Problems of Stressed States of a Mass Having Block Structure, Geoecology and Computers, Moscow: Balkema, 2000.
3. Kurlenya M. V., Baryshnikov V. D., Gakhova L. N. Experimental and Analytical Method for Assessing Stability of Stopes, Journal of Mining Science, 2002, vol. 48, no. 4, pp. 609–615.
4. Kryukov, G.M. and Glazkov, Yu.V., Fenomenologicheskaya kvazistatichesko-volnovaya teoriya deformirovaniya i razrusheniya materialov vzryvom zaryadov promyshlennykh VV (Phenomenological Quasistatic–Wave Theory of Deformation and Fracture of Materials by Blasting of Industrial Explosives), Moscow: MGGU, 2003.
5. Dokuchaev, M.M, Galimullina, A.T., and Turuta N. U., Vzryvanie naklonnymi skvazhinnymi zaryadami (Blasting by Inclined Borehole Charges), Moscow: Nedra, 1971.
6. Rukovodsvo po proektirovaniyu, organizatsii i provedeniyu massovykh vzryvov na podzemnykh rudnikakh filialov Evrazrudy (Guidance on Planning, Arrangement and Implementation of Large-Scale Blasting in Underground Mines of Evrazruda), Novokuznetsk: VostNIGRI–Evrazruda, 2008.
7. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.


MODELING FRACTURE OF ORE PARTICLES IN. A. LAYER UNDER PRESSURE
P. K. Fedotov

Irkutsk State Technical University,
ul. Lermontova 83, Irkutsk, 664074 Russia
e-mail: fedotovpavel@yandex.ru

The author has developed the model for determination of grain-size composition of broken particles in a layer using the Bond crushing law. Furthermore, the model allows estimation of stress energy and grain-size composition of crushed particles in a layer under pressure.

Fractures, roller press, finite element method, crushing, grinding

DOI: 10.1134/S1062739114040073 

REFERENCES
1. Fuerstensu, D.W., Kapur, Ð.Ñ., Gutsche, Î., Comminution of Minerals in a Laboratory-Size, Choke-Fed High-Pressure Roll Mill, Mines Carriers, Tech., 1994, nos. 3–4.
2. Kellerwessel, A.M., High Pressure Particle Bed Comminution. State of the Art, Application, Recent Developments, Engineering Mining J., 1996, vol. 197, no. 2.
3. Leibovitz, A., Razrushenie. T. 7, Ch. 1: Neorganicheskie materialy (Fracture. Vol. 7, Part 1: Inorganic Materials), Moscow: Mir, 1967.
4. Zienkiewicz, O. C. The Finite Element Method in Engineering Science, McGraw-Hill, 1971.
5. Baron, L.I., Loguntsov, B.M., and Pozin, E.Z., Opredelenie svoistv gornykh porod: sprav. posobie (Estimating Properties of Rocks: Reference Aid), Moscow: Gos. nauch.-tekh. izd. lit-ry gorn. delu, 1962.
6. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg, Nauka, 2001.
7. Fedotov, P.K., Mezhchastichnoe razrushenie (Interparticle Fracture), Moscow: Geoinformmark, 2011.


MINERAL MINING TECHNOLOGY


SUPPORT DESIGN CRITERIA FOR MINE WORKINGS IN THE ZONE OF INFLUENCE OF STOPING IN ZAPOLYARNY MINE
A. P. Tapsiev and V. A. Uskov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: atapsiev@misd.nsc.ru

In focus is the methodology of the support design for a tunnel in disseminated ore mining in Zapolyarny Mine, Transpolar Division, Norilsk Nickel. The calculation of the rock bolting parameters in the zone of influence of stoping is exemplified.

Zone of influence of stoping, support, rock stability, criterion, support, engineering method of rock bolting calculation

DOI: 10.1134/S1062739114040085 

REFERENCES
1. Oparin, V.N., Tapsiev, À.P., Bogdanov, Ì.N., Badtiev, B.P., Kulikov, F.Ì., and Uskov, V.À., Sovremennoe sostoyanie, problemy i strategiya razvitiya gornogo proizvodstva na rudnikakh Noril’ska (State-of-the-Art, Problems and Strategy of Mining in Norilsk Mines), Novosibirsk: SO RAN, 2008.
2. Freidin, À.Ì., Tapsiev, À.P., Uskov, V.À., Nazarova, L.À., etc., Reequipment and Development of Mining Method at Zapolyarny Mine, J. Min. Sci., 2007, vol. 43, no. 3, pp. 290–299.
3. Oparin, V.N., Tapsiev, A.P., and Uskov, V.A., Challenges and New Engineering Solutions on Modernization of Underground Productive Mines, Proc. 21st World Mining Congress & Expo 2008, Poland, Krakow: Gospodarka Surowcami Minerflnymi, 2008, vol. 24, no. 8/1.
4. Metodicheskie ukazaniya po upravleniyu gornym davleniem pri sploshnykh sloevykh i kamernykh sistemakh razrabotki s tverdeyushchei zakladkoi na rudnikakh Noril’skogo gorno-metallurgicheskogo kombinata (Methodological Instructive Regulations on Ground Control in Longwall Slicing and Room-and-Pillar Methods with Solidifying Backfill in Mines of the Norilsk Mining-and-Metallurgical Integrated Works), Leningrad: VNIMI, 1981.
5. Vremennye metodicheskie ukazaniya po proektirovaniyu krepi kapital’nykh vyrabotok v usloviyakh Oktyabr’skogo i Talnakhskogo mestorozhdenii (Temporary Methodological Instructive Regulations on Design of Support of Permanent Workings in the Conditions of the Oktyabrsky and Talnakh Deposits), Leningrad: LGI, 1987.
6. Stroitel’nye normy i pravila II-94–80. Podzemnye gornye vyrabotki (Construction Norms and Rules II-94–80. Underground Mine Workings), Moscow: Stroiizdat, 1982.
7. Rekomendatsii po krepleniyu, podderzhaniyu i okhrane razvedochnykh, kapital’nykh, podgotovitel’nykh, nareznykh i ochistnykh vyrabotok na rudnikakh Oktyabr’skii, Taimyrskii i Komsoml’skii ZF OAO GMK Noril’skii nikel’ (Guidelines on Supporting, Maintenance and Protection of Exploration, Permanent, Development, Preparatory and Stope Workings in Oktyabrsky, Taimyrsky and Komsomolsky Mines of Norilsk Nickel), Norilsk, 2011.
8. Rekomendatsii po krepleniyu i podderzhaniyu razvedochnykh, podgotovitel’nykh i nareznykh vyrabotok na rudnike Zapolyarnyi ZF OAO GMK Noril’skii nikel’ (Guidelines on Supporting and Maintenance of Exploration, Development and Preparatory Workings in Zapolyarny Mine, Norilsk Nickel), Norilsk, 2012.
9. Rekomendatsii po krepleniyu kapital’nykh, razvedochnykh, podgotovitel’nykh, nareznykh i ochistnykh vyrabotok na rudnike Angidrit Upravleniya nerudnykh gornykh predpriyatii ZF OAO GMK Noril’skii nikel’ (Guidelines on Supporting of Permanent, Exploration, Development, Preparatory and Stope Workings in Angidrit Mine, Norilsk Nickel), Norilsk, 2010.
10. Rekomendatsii po krepleniyu gornykh vyrabotok na shakhte Izvestnyakov rudnika Kaierkanskii ZF OAO GMK Noril’skii nikel’ (Guidelines on Supporting of Workings in Izvestnyakov Mine of Kaierkansky Deposit, Norilsk Nickel), Norilsk, 2011.
11. RTPP-043–2004. Reglament tekhnologicheskikh proizvodstvennykh protsessov po vozvedeniyu krepei na rudnikakh ZF OAO GMK Noril’skii nikel’ (Regulation of Processes of Support Setting in Mines of Norilsk Nickel), Norilsk, 2005.
12. Trushko, V.L., Protosenya, À.G., Matveev, P.F, and Sovmen, Kh.Ì., Geomekhanika massivov i dinamika vyrabotok glubokikh rudnikov (Geomechanics of Rock Mass and Dynamics of Workings of Deep Mines), Saint-Petersburg: SPGI. 2000.
13. Karelin, V.N., Marysyuk, V.P., Sergunin, Ì.P., Nagovitsin, Yu.N., and Tapsiev, À.P., The Experience of Implementation of Mining Methods Using Self-Propelled Equipment in Zapolyarny Mine, Fundamental’nye problemy formirovaniya tekhnogennoi geosredy, Tom II, Geotekhnologiya (Fundamental Problems of Production-Induced Geoenvironment, Vol. II, Geotechnology), Novosibirsk: IGD SO RAN, 2010.
14. Borshch–Kompaniets, V.I., Krainev, B.À., Loginsky, À.P., et al., The Assessment of Rock Jointing Impact on Stability of Rock Mass, Gorny. Zh., 1980, no. 10.
15. Karetnikov, V.N., Kleimenov, V.B., and Nuzhdikhin, À.G., Kreplenie kapital’nykh i podgotovitel’nykh gornykh vyrabotok: spravochnik (The Support of Permanent and Development Mine Workings: Reference Book), Moscow: Nedra, 1989.
16. Baklashov, I.V. and Kartozia, B.À., Mekhanika podzemnykh sooruzhenii i konstruktsii krepei (Mechanics of Underground Works and Support Design), Moscow: Nedra, 1992.
17. Roginsky, V.Ì., Proektirovanie i raschet zhelezobetonnoi krepi (Design of the Reinforced-Concrete Support), Moscow: Nedra, 1971.


DIVERSIFICATION OF OPEN PIT COAL MINING WITH DRAGLINING
V. I. Cheskidov, V. K. Norri, and G. G. Sakantsev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru
Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: lubk_igd@mail.ru

The article deals with aspects of effectivization of open pit coal mining by expanding the area of application of systems with draglining. It is emphasized that this most productive and least resource-hungry system lacks attention due to exhaustion of favourable conditions of its application. The authors make examples of draglining experience and potential effectivization.

Open pit mine, coal, draglining, scope of application

DOI: 10.1134/S1062739114040097 

REFERENCES
1. Tarazanov, I.G., Coal Industry Resume in Russia in 2013, Ugol’, 2014, no. 3.
2. Kirillov, M.A., Effectivization of Overburden Removal to Mined-Out Area by Blasting in Coal Mining with Direct Dumping, Cand. Tech. Sci. Thesis, Irkutsk, 1999.
3. Repin, N.Ya, Fazalov, G.T., Results of Introduction of Overburden Removal to Mined-Out Area by Directional Blasting in Mining with Direct Dumping in Kuzbass, Ugol’, 1971, no. 5.
4. Kuzbassrazrezugol website: www.kru.ru/about/indices.
5. Artem’ev, V.B., Opanasenko, P.I., Tsinoshkin, G.M., and Shenderov, A.I., Aspects of Innovative Development of Open Pit Coal Mines in SUEK, Ugol’, 2009, no. 2.
6. Kortelev, O.B., Cheskidov, V.I., Molotilov, S.G., and Norri, V.K., Otkrytaya razrabotka ugol’nykh plastov s peremeshcheniem gornoi massy ekskavatorami-draglainami (Open Pit Coal Mining with Overburden Rehandling by Draglines), Novosibirsk: IP Ilyushin, 2010.
7. Trubetskoy, K.N., Sidorenko, I.A., Dombrovsky, A.N., and Kotrovsky, M.N., Kran-Line: Actual Problem of Creation of a New Shovel for High Bench Cutting with Truck-and-Shovel, Gorn. prom., 2008, no. 4.
8. Kortelev, O.B., Cheskidov, V.I., and Norri, V.K., Effect of Highwall Parameters on the Open Pit Operation and Limits, J. Min. Sci., 2011, vol. 47, no. 5, pp. 587–592.
9. Vasil’ev, E.I. and Galkin, V.V., Development of Scientific Basis for Deep-Level Mineral Mining, Tekhnologiya otkrytoi razrabotki pologikh i naklonnykh ugol’nykh mestorozhdenii za rubezhom (obzor) (Opencast Moderate Dip Coal Mining Technologies in Foreign Countries: Review), Novosibirsk, 1991.
10. Rai, P., Use That Dragline—Considerations for Design and Planning of Dragline Pits, World Mining Equipment, 2001, vol. 25, no. 9, pp. 51–54.
11. Attention to Detail Boosts Draglines Work, COAL, 1989, no. 12.
12. Vasil’ev, V.I., Zvyagintsev, Yu.I., and Dukhnov, A.P., Validation of Overburden Thickness in Stripping with Direct Dumping, Sovershenstvovanie otkrytoi razrabotki mestorozhdenii: sb. nauch. tr. IGD SO RAN SSSR (Improvement of Opencast Mineral Mining: Collection of Scientific Papers of the Institute of Mining, Siberian Branch, USSR Academy of Sciences), Novosibirsk, 1973.


OPTIMIZED DEPTH OF TRANSITION FROM OPEN PIT TO UNDERGROUND COAL MINING
A. A. Ordin and I. V. Vasil’ev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ordin@misd.nsc.ru

The article formulates the problem on optimization of depth for transition from open pit to underground coal mining, considering lag factor. The main regularities are presented together with the numerical calculation of the set problem in terms of the Raspadsky Open Pit Mine using the dynamic programming method.

Dynamic programming, lag factor, optimization, transition depth, open pit and underground mining

DOI: 10.1134/S1062739114040103 

REFERENCES
1. Suprun, V.I., Rybak, L.V., Radchenko, S.A., et al., Validation of Open Pit Mining Limits in Large Coal Centroclinal Folds, Ugol’, 2012, no. 6.
2. Tverdov, A.A., Zhura, A.V., Nikishichev, S.B., Modern Approaches to Finding Open Pit Mining Limits, Ugol’, 2009, no. 2.
3. Anistratov, Yu.I. and Anistratov, K.Yu., Open Pit-to-Underground Mining of Coal, Ugol’, 2009, no. 2.
4. Kaputin, Yu.E., Informatsionnye tekhnologii planirovaniya gornykh rabot (Information Technologies for Mine Planning), Saint-Petersburg: Nedra, 2004.
5. Kaputin, Yu.E., Informatsionnye tekhnologii planirovaniya i ekonomicheskaya otsenka gornykh proektov (Information Technologies of Mine Planning and Economic Appraisal of Mine Projects), Saint-Petersburg: Nedra, 2008.
6. Dimitrakopoulos, R., Stochastic Optimization of Strategic Mine Planning: A Decade of Developments, J. Min. Sci., 2011, vol. 47, no. 2, pp. 138–150.
7. Elkington, T. and Durham, R., Integrated Open Pit Pushback Selection and Production Capacity Optimization, J. Min. Sci., 2011, vol. 47, no. 2, pp. 177–190.
8. Abdel Sabur S. A. and Dimitrakopoulos, R., Incorporating Geological and Market Uncertainties and Operational Flexibility into Open Pit Mine Design, J. Min. Sci., 2011, vol. 47, no. 2, pp. 191–201.
9. Richmond, A., Evaluating Capital Investment Timing with Stochastic Modeling of Time-Dependent Variables in Open Pit Optimization, J. Min. Sci., 2011, vol. 47, no. 2, pp. 227–334.
10. Godoy, M. and Dimitrakopoulos, R., A Risk Quantification Framework for Strategic Mine Planning: Method and Application, J. Min. Sci., 2011, vol. 47, no. 2, pp. 235–246.
11. King, B., Optimal Mining Practice in Strategic Planning, J. Min. Sci., 2011, vol. 47, no. 2, pp. 247–253.
12. Achireko, P.K., Application of Modified Conditional Simulation and Artificial Neural Networks to Open Pit Mining, Canada, Nova Scotia, Halifax, Dalhousie University Daltech, 1998.
13. Meagher, C., Dimitrakopoulos, R., and Avis, D., Optimized Open Pit Mine Design, Pushbacks and the Gap Problem: A Review, J. Min. Sci., 2014, vol. 50, no. 3, pp. 508–526.
14. Ordin, A.A., Dinamicheskie modeli optimizatsii proektnoi moshchnosti shakhty (Dynamic Models of Mine Production Capacity Optimization), Novosibirsk: IGD SO AN SSSR, 1991.
15. Ordin, A.A., Nikol’sky, A.M., and Golubev, Yu.G., Lag Modeling and Design Capacity Optimization at Operating Diamond Placer Mines Solur and Vostochny, Republic of Sakha (Yakutia), J. Min. Sci., 2012, vol. 48, no. 3, pp. 515–524.
16. Ordin, A.A. and Klishin, V.I., Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Lag Modeling-Based Optimization of Mine Design Parameters), Novosibirsk: Nauka, 2009.
17. Kodola, V.V. and Ordin, A.A., Design Optimization of an Underground Mining Site in the Operating Sibirginsky Open Pit Mine, Ugol’, 2000, no. 8.
18. Bellman, R., Dynamic Programming, Princeton University Press, 1957.


METHODOLOGY AND DEVELOPMENT TOOL FOR ROBUST CONTROL IN OPEN PIT MINES. PART II: ROBUST CONTROL OF TECHNICAL CAPACITIES
E. V. Freidina, A. A. Botvinnik, and A. S. Kovalenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: albyna@misd.nsc.ru
Novosibirsk State University of Economics and Management,
ul. Kamenskaya 52, Novosibirsk, 630091 Russia

The robust control over open pit mining is validated. It is shown that the current coupling of production systems based on equality of averaged capacities of mining and transportation equipment ensures no operational stability in an open pit mine. The article presents an optimization model and the modeling procedure for scheduling equipment repair halts such that to gain sustainable productivity due to uniformly distributed capacity of operational shoveling and haulage equipment. The authors have set stability limits, which imparts robustness to a controlled system and moves management to a new level.

Equipment capacity uniformity improvement, robust properties, robust control, production system, stability, fluctuation

DOI: 10.1134/S1062739114040115 

REFERENCES
1. Mogilevsky, V.D., Metodologiya sistem (System Methodology), Moscow: Ekonomika, 1999.
2. Freidina, E.V., Botvinnik, A.A., and Dvornikova, A.N., Methodology and Development Tool for Robust Control in Open Pit Mines. Part I: Decision-Making System and Mineral Quality Control, J. Min. Sci., 2014, vol. 50, no. 2, pp. 298–309.
3. Freidina, E.V., Tret’aykov, A.S., and Molotilov, S.G., Metody i modeli tekushchego planirovaniya na kar’erakh (Methods and Models of Routine Planning in Open Pit Mines), Novosibirsk: IGD SO AN SSSR, 1989.
4. Pevzner, L.D., Teoriya sistem upravleniya (Theory of Control Systems), Moscow: MGGU, 2002.
5. Wagner, H., Principles of Operations Research, Prentice-Hall, 1975.
6. Lazarev, A.A. and Gafarov, E.R., Teoriya raspisanii (Theory of Scheduling), Moscow: MGU, 2011.


IMPROVEMENT OF DEEP-LEVEL MINING SYSTEMS BASED ON OPTIMIZATION OF ACCESSING AND OPEN PIT MINE PARAMETERS
G. G. Sakantsev, M. G. Sakantsev, V. I. Cheskidov, and V. K. Norri

Institute of Mining, Ural Branch, Russian Academy of Sciences,
ul. Mamina-Sibiryaka 58, Ekaterinburg, 620219 Russia
e-mail: lubk_igd@mail.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: cheskid@misd.nsc.ru

The authors discuss reduction of stripping in deep-level open pit mining by making the open bottom wedge-shaped. The article describes the calculation scheme and the correlation analysis of interaction between stripping amount and its determinants. The application constrains for the wedge-shaped open pit bottom are specified.

Deep open pit mine, stripping, accesing, open pit bottom profile

DOI: 10.1134/S1062739114040127 

REFERENCES
1. Position of Russia in Terms of the Global Mineral and Raw Materials Supply Base, Min. Res. Ross., 1995, no. 6.
2. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Stability of Slopes of Open Pits and Dumps), Moscow: Nedra, 1974.
3. Zoteev, V.G., Theory of Stable Slopes of Deep Open Pit Mines in Hard Rocks, Dr. Tech. Sci. Dissertation, Sverdlovsk: IGD MCHM SSSR, 1981.
4. Sakantsev, G.G., Capabilities and Application Conditions of Steep Gradients of Uncovering Cuts in Deep Open Pit Mines, Izv. UGGU, Ser.: Gorn. Delo, 2005, issue 21.
5. Kortelev, O.B., Cheskidov, V.I., and Norri, V.K., Effect of Highwall Parameters on the Open Pit Operation and Limits, J. Min. Sci., 2011, vol. 47, no. 5, pp. 587–592.
6. Lavrenov, V.I., Opredelenie glubiny kar’erov dlya mestorozhdenii slozhnogo geologicheskogo stroeniya (Estimation of Depth of Open Pit Mines at Mineral Deposits of Complicated Geological Structure), Frunze: Ilim, 1967.
7. Sakantsev, M.G., Justification of Open Pit Mine Depth at Complex-Structure Ore Deposits, Dr. Tech. Sci. Dissertation, Ekaterinburg: IGD UrO RAN, 2006.
8. Yakovlev, V.L., Sakantsev, M.G., and Sakantsev, G.G., Granitsy kar’erov pri proektirovanii razrabotki slozhnostrukturnykh mestorozhdenii (Open Pit Limits in Mining Complex-Structure Mineral Deposits), Ekaterinburg: UrO RAN, 2009.
9. Sakantsev, G.G. and Cheskidov, V.I., Application Range of Internal Dumping in Opencast Mining of Steep Mineral Deposits, J. Min. Sci., 2014, vol. 50, no. 3, pp. 501–507.
10. Kumachev, K.A. and Maimind, V.Ya., Proektirovanie zhelezorudnykh kar’erov (Open Pit Iron Ore Mine Planning), Moscow: Nedra, 1981.
11. Brandon, D.B., Developing Mathematical Models for Computer Control, ISA Journal, 1959, no. 7.


MINE AEROGASDYNAMICS


DIRECTIONAL IONIZED AIR FLOW IN ENERGY-SAVING TECHNOLOGIES OF THE PRODUCTION AREA VENTILATION
P. T. Ponomarev and N. A. Popov

Siberian Transport University,
ul. D. Koval’chuk 191, Novosibirsk, 630049 Russia
e-mail: piter-ponomariov@yandex.ru
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia

Under consideration is the creation and use of directional ionized airflows aimed at air purification and enrichment with light, negatively charged ions in the production areas, which greatly reduces energy cost of ventilation and heating in cold weather. The article presents some data on use of ionized airflows in energy-saving technologies of the production area ventilation at mining and processing plants.

Ionized airflow, energy-saving technology, return air system, negatively charged ions, photoelectric ionization, corona electrode, precipitation electrode, mist spray particles, air purification

DOI: 10.1134/S1062739114040164 

REFERENCES
1. Ponomarev, P.Ò., Energy-Saving Technologies of Air Ventilation and Sanitation in Production Areas, Proc. Int. Conf. Safety and Structural Design in Mechanic Engineering and Construction, Kursk, 2013.
2. Chizhevsky, À.L., Aeroionifikatsiya v narodnom khozyaistve (Aeroionization in National Economy), Moscow: Stroiizdat, 1989.
3. Bondarenko, V.V., Miners’ Organism Resistance Improvement under the Influence of Aeroionization, Nauchno-tekhnicheskii progress i ozdorovlenie v ugol’noi promyshlennosti (Scientific and Technological Progress and Sanitation in Coal Industry), Donetsk, 1975.
4. Pogozhaev, S.V., Entrapment of Electroaerosol by Respiratory Organs, Gigien. Trud. Prof. Zabolev., 1981, no. 4.
5. Ponomarev, P.Ò. and Slaikovskaya, V.À., Physical Processes of Electric Wind Formation under Corona Discharge in Gases, Proc. 3rd Int. Conf. Perspective Development of Science, Engineering and Technology, Kursk, 2013.
6. Aleksandrov, G.N., Tekhnika vysokikh napryazhenii (High-Voltage Engineering), Moscow: Vyssh. shk., 1973.
7. Ponomarev, P.Ò., Use of Electric Wind for Efficiency Upgrading of Electrical Gas Cleaning Apparatus Operation, Proc. 3rd Int. Conf. Advanced Materials, Engineering and Technology, vol. 3, Kursk, 2013.
8. Fuks, N.À., Mekhanika aerozolei (The Mechanics of Aerosols), Moscow: ÀN SSSR, 1955.
9. Petrov, N.N. and Ponomarev, P.Ò., Suppression of Contaminants Using Directional Ionized Airflows, Teoreticheskie i prikladnye voprosy vozdukhoobmena v glubokikh kar’erakh (Theoretical and Application Problems of Ventilation in Deep Mines), Apatity: ÊF ÀN SSSR, 1985.


MINERAL DRESSING


UP-TO-DATE APPROACHES TO STUDYING ADSORPTION OF FATTY-ACID COLLECTING AGENTS AT APATITE AND SHTAFFELITE ORE MINERALS
V. A. Chanturia, Yu. E. Brylyakov, E. V. Koporulina, M. V. Ryazantseva, I. Zh. Bunin, I. A. Khabarova, and A. N. Krasnov

Institute of Problems of Comprehensive Exploitation of Mineral Resources,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: bunin_i@mail.ru
EvroKhim Research Center LLC,
ul. Fersmana 24, Apatity, 184209 Russia

The morphology and spread of micro- and nano-formations on the surface of apatite and shtaffelite ore minerals (apatite, shtaffelite and calcite) due to adsorption of fatty-acid collecting agents have been studied using the methods of optical, laser confocal scanning, analytical electron and atomic force microscopy. The Fourier-transform IR spectroscopy has shown that fatty-acid collecting agents are adsorbed at the surface of apatite, shtaffelite and calcite in a mixed ion–molecule form; the ion form of attachment prevails for calcite.

Apatite and shtaffelite ore minerals, apatite, shtaffelite, calcite, flotation agents, surface, adsorption, analytical electron microscopy, high resolution microscopy, IR spectroscopy

DOI: 10.1134/S1062739114040176 

REFERENCES
1. Kampel’, F.B., Fedorov, S.A., Novozhilova, V.V., Barmin, I.S., and Lygach, V.N., Introduction of Phosphate Apatite–Shtaffelite Ore in Commercial Use, Gorny Zh., 2002, Special Issue on Kovdor Mining-and-Processing Integrated Works.
2. Lygach, V.N., Ladygina, G.V., Samorukova, V.D., Kos’mina, A.N., and Barmin, I.S., Features of Material Constitution and Dressability of Apatite-Shtaffelite Ore at Special Purpose Dumps of Kovdor Mining-and-Processing Integrated Works, Gorn. Inform.-Anlit. Byull., 2007, no. 5.
3. Tugolukov, A.V., Barmin, I.S., Popovich, V.F., and Lygach, V.N., Studies of Process Properties of Apatite–Shtaffelite Ore Minerals from Kovdor Deposit, Gorn. Inform.-Analit. Byull., 2011, no. 12.
4. Barsky, L.A., Kononov, O.V., and Ratmirova, L.I., Selektivnaya flotatsiya kal’tsii-soderzhashchikh mineralov (Selective Flotation of Calcium-Bearing Minerals), Moscow: Nedra, 1979.
5. Tugolukov, A.V., Barmin, I.S., Morozov, V.V., and Polivanskaya, V.V., Analysis and Optimization of Flotation of Apatite–Shtaffelite Ore from Kovdor Deposit, Gorn. Inform.-Analit. Byull., 2012, no. 4.
6. Eigeles, M.A., Osnovy flotatsii nesul’fidnykh mineralov (Basics for Flotation of Nonsulphide Minerals), Moscow: Nedra, 1964.
7. Yushkin, N.P., Nanomineralogiya: ul’tra- i mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nano-Mineralogy: Ultra- and Micro-Dispersion Condition of a Mineral Substance), Moscow: Nauka, 2005.
8. Chanturia, V.A., Trubetskoy, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya geomaterialov (Nanoparticles in Destruction and Dissociation of Minerals), Moscow: IPKON RAN, 2006.
9. Smart, R.S., Amarantidis, J., Skinner, W.M., Prestidge, C.A., La Vanier, L., and Grano, S.R., Surface Analytical Studies of Oxidation and Collector Adsorption in Sulfide Mineral Flotation, Scanning Microscopy, 1998, vol. 12, no. 4; Surface Analysis Methods in Materials Science, O’Connor, J., Sexton, B.A., Smart, R.S. (Eds.), Berlin Heidelberg: Springer, 2003, vol. 23; Solid–Liquid Interfaces: Macroscopic Phenomena—Microscopic Understanding, Wandelt, K., Thurgate, S. (Eds.). Berlin Heidelberg: Springer, 2003, vol. 85.
10. Kim, B.S., Hayes, R.A., Prestidge, C.A., Ralston, J., and Smart, R.S., In-Situ Scanning Tunneling Microscopy Studies of Galena Surfaces under Flotation-Related Conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, vol. 117, no. 1.
11. Zhang, J. and Zhang, W., Applying an Atomic Force Microscopy in the Study of Mineral Flotation, Microscopy: Science, Technology, Application and Education, Mendez-Vilas, A. and Diaz, J. (Eds.), Formatex, 2010.
12. Pol’kin, S.I., Kuz’kin, S.F., and Golov, V.M., Radiography Method Application to Studying Interaction between Flotation Agents and Mineral Surface, Tsvet. Metally, 1955, no. 1.
13. Plaksin, I.N., Shafeev, R.Sh., and Zaitseva, S.P., Application of Radiography to Studying Distribution of Flotation Agents over the Surface of Mineral Particles, Dokl. AN SSSR, 1956, vol. 108, no. 5a.
14. Plaksin, I.N., Starchik, L.P., and Tyurnikova, V.I., Autoradiography Procedure for Studying Distribution of Flotation Agents over the Surface of Sulfide Mineral Particles, Izv. AN SSSR, OTI, 1957, no. 3.
15. Plaksin, I.N., Shafeev, R.Sh., and Chanturia, V.A., Vliyanie geterogennosti poverkhnosti mineralov na vzaimodeistvie s flotatsionnymi reagentami (Effect of Heterogeneity of Mineral Surface on Interaction with Flotation Agents), Moscow: Nauka, 1965.
16. Plaksin, I.N. and Shafeev, R.Sh., Effect of Galena Particle Size on Attachment of Collectors, I. N. Plaksin. Izbrannye trudy. Obogashchenie poleznykh iskopaemykh (I. N. Plaskin. Selectals. Mineral Dressing), Moscow: Nauka, 1970.
17. Chanturia, V.A. and Shafeev, R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Chemistry of Surface Phenomena in Flotation), Moscow: Nedra, 1977.
18. Trofimova, E.A. and Vigdergauz, V.E., Identification of a Carboxyl Collector in the Liquid Phase of the Flotation Pulp, Voprosy teorii i tekhnologii pererabotki mineral’nogo syr’ya (Theory and Technology of Mineral Processing), Shrader, E.A. (Ed.), Moscow: IFZ, 1977.
19. Scott, V.D. and Love, G. (Eds.), Quantitative Electron-Probe Microanalysis, Ellis Horwood Ltd., Chichester, 1983.
20. Shtein, G.I., Rukovodstvo po konfokal’noi mikroskopii (Confocal Microscopy Manual), Saint-Petersburg: INTS RAN, 2007.
21. Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Theory of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2005.
22. Bozhkov, V.G., Torkhov, N.A., Ivonin, I.V., and Novikov, V.A., Analysis of Surface Properties of Gallium Arsenide by the Atomic-Force Microscopy Method, Fiz. Tekh. Poluprov., 2008, vol. 42, no. 5.
23. Yane, B., Tsifrovaya obrabotka izobrazhenii (Digital Image Processing), Moscow: Tekhnosfera, 2007.
24. Bishop, C.M., Neural Networks for Pattern Recognition, Oxford: Oxford Univ. Press, 1995.
25. Chuklanov, A.P., Borodin, P.A., Ziganshina, S.A., Bukharaev, A.A., Algorithm for AFM Images of Complex Morphology Surfaces, Uchen. Zap. Kazan. Univer., 2008, vol. 150, no. 2.
26. Bocharov, V.A. and Igantkina, V.A., Use of Combinations of Collectors in the Selective Flotation of Pyrite Ores of Nonferrous Metals, Gorn. Inform.-Analit. Byull., 2012, no. 8.
27. Ignatkina, V.A. and Bocharov, V.A., Principles of Picking Selective Collectors for Flotation of Minerals with Close Flotation Properties, Gorn. Inform.-Analit. Byull., 2006, no. 12.
28. Plaksin, I.N. and Solnyshkin, V.I., Infrakrasnaya spektroskopiya poverkhnostnykh sloev reagentov na mineralakh (IR Spectroscopy of Layers of Agents on Mineral Surface), Moscow: Nauka, 1966.
29. Malyar, I.V. and Stetsyura, S.V., Effect of Morphology and Phase Composition of Surface on Radiation Resistance of Heterophase Material CdS-PbS, Fiz. Tekh. Poluprov., 2011, vol. 45, no. 7.
30. Golubev, E.A., Micro- and Nano-Structures of Hard Mineral X-ray Amorphous Substance, Dr. Geology and Mineralogy Dissertation, Syktyvkar: IG KNTS UrO RAN, 2010.
31. Farmer, V.C., The Infrared Spectra of Minerals, London: Mineralogical Society, 1974.
32. Samorukova, V.D. and Cherenkova, G.I., IR Spectroscopy of Textural Varieties of Apatite Ores in the Khibiny Deposits, Geokhimiya, 1984, no. 11.
33. Pirogov, B.I., Trunin, A.N., and Kholoshin, I.V., IR Spectra of Apatite in Kovdor Deposit, Geolog.-Mineral. Vestn., 2001, no. 1.
34. Shagalov, E.S., Kholodnov, V.V., Puchkov, V.N., and Zhilin, I.V., Pyroxene Apatite of Suroyamsky Site, Trudy IGGU UrO RAN, 2009, issue 156.
35. Bellami, L.J., The Infrared Spectra of Complex Molecules, Springer, 1980.


FOAM SEPARATION SELECTIVITY CONDITIONED BY THE CHEMICALLY ATTACHED AGENT
S. A. Kondrat’ev and N. P. Moshkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: kondr@misd.nsc.ru
Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 15, Novosibirsk, 630090 Russia
e-mail: nikolay.moshkin@gmail.com

It is hypothesized that the critical thickness of rupture of a liquid film between air bubble and mineral particle depends on potential and size of area occupied by nanobubble. It is shown that the critical thickness of film equals the height of meniscus formed under rupture. The size and shape of meniscus are characterized by its neck radius and contact angle. The proposed hypothesis is based on the assumption that the size of initial meniscus neck is connected with the diameter of attachment area of nanobubble. There are no nanobubbles on the surface of hydrophilic minerals, and the liquid film rupture is hampered in this case. Since liquid film stability is mainly affected by hydrophobic interaction, the liquid film rupture thickness is larger on hydrophilic minerals than on hydrophobic minerals. Selectivity of foam separation of minerals, governed by the chemically attached agents, depends on the ratio of the critical rupture thicknesses of the liquid film.

Flotation, hydrophobic behavior, hydrophilic behavior, mineral particles, nanobubbles, chemical adsorption, critical film thickness, selectivity

DOI: 10.1134/S1062739114040188 

REFERENCES
1. Pshenitsyn, V.I. and Rusanov, A.I., Wetting Angles on Fresh Surfaces of Ionic Crystals, Colloid. Zh., 1979, vol. 41, no. 1.
2. Gribanova, E.V., Molchanova, L.I., Grigorov, O.N., and Popova, V.N., Relationship of Wetting Angles on Glass and Quartz and Solution pH, Colloid. Zh., 1976, vol. 38, no. 3.
3. Churaev, N.V., Introduction of Structural Forces in the Theory of Strength of Colloids and Films, Colloid. Zh., 1984, vol. 46, no. 2.
4. Churaev, N.V., Hydrophobic Attraction Forces in Wetting Films of Aqueous Solutions, Colloid. Zh., 1992, vol. 54, no. 5.
5. Pan, L., Jung, S., and Yoon, R-H., Effect of Hydrophobicity on the Stability of the Wetting Films of Water Formed on Gold Surfaces, Journal of Colloid and Interface Science, 2011, vol. 261.
6. Pan, L. and Yoon, R-H., Role of Disjoining Pressure and Curvature Pressure in Bubble–Particle Interactions. International Mineral Processing Congress (IMPC) 2012 Proceedings, New Delhi, 2012.
7. Pan, L., Jung, S., and Yoon, R-H., A Fundamental Study on the Role of Collector in the Kinetics of Bubble–Particle Interactions, International Journal of Mineral Processing, 2012, vol. 106–109.
8. Stockelhuber, K.W., Radoev, B., Wenger, A., and Schulze, H.J., Rupture of Wetting Films Caused by Nanobubbles, Langmuir, 2004, vol. 20.
9. Gudilin, E.A. and Eliseev, A.A., Protsessy kristallizatsii v khimicheskom materialovedenii: metod. razrabotka k kursu lektsii “Funktsional’nye materialy” (Processes of Crystallization in Chemical Materials Science: Manual for the Course of Lectures on Functional Materials), Moscow: NGU, 2006.
10. Kuni. F.M., Ogenko, V.M., Ganyuk, L.N., and Grechko, L.G., Thermodynamics of Gas-Saturated Solution Disintegration, Colloid. Zh., 1993, vol. 55, no. 2.
11. Brenner, M.P. and Lohse, D., Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization, The American Physical Society, Physical Review Letters, 2008, vol. 101(21).
12. Zhang, X.H., Li, G., Maeda, N., and Hu, J., Removal of Induced Nanobubbles from Water/Graphite Interfaces by Partial Degassing, Langmuir, 2006, vol. 22.
13. Chun Huh and Scriven, L.E., Shapes of Axisymmetric Fluid Interfaces of Unbounded Extent, Journal of Colloid and Interfaces Science, 1969, vol. 30, no. 3.
14. Tovbin, M.V., Chesha, I.I., and Dukhin, S.S., Analysis of Properties of Fluid Surface Layer by the Floating Drop Method, Colloid. Zh., 1970, vol. 32, no. 5.


MINERAL FORMATIONS ON NATURAL DIAMOND SURFACE AND THEIR DESTRUCTION USING ELECTROCHEMICALLY MODIFIED MINERALIZED WATER
G. P. Dvoichenkova

Institute of Problems of Comprehensive Exploitation of Mineral Resources,
Russian Academy of Sciences,
Kryukovskii tupik 4, Moscow, 111020 Russia
e-mail: dvoigp@mail.ru

The article describes modeling and analysis of formation, attachment and dissolving of mineral substances on surface of diamond crystals. Based on the thermodynamic analysis and experimental research, the author validates deposition of chemical compounds as the main factor to govern mineral formations on natural diamond surface under contact with mineralized water in the occurrence conditions of kimberlite ore and during mining and processing. The efficiency of electrochemically modified water in dissolving and removal of mineral formations from diamond surface is ascertained.

Diamond, kimberlite, analysis, mineralogy, mineralization, carbonatization, hydrophilic formations, films, foam separation

DOI: 10.1134/S106273911404019X

REFERENCES
1. Kurenkov, I.I., On Diamond Surface Properties in Connection with Extraction from Ores, Skochinsky Institute of Mining Transactions, vol. IV, 1957.
2. Chanturia, V.À., Trofimova, E.À., Dikov, Yu.P., Dvoichenkova, G.P., Bogachev, V.I., and Zuev, À.À., The Connection Between Surface and Technological Properties of Diamonds in Kimberlite Ore Dressing, Gorny Zh., 1998, nos. 11–12.
3. Strickland-Constable, R.F., Kinetics and Mechanism of Crystallisation, Academic Press, London, 1968.
4. Garrels, R.M. and Christ, C.L., Solutions, Minerals and Equilibria, Moscow: Mir, 1967.
5. Stromberg, À.G. and Semchenko, D.P., Fizicheskaya khimiya (Physical Chemistry), Moscow: Vyssh. shk., 2001.
6. Kratkii spravochnik fiziko-khimicheskikh velichin (The Quick-Reference Book of Physicochemical Quantities), Mishchenko, K.P. and Ravdel’, À.À. (Eds.), Leningrad: Khimiya, 1974.
7. Naumov, G.B., Ruzhenko, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (The Reference Book of Thermodynamic Quantities), Moscow: Atomizdat, 1971.
8. Ribbe, P.H., Carbonates: Mineralogy and Chemistry, (ed.) Reeder, R. J., Moscow: Mir, 1987.
9. Chanturia, V.À., Dvoichenkova, G.P., and Trofimova, E.À., The Development and Implementation of the Electrochemical Technology for Water Treatment in Dressing of Diamond-Bearing Kimberlites, Gorny Zh., 2000, no. 7.
10. Chanturia, V.À., Dvoichenkova, G.P., Trofimova, E.À., Bogachev, V.I., and Minenko, V.G., Theory and Practice of Using the Electrochemical Method of Water Treatment to Intensify Dressing of Diamond-Bearing Kimberlites, Gorny Zh., 2005, no. 4.


METAL RECOVERY FROM OLD TAILINGS
S. I. Evdokimov and V. S. Evdokimov

North Caucasian Institute of Mining and Metallurgy (State Technological University),
ul. Nikolaeva 44, Vladikavkaz, 362021 Republic of North Ossetia–Alania, Russia
e-mail: eva-ser@mail.ru
GEOS Research and Manufacturing LLC,
ul. Levanevskogo 253, Vladikavkaz, 362035 Republic of North Ossetia–Alania, Russia
e-mail: 19-Vadik-93@mail.ru

The authors study potential utilization of oil tailings of a lead–zinc processing plant. Conversion of sulfides into marketable selective concentrates is carried out in two stages: sulfide product is extracted from tailings, first, and processed, second, jointly with current ore material, using the accepted technology, or separately, by jet flotation. Sulfides are extracted from tailings using a channel-type hydroseparator. A feature of flotation scheme is stream counterflow of feed (in both cycles) and rough concentrate. Conditions and composition are developed for manufacturing a quality product from non-metal tailings: lime-sand bricks, glass containers, fiberglass and marbled glass.

Old tailings, hydroseparation, thin-layer zone, flotation, jet scheme, extraction, lead, zinc, non-metallic fraction, reclamation

DOI: 10.1134/S1062739114040206 

REFERENCES
1. Ul’yanov, I.G., Improving Performance of Industrial Production Control, Cand. Econ. Sci. Dissertation, Moscow: BZFEI, 2007.
2. Cherny, S.A., Ecological and Economic Efficiency of Metallurgy Waste Reprocessing (in Terms of Rare Metal Works at Solikamsk Magnesium Plant), Cand. Econ. Sci. Dissertation, Moscow: MGU, 2009.
3. Chanturia, V.A., Prospects for Sustainable Development of Mining Industry in Russia, Gorny Zh., 2007, no. 2.
4. Barsky, L.A. and Kozin, V.Z., Sistemnyi analiz v obogashchenii poleznykh iskopaemykh (System Analysis in Mineral Dressing), Moscow: Nedra, 1978.
5. Kvitka, V.V., Kushakova, L.B., and Yakovleva, E.P., Retreatment of Aged Tailings at Processing Plants in the East Kazakhstan, Gorny Zh., 2001, no. 9.
6. Demidov, V.I. and Lozhkina, T.V., Reprocessing of Tailings—The Way of Reducing the Loss of Metals, Tsvet. Metally, 1980, no. 2.
7. Rudnev, B.P., Justification and Development of Efficient Processing Methods for Current and Aged tailings of Nonferrous, Noble and Rare Metal Dressing, Dr. Tech. Sci. Dissertation, Moscow: Gvintsvetmet, 2004.
8. Koryukin, B.M., Kontlev, A.F., Zhabalan, A.V., and Sidorov, I.I., Processing Technology for Aged Tailings at Preparation Plant of the Mid-Urals Copper Smeltry, Tsvet. Metallurg., 1991, no. 5.
9. Larichkin, F.D., Ivanov, V.A., and Tret’aykova, V.P., Reprocessing of Aged Tailings of Lead and Zinc Preparation Plants, Tsvet. Metallurg., 1970, no. 24.
10. Chanturia, V.A., Vigdergauz, V.E., Shrader, E.A., et al., Advanced (Ecologically Significant) Processing Technologies for Zinc Raw Material in Mining and Processing Waste: Problems and Solutions, Inzh. Ekol., 2004, no. 5.
11. Demidov, V.I., Metal Recovery from Aged Tailings of Processing Plants, Tsvet. Metally, 1973, no. 2.
12. Shadrunova, I.V., Theoretical and Experimental Justification of Intense Low-Temperature Leaching of Low-Grade Copper-Containing Material, Dr. Tech. Sci. Dissertation, Moscow: IPKON RAN, 2003.
13. Kudryavsky, Yu.P. and Cherny, S.A., Ecological–Economic Performance Indicator of Processing Technology for Nonferrous Metallurgy Waste, Tsvet. Metally, 2008, no. 4.
14. Shtoik, G.G., Zinc, Copper and Lead Production from Tailings at Zyryanovskaya Processing Plant, Obog. Rud, 1975, no. 5.
15. Zhuravlev, V.F., Theory and Practice of Using Poly-Cascade Countercurrent Mineral Separation by Gravity, Cand. Tech. Sci. Dissertation, Moscow: MISiS, 1992.
16. Pan’shin, A.M., Evdokimov, S.I., and Solodenko, A.A., Metallurgiya, T. 1. Zoloto: Teoriya i promysel (Metallurgy. Vol. 1. Gold: Theory and Actual Mining), Vladikavkaz: MAVR, 2010.
17. Protod’yakonov, I.O., Lyublinskaya, I.E., and Ryzhkov, A.E., Gidrodinamika i massoobmen v dispersnykh sistemakh zhidkost’–tverdoe telo (Hydrodynamics and Mass Transfer in Dispersion Liquid–Solid Systems), Leningrad: Khimiya, 1987.
18. Ivanov, V.D. and Prokop’ev, S.A., Vintovye apparaty dlya obogashcheniya rud v Rossii (Screw Facilities for Ore Concentration in Russia), Moscow: DAKSI, 2000.
19. Pan’shin, A.M. and Evdokimov, S.I., Channel Flotation of Ore with Purpose-Generated High Mineral Content, Obog. Rud, 2009, no. 5.
20. Pan’shin, A.M., Evdokimov, S.I., and Artemov, S.V., Olimpiada Deposit Ore Flotation Using Channel Flotation and Aeration of Pulp by Aerosol, Obog. Rud, 2011, no. 6.
21. Lebedev, B.N., Avdyukov, V.I., and Kabiev, K.G., Possible Trends of Utilization of Tailings at Processing Plants in Kazakhstan, Tsvet. Metallurg., 1969, no. 4.
22. Orlova, I.B., Rumyantsev, Yu.V., and Shokol, A.F., Utilization of Mining and Processing Waste in Construction, Tsvet. Metally, 1978, no. 5.
23. Avdyukov, V.I., Lebedev, B.N., Kabiev, K.T., and Novikov, V.I., Microfertilizers Manufactured from Processing Plant Tailings in Kazakhstan, Tsvet. Matellurg., 1969. No. 21.


MINING ECOLOGY


PECULIARITIES OF GEOCHEMICAL OXIDATION REACTIONS IN HYPERGENESIS ZONE UNDER SOUTHERN FAR EAST CLIMATE CONDITIONS
N. I. Grekhnev and L. N. Lipina

Institute of Mining, Far East Branch, Russian Academy of Sciences,
ul. Turgeneva 51, Khabarovsk, 680000 Russia
e-mail: grh@igd.khv.ru

The hypergenesis zone processes are considered in regard to oxidation of metallic sulfides that deteriorate regional ecology due to transformation of hypogene sulfides in sulfate group minerals featured with high solubility and movability in the hypergenesis zone during summer monsoon in the coastal areas. The main agents of humid technogenesis are rainfalls rich in oxygen and other gases, that, with the help of the newly formed sulfuric acid, generate chemical oxidation and transformation of prime sulfides in oxidized groups of highly soluble sulfates.

Geochemical transformation, chemical contamination, toxic elements, environment, acid condition, humide technogenesis

DOI: 10.1134/S1062739114040218 

REFERENCES
1. Grekhnev, N.I. and Zhovinsky, E.Ya., Geochemistry of Technogenesis in the Dalnegrosky Mining District in the South Primorie of Russia, Mineralog. Zh. (Ukraine), 2009, no. 4.
2. Grekhnev. N.I. and Usikov, V.I., Regional Economic and Ecological Problems due to Mine Waste, Region. Probl., 2011, vol. 14, no. 1.
3. Tarasenko, I.A. and Zin’kov, A.V., Ekologicheskie posledstviya mineralogo-geokhimicheskikh preobrazovanii khvostov obogashcheniya Sn-Ag-Pb-Zn rud (Primor’e, Dal’negorskii raion) (Ecological Aftereffect of Mineralogical and Geochemical Transformation of Tailings of Sn-Ag-Pb-Zn-Bearing Ore in Primorie, Dalnegorsky District), Vladivostok: Dal’nauka, 2001.
4. Smirnov, S.S., Zona okisleniya sul’fidnykh mestorozhdenii (Oxidation Zone at Sulfide Ore Deposits), Moscow–Leningrad: AN SSSR, 1955.
5. Yakhontova, L.K. and Zvereva, V.P., Osnovy mineralogii zony gipergenezisa (Basic Mineralogy of the Hypergenesis Zone), Vladivostok: Dal’nauka, 2000.
6. Zvereva, V.P., Ekologicheskie posledstviya gipergennykh protsessov na olovorudnykh mestorozhdeniyakh Dal’nego Vostoka (Ecological Consequences of Hypergene Processes at Tin Deposits in the Russia’s Far East), Vladivostok: Dal’nauka, 2008.
7. Orlov, D.S., Malinina, M.S., Motouzova, G.V., et al., Khimicheskoe zagryaznenie pochv i ikh okhrana: slovar’–spravochnik (Chemical Contamination and Protection of Soil: Glossary–Reference Book), Moscow: Agropromizdat, 1991.
8. Arzhanova, V.S. and Elpat’evsky, P.V., Geokhimiya landshaftov i tekhnogenez (Geochemistry of Landscapes and Technogenesis), Moscow: Nauka, 1990.
9. Elpat’evsky, P.V., Metal Content of Water of Mining-Induced Technogenesis, Dobycha zolota. Problemy i perspektivy (Gold Mining. Problems and Prospects), Khabarovsk, 1997.


NEW METHODS AND INSTRUMENTS IN MINING


SEALING OF COAL BED METHANE DRAINAGE HOLES BY BARRIER SCREENING METHOD
M. V. Kurlenya, T. V. Shilova, S. V. Serdyukov, and A. V. Patutin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Krasnyi pr. 54, Novosibirsk, 630091 Russia
e-mail: ss3032@yandex.ru

The authors have developed the barrier screening method to seal coal bed methane drainage holes. The method reduces air leakage from enclosing rocks to evacuation holes. The compositions of screens with external seal preventing from fluid leakage to ambient medium are offered and analyzed.

Coal bed, preliminary methane drainage, methane recovery, degassing hole, sealing

DOI: 10.1134/S106273911404022X

REFERENCES
1. Fomin, V.V., A New Option of Alternative Energy Physics, Ugol’ Kuzb., 2011, no. 2(14).
2. Instruktsiya po degazatsii ugol’nykh shakht (Coal Mine Degassing Procedure), Moscow: IPKON RAN, 2011.
3. Black, D. and Aziz, N., Reducing Coal Mine GHG Emissions through Effective Gas Drainage and Utilization, Proc. Underground Coal Operators Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 2009.
4. Polevshchikov, G.Ya., Trizno, S.K., and Mel’nikov, P.N., RF patent no. 2108464, Byull. Izobret., 1998, no. 10.
5. Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., RF patent no. 2507378, Byull. Izobret., 2914, no. 5.
6. Shilova, T., Patutin, A., and Serdyukov, S., Sealing Quality Increasing of Coal Seam Gas Drainage Wells by Barrier Screening Method, Proc. 13th SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining, Bulgaria, Albena, 2013.
7. RF State Standard 26450.2–85, Porody gornye. Metody opredeleniya kollektorskikh svoistv. Metod opredeleniya koeffitsienta absolyutnoi gazopronitsaemosti pri statsionarnoi i nestatsionarnoi fil’tratsii (Rocks. Method for Determining Reservoir Properties. Method of Determining Coefficient of Absolute Gas Permeability in Stable and Unstable Filtration), Moscow: Izd. standartov, 1985.
8. RF State Standard 9932–75, Reometry steklyannye. Tekhnicheskie usloviya (Glass Flow Meters. Technical Conditions), Moscow: Izd. standartov, 1994.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå