Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2014 ãîä » JMS, Vol. 50, No. 3, 2014

JMS, Vol. 50, No. 3, 2014


GEOMECHANICS


ESTIMATION OF DEPTH AND DIMENSION OF UNDERGROUND VOID IN SOIL BY SUBSIDENCE TROUGH CONFIGURATION BASED ON INVERSE PROBLEM SOLUTION
L. A. Nazarov, L. A. Nazarova, G. N. Khan, and M. Vandamme

The authors offer an approach to estimating parameters of underground voids formed in soil under natural or induced forces. Irreversible deformation of soil is modeled using discrete element method. The formulated inverse problem on geometry and occurrence depth of a void by the data on configuration of the subsidence trough has a single-valued solution.

Soil mass, irreversible deformation, subsidence trough, discrete element method, inverse problem, cost function, approximation

REFERENCES
1. Reddish, D.J. and Whittaker, B.N., Subsidence: Occurrence, Prediction and Control, Amsterdam–Oxford–New York–Tokyo: Elsevier, 1989.
2. Waltham, T., Bell, F.G., and Culshaw, M.G., Sinkholes and Subsidence: Karst and Cavernous Rocks in Engineering and Construction, Springer, 2005.
3. Pravila okhrany sooruzhenii i prirodnykh ob’ektov ot vrednogo vliyaniya podzemnykh gornykh razrabotok na ugol’nykh mestorozhdeniyakh (Guidance on Protection of Structures and Natural Subjects from Ill Effect of Underground Coal Mining), Saint-Petersburg, 1998.
4. Posylny, Yu.V., Rukovodstvo po raschety parametrov protsessa sdvizheniya zemnoi poverkhnosti nad gornymi vyrabotkami (Guidance on Calculation of Earth Surface Subsidence over Underground Openings), Novocherkassk: YuRGTU, 2000.
5. Subsidence Engineers’ Handbook, National Coal Board Mining Department, London, 1975.
6. Elmo, D., Vyazemsky, A., Stead, D., and Rogers, S., Application of a Finite Element Discrete Element Approach to Model Block Cave Mining, Innovative Numerical Modeling in Geomechanics, Ribeiro e Sousa (Eds.), London: Taylor and Francis Group, 2012.
7. Jing, L., A Review of Techniques, Advances and Outstanding Issues in Numerical Modeling for Rock Mechanics and Engineering, Int. J. Rock Mechanics and Min. Sci., 2003, vol. 40.
8. Oparin, V.N., Leontiev, A.V., Kulakov, G.I., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Earth Crust Destruction and Self-Organization in Areas under Severe Industrial Impact), Novosibirsk: SO RAN, 2012.
9. Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, McGraw-Hill Inc., 1981.
10. Pine, R.J., Owen, D.R., Coggan, J.S., and Rance, J.M., A New Discrete Modeling Approach for Rock Masses, Geotechnique, 2007, vol. 57, no. 9.
11. Khan, G.N., Asymmetrical Failure of Rocks around a Cavity, Fiz. Mezomekh., 2008, vol. 11, no. 1.
12. Carlson Software. 2012. Surface Deformation Prediction System. Available at: www.carlsonsw.com.
13. Peng, S.S. and Luo, Y., CISPM—Comprehensive and Integrated Subsidence Prediction Model, 2012. Available at: http:// web.cemr.wvu.edu.
14. Radchenko, A.V., Fortov, V.E., and Khorev, I.E., Physical Feature of High-Velocity Interaction between Long-Cut Debris and Structures, Dokl. Akad Nauk, 2003, vol. 389, no. 1.
15. Chen, W. and Fu, Zh., Boundary Particle Method for Inverse Cauchy Problems of Inhomogeneous Helmholtz Equations, Journal of Marine Science and Technology, 2009, vol. 17, no. 3.
16. Jildeha, H.B., Hlawitschkaa, M.W., Attarakiha, M., and Bart, H.J., Solution of Inverse Problem with the One Primary and One Secondary Particle Model (OPOSPM) Coupled with Computational Fluid Dynamics (CFD), Procedia Engineering, 2012, vol. 42.
17. Iofis, M.A. and Shmelev, A.I., Inzhenernaya geomekhanika pri podzemnykh razrabotkakh (Engineering Geomechanics in Underground Mining), Moscow: Nedra, 1985.
18. Ketelaar, V. B. H., Satellite Radar Interferometry: Subsidence Monitoring Techniques, Springer, 2009.
19. Trofimenkov, Yu.G., and Vorobkov, L.I., Polevye metody issledovaniya stroitel’nykh svoistv gruntov (Methods of Field Studies into Construction Capacities of Soil), Moscow: Stroiizdat, 1981.
20. Tarantola, A., Inverse Problem Theory, New York: Elsevier, 1987.
21. Avriel, M., Nonlinear Programming: Analysis and Methods, Dover Publishing, 2003.
22. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Panov, A.V., Assessment of Stress and Strains in Rocks Based on Inverse Problem Solution by Data on Free Boundary Displacements, Sib. Zh. Industr. Matem., 2012, vol. 15, no. 4.


3D DISCRETE ELEMENT APPROACH TO JANSSEN’S PROBLEM
S. V. Klishin and A. F. Revuzhenko

The 3D discrete element approach is used for the computational investigation of the problem on pressure exerted by granular material on the bottom and walls of a cylindrical container. Dry friction between the granular material particles and friction on the container walls are taken into account. The particles have spherical shape with the assigned radial distribution. The authors analyze the effect of filling method on stress state of granular medium. Accuracy of Janssen’s hypotheses is estimated in engineering problem formulation.

Pressure, stress state, granular material, numerical analysis, discrete element method, Janssen’s problem

REFERENCES
1. Janssen, H.A., Versuch uber Getreidedruck in Silozellen, Zeitschrift des vereins Deutscher Ingenieure, 1895, vol. 39, no. 35.
2. Widisinghe, S. and Sivakugan, N., Vertical Stresses within Granular Materials in Silos, Ground Engineering in a Changing World: 11th Australia–New Zealand Conference on Geomechanics, Melbourne, 2012.
3. Bushmanova, O.P and Revuzhenko, A.F., Janssen’s Problem, J. Min. Sci., 1981, vol. 17, no. 3, pp. 189–198.
4. Revuzhenko, A.F., Mechanics of Granular Media, Berlin, Heidelberg: Springer–Verlag, 2006.
5. Lavrikov, S.V., Simulation of Geomaterial Flow in Convergent Channels with Consideration for Internal Friction and Dilatancy, J. Min. Sci., 2010, vol. 46, no. 5, pp. 485–494.
6. Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, 2004.
7. Golovnev, I.F., Golovneva, E.I., and Fomin V. M., Molecular-Dynamic Analysis of Laplace Pressure in Solid Nanostructures, Fiz. Mezomekh., 2012, vol. 15, no. 1.
8. Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I., and Wu, W., DEM Simulation of Impact Force Exerted by Granular Flow on Rigid Structures, Acta Geotechnica, 2011, vol. 6, issue 3.


ASSESSMENT OF ELASTOPLASTIC STRAINS AROUND CYLINDRICAL EXCAVATION BY DISPLACEMENTS OF THE EXCAVATION BOUNDARY
A. I. Chanyshev and I. M. Abdulin

It is suggested to assess plastic state of rocks around an unsupported cylindrical excavation by measured displacements of its walls. The problem (overspecified in the viewpoint of classical formulation) has a unique solution that allows calculation of stresses, strains and displacements in the plastic deformation domain, including the elastic-plastic boundary, without addressing the elastoplastic problem.

Stresses, strains, elasticity, plasticity, elastic-plastic boundary, overspecified problem, Cauchy problem

REFERENCES
1. Galin, L.A., Plane Elastoplastic Problem, Prikl. Matem. Mekh., 1946, vol. 10, issue 3.
2. Ivlev, D.D., Finding Displacements in Galin’s Problem, Prikl. Matem. Mekh., 1957, vol. 21, issue 5.
3. Erlikhman, F.M., Finding Displacements in Galin’s Problem, Dinamika sploshnoi sredy (Continuum Dynamics), IG SO AN SSSR, 1970, issue 4.
4. Annin, B.D., Plane Elastoplastic Problem with Exponential Yield Condition, Inzh. Zh., Mekh. Tverd. Tela, 1966, no. 3.
5. Savin, G.N. and Parasyuk, O.S., Effect of Nonuniform Stress Field on Plastic Zone at a Hole, Dokl. Akad. Nauk SSSR, 1948, no. 3.
6. Cherepanov, G.P., Solving Some Problems of Elasticity and Plasticity with the Unknown Boundary, Prikl. Matem. Mekh., 1964, vol. 28, issue 1.
7. Perlin, P.I., Elastoplastic Stress Distribution around Holes, Trudy MFTI, 1960, issue 5.
8. Ostrosablin, N.I., Finding Stresses in Galin’s Problem, Dinamika sploshnoi sredy (Continuum Dynamics), IG SO AN SSSR, 1970, issue 14.
9. Bykovtsev, G.I. and Tsvetkov, Yu.D., 2D Problem on Loading of an Elastoplastic Plane Weakened by a Hole, Prikl. Matem. Mekh., 1987, vol. 51, no. 5.
10. Imamutdinov, D.I. and Chanyshev, A.I., Elastoplastic Problem of an Extended Cylindrical Working, J. Min. Sci., 1988, vol. 24, no. 3, pp. 199–207.
11. Ostrosablin, N.I., Ploskoe uprugoplasticheskoe raspredelenie napryazhenii okolo krugovykh otverstii (Plane Elastoplastic Stress Distribution around Circular Holes), Novosibirsk, Nauka, 1984.
12. Khristianovich, S.A., and Shemyakin, E.I., Perfect Plasticity, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1967, no. 5.
13. Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of the Plasticity Theory), Moscow: Nauka, 1969.


ACCOUNTING FOR DEPTH-WISE LINEAR CHANGE OF STRESSES IN THE INTACT ROCK MASS IN GEOMECHANICAL PROBLEMS
V. E. Mirenkov and A. A. Krasnovsky

The authors discuss formulation of boundary conditions in problems on stress–strain state of rocks around an underground excavation. The classical formulations neglect the presupposition of linearity of stress field in an intact rock mass with depth and disregard the discrepancy of the calculated and actual behavior of rocks. The presented study is based on the linearity of initial stresses and the computational domain boundary conditions that assume stress linearity and unaltered boundary conditions during drivage. The problem on stress–strain state is divided into two problems due to option of formulating accurately boundary conditions for the horizontal boundary and the absence of such option for the vertical boundary.

Boundary conditions, excavation, displacements, stresses, intact rock mass, horizontal pressure

REFERENCES
1. Mikhlin, S.G., Stresses in Rocks above a Coal Bed, Izv. AN SSSR, Otd. Tekh. Nauk, 1942, nos. 7 and 8.
2. Barenbratt, G.I., Roof Collapse in Mine Roadways, Izv. AN SSSR, Otd. Tekh. Nauk, 1955, no. 11.
3. Mirenkov, V.E., Finite Stress in Fracture Mechanics, Engineering Fracture Mechanics, 1994, vol. 48, no. 1.
4. Liang Wang, Yuan-Ping Cheng, Chun-Gui Ge, Jia-Xiang Chen, Wei Li, Hong-Xing Zhou, and Wang Hai-Feng, Safety Technologies for the Excavation of Coal and Gas Outburst-Prone Coal Seams in Deep Shafts, Int. J. Rock Mech. Min. Sci., 2013, vol. 57.
5. Neverov, S.A. and Neverov, A.A., Geomechanical Assessment of Ore Drawpoint Stability in Mining with Caving, J. Min. Sci., 2013, vol. 49, no. 2, pp. 265–272.
6. Nazarov, L.A., Nazarova, L.A., Karchevsky, A.L., and Miroshnichenko, N.A., Pressure Distribution in a Hydrocarbon-Bearing Formation Based on the Daylight Surface Movement Measurements, J. Min. Sci., 2013, vol. 49, no. 6, pp. 854–861.
7. Johan Clausen, Bearing Capacity of Circular Footing on a Hoek–Brown Material, Int. J. Rock Mech. Min. Sci., 2013, vol. 57.
8. Seryakov, V.M., The Inclusion of Rheological Properties of Rocks to Calculation of Stress–Strain State of Undermined Rock Mass, J. Min. Sci., 2010, vol. 46, no. 6, pp. 606–611.
9. Savchenko, S.N., Geomedium Deformation in Concurrent Recovery of Two Productive Strata at the Shtokmanovsky Deposit, J. Min. Sci., 2010, vol. 46, no. 6, pp. 630–638.


ROCK FAILURE CRITERIA BASED ON NEW STRESS TENSOR INVARIANTS
A. F. Revuzhenko

Stress tensor invariants are determined as average stresses at all possible areas of a volume element. Integration of stresses is performed in the plane of Mohr’s circles. The obtained invariants can be used in formulating criteria of limit stress (failure) in geomaterials.

Rock, stress tensor, strains, invariants, strength, criteria

REFERENCES
1. Stavrogin, A.I. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Rock Mechanics), Nauka: Saint-Petersburg, 2001.
2. Litvinsky, G.G., Analiticheskaya teoriya prochnosti gornykh porod i massivov (Analytical Theory of Strength of Rocks and Rock Masses), Donetsk: Nord-Press, 2008.
3. Nadai, A., Theory of Flow and Fracture of Solids, McGraw-Hill: New York, 1963.
4. Novozhilov, V.V., Physical Sense of Stress Invariants, Prikl. Matem. Mekh., 1951, vol. 15, issue 2.
5. Il’yushin, A.A., Plastichnost’ (Plasticity), Moscow: Gostekhizdat, 1948.


ANALYSIS OF STATISTIC PARAMETERS OF GEOACOUSTIC MONITORING DATA FOR THE ANTEY URANIUM DEPOSIT
V. L. Gilyarov, E. E. Damaskinskaya, A. G. Kadomtsev, and I. Yu Rasskazov

The authors analyze geoacoustic monitoring data obtained at the rockburst-hazardous Antey deposit and propose an approach to the data processing and interpretation based on the following statistical parameters: wavelet coefficient dispersion, correlation fractal dimension and signal energy distribution. Collated, the calculated parameters and the induced seismicity in the Gluboky Mine have exhibited adequate correlation, which allows considering the parameters as potential indications of accidents.

Antey deposit, rockburst hazard, induced seismicity, failure, acoustic emission, wavelet coefficient dispersion, correlation integral, energy distribution

REFERENCES
1. Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., and Prosekin, B.A., Geomechanics and Seismicity of the Antey Deposit Rock Mass, J. Min. Sci., 2012, vol. 48, no. 3, pp. 405–412.
2. Rasskazov, I.Yu., Gladyr’, A.V., Anikin, P.A., Svyatetsky, V.S., and Prosekin, B.A., Design and Upgrading of Ground Control in Mines of the Priargunsky Mining and Chemical Works, Gorny Zh., 2013, no. 8(2).
3. D’yakonov, V.P., Veivlety. Ot teorii k praktike (Wavelets. From Theory to Practice), Moscow: Solon-R, 2002.
4. Thurner, S., Feurstein, Ì.Ñ., and Teich, Ì.Ñ., Multiresolution Wavelet-Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology, Phys. Rev. Lett., 1988, no. 7.
5. Gilyarov, V.L., Korsukov, V.E., Butenko, P.N., and Svetlov, V.N., Application of Wavelet Transform to Studying Variation of Fractal Properties of Surface of Amorphous Metals under Mechanical Loading, Fiz. Tverd. Tela, 2004, vol. 46, no. 10.
6. Sobolev, G.A., Arora, B., Smirnov, V.B., Zav’yalov, A.D., Ponomarev, A.V., Kumar, N., Chabak, S.K., and Baidiya, P.R., Predicted Anomalies of a Seismic Mode. Part II: The West Himalaya, Geofiz. Issled., 2009, vol. 10, no. 2.
7. Gutenberg, B. and Richter, C.F., Seismicity of the Earth and Associated Phenomena, 2nd Ed., Princeton, N.J.: Princeton University Press, 1954.
8. Katsumata, Kei, Imaging the High b-Value Anomalies within the Subducting Paci?c Plate in the Hokkaido Corner, E-LETTER Earth Planets Space, 2006.
9. Ponomarev, A.V., Zavyalov, A.D., Smirnov, V.B., and Lockner, D.A., Physical Modeling of the Formation and Evolution of Seismically Active Fault Zones, Tectonophysic, 1997, vol. 277.
10. Schorlemmer, D., Wiemer, S., and Wyss, M., Earthquake Statistics at Parkfield: 1. Stationarity of b-Values, Journal of Geophysical Research, 2004, vol. 10, B12307.
11. Bak, P., How Nature Works, New-York: Springer-Verlag, 1996.


PHYSICAL KINETICS OF COAL–METHANE SYSTEM: MASS TRANSFER, PRE-OUTBURST EVENTS
E. P. Fel’dman, T. A. Vasilenko, and N. A. Kalugina

The article gives the review of the present-day development in the physical kinetics of coal–methane system. The Gibbs thermodynamic potential is derived for this system as the function of methane density (persisting order parameter) and coal jointing (non-persisting order parameter). The authors put forward åðó diffusion-filtration mechanism of mass transfer in porous material on two time scales and substantiate the concept of “quick” and “slow” methane. Based on the nonequilibrium thermodynamic potential, kinetic equations are derived for gas pressure and jointing in coal (bed). The first equation solution explains the physical effect of temporal gas pressure growth at the maximum of the external rock (bearing) pressure, the second equation enables generalization of the Griffiths failure criterion for a set of gas-filled joints. Mechanism of pre-outburst spalling of gas-saturated coal is analyzed.

Thermodynamic potential, filtration diffusion, gas-filled joint, Griffiths criterion, abutment pressure, coal bed

REFERENCES
1. Alekseev, A.D., Sinolitsky, V.V., Vasilenko, T.A., et al., Closed Pores of Fossil Coals, J. Min. Sci., 1992, vol. 28, no. 2, pp. 191–198.
2. Alexeev, A.D., Vasilenko, T.A., and Ulyanova, E.V., Closed Porosity in Fossil Coals, Fuel, 1999, vol. 78, no. 6.
3. Sinolitsky, V.V., Serebrova, N.N., Vasilenko, T.A., et al., Estimation of Volume of Closed Pores in Fossil Coal, Resursy netraditsionnogo gazovogo syr’ya i problemy ego osvoeniya (Unconventional Gas Sources and Development Problems), Leningrad: VNIIGRI, 1990.
4. Gregg, S.J. and Sing, K. S. W., Adsorption, Surface Area, and Porosity, Academic Press, 1991.
5. Kovaleva, I.B., Methane and Coal Bond Energy in Beds, Cand. Tech. Sci. Dissertation, Moscow: IPKON RAN, 1979.
6. Ettinger, I.L. and Kovaleva, I.B., Swelling Stress and Free Energy in Gas–Coal System, Dokl. Akad. Nauk, 1979, vol. 244, no. 3.
7. Alekseev, A.D., Vasilenko, T.A., and Fel’dman, E.P., Estimate of Bond Energy between Methane Molecules and Coal Substance in Solid Solution, Gorn. Inform.-Analit. Byull., 2000, no. 7.
8. Yang, Sh., Ouyang, L., Phillips, J.M., and Ching, W.Y., Density-Functional Calculation of Methane Adsorption on Graphite, Physical Review, 2001, B, vol. 73.
9. Riehl, J.W. and Koch, K., NMR Relaxation of Adsorbed Methane on Graphite, Journal of Chemical Physics, 1972, vol. 57, no. 5.
10. Alekseev, A.D., Vasilenko, T.A., Gumennik, K.V., et al., Diffusion–Filtration Model of Methane Release from Coal Bed, Zh. Tekh. Fiz., 2007, vol. 77, no. 4.
11. Vasilenko, T.A., Mel’nik, T.N., and Fel’dman, E.P., Change in Gas Pressure in a Closed Volume with a Porous Solid, Fiz. Tekh. Vysok. Davl., 1999, vol. 9, no. 1.
12. Alekseev, A.D., Fel’dman. E.P., Vasilenko, T.A., et al., Methane Mass Transfer in Coal under Concurrent Filtration and Diffusion, Fiz. Tekh. Vysok. Davl., 2004, vol. 14, no. 3.
13. Fel’dman, E.P., Vasilenko, T.A., and Kalugina, N.A., Methane Release from Coal in a Closed Container: Role of Diffusion and Filtration, Fiz. Tekh. Vysok. Davl., 2006, vol. 16, no. 2.
14. Alekseev, A.D., Vasilenko, T.A., Zaidenvarg, V.E., and Sinolitsky, V.V., Simple Model of Gas-and-Coal Solid Solutions, Khim. Tverd. Tela, 1993, no. 1.
15. Alekseev, A.D., Zaidenvarg, V.E., Sinolitsky, V.V., and Ul’yanova, E.V., Radiofizika v ugol’noi promyshlennosti (Radiophysics in Coal Industry), Moscow: Nedra, 1992.
16. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsrobentov i katalizatorov (Introduction to Physical Chemistry of Formation of Supramolecular Structure in Adsorbents and Catalysts), Novosibirsk: SO RAN, 2002.
17. Khodot, V.V., Vnezapnye vybrosy uglya i gaza (Coal and Gas Outbursts), Moscow: Gorgostekhizdat, 1961.
18. Alekseev, A.D., Vasilenko, T.A., and Kirillov, A.K., Fractal Analysis of the Hierarchic Structure of Fossil Coal Surface, J. Min. Sci., 2008, vol. 44, no. 3, pp. 235–244.
19. Vasilenko, T.A., Kirillova, A.K., and Troitsky, G.A., NMR Spectroscopic Analysis of Structure of Fossil Coal, Fiz. Tekh. Vysok. Davl., 2008, vol. 18, no. 2.
20. Kirillov, A.K., Small Angle X-Ray Scattering Approach to Analyze the Donetsk Basin Coal, Fiz.-Tekh. Probl. Gorn. Proizv., 2011, issue 14.
21. Konchits, A.A., Shanina, B.D., Valakh, M.Ya., et al., Local Structure, Paramagnetic Properties and Porosity of Natural Coals: Spectroscopic Studies, Journal of Applied Physics, 2012, vol. 112, no. 4.
22. Revva, V.N., Bachurin, L.L., Vasilenko, N.I., and Molodetsky, A.V., Method of Determining Characteristics of Rock Jointing, Vestn. Donetsk. Gorn. Inst., 2007, no. 2.
23. Aseeva, T.P., Alekseev, A.D., Viktorov, V.V., and Starikov, G.P., USSR Author’s Certificate no. 1285340, Buyll. Izobret., 1987, no. 26.
24. Alekseev, A.D., Fel’dman, E.P., and Kalugina, N.A., Thermodynamics of gas–Coal System and Nonuniform Gas Distribution in a Coal Bed, Zh. Tekh. Fiz., 2010, vol. 80, no. 12.
25. Landau, L.D and Lifshits, E.M., Teoreticheskaya fizika. Tom VII. Teoriya uprugosti (Theoretical Physics. Vol. VII. Theory of Elasticity), Moscow: Fizmatlit, 2003.
26. Alekseev, A.D. and Fel’dman, E.P., Equilibrium Distribution of Gas in Coal, Pis’ma Zh. Tekh. Fiz., 2008, vol. 34, no. 14.
27. Alekseev, A.D., Revva, V.N., and Ryazantsev, N.A., Razrushenie gornykh porod v ob’emnom pole szhimayushchikh napryazhenii (Rock Failure under Triaxial Compression), Kiev: Naukova dumka, 1989.
28. Starikov, G.P., Strel’tsov, V.A., and Yarembash, A.I., Strength Properties of Rocks under High Rock Pressure, Fiz. Tekh. Vysok. Davl., 1989, no. 32.
29. Alexeev, A.D., Revva, V.N., Bachurin, L.L., and Prokhorov, I.Y., The Effect of Stress State Factor of Sandstones under Dry Triaxial Loading, Int. J. Fracture, 2008, vol. 149, no. 1.
30. Starikov, G.P., Feature of Coal Deformation and Fracture under Triaxial Compression, Geotekhnologii na rubezhe XXI veka (Geotechnologies at the Edge of the 21st Century), Donetsk: DUNPGO, 2001.
31. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya (Statistical Physics. Part II: Theory of Condensed State), Moscow: Nauka, 1978.
32. Alekseev, A.D., Vasilenko, T.A., Kirillov, A.K., et al., NMR Methods in Studies of Methane Mobility Pores of Fossil Coal, Fiz. Tekh. Vysok. Davl., 2009, vol. 19, no. 4.
33. Skipochka, S.I. and Palamarchuk, T.A., Analysis of Microstructure of Coal Substance, Geotekhnicheskaya mekhanika (Geotechnical Mechanics), Dnepropetrovsk: IGTM NANU, issue 87.
34. Kovaleva, I.B. and Solov’eva, E.A., Use of Physicochemical Characteristics of Coal in Estimation of Coal Methane Recoverability, Gorn. Inform.-Analit. Byull., 2001, no. 5.
35. Alexeev, A.D., Vasilenko, T.A., and Kirillov, A.K., Temperature Dependence of Dynamic Parameters of Water in Fossil Coal Pores, Ukrainian Journal of Physics, 2012, vol. 57, no. 3.
36. Kuznetsov, S.V. and Krigman, R.N., Prirodnaya pronitsaemost’ ugol’nykh plastov i metody ee opredeleniya (Natural Permeability of Coal Beds and Methods of Its Estimation), Moscow: Nauka, 1978.
37. Leibenzon, L.S., Dvizhenie prirodnykh zhidkostei i gazov v prirodnoi srede (Flow of Natural Fluids and Gases in Natural Environment), Moscow–Leningrad: Goz. Izd. Tekh.-Teor. Lit., 1947.
38. Alexeev, A.D., Revva, V.N., and Molodetski, A.V., Stress State Effect on the Mechanical Behavior of Coals under True Triaxial Compressions, True Triaxial Testing of Rocks, Geomechanical Research Series, 2011, vol. 4.
39. Yakobi, O., Praktika upravelniya gornym davleniem (Practice of Ground Control), Moscow: Nedra, 1987.
40. Alekseev, A.D., Fel’dman, E.P., Starikov, G.P., et al., Forecasting of Time of Hazardous Methane Concentrations in Face Areas, Ugol’ Ukrainy, 2010, no. 7.
41. Shevelev, G.A., Dinamika vybrosov uglya, porody i gaza (Dynamics of Coal, Rock and Gas Outbursts), Kiev: Naukova dumka, 1989.
42. Alexeev, A.D. and Feldman, E.P., Non-Equilibrium Thermodynamics and Outburst Hazard of a Coal Bed, Ukrainian Journal of Physics, 2012, vol. 57, no. 6.
43. Fel’dman, E.P., Yurchenko, V.M., Strel’tsov, V.A., and Volodarskaya, E.V., Pre-Limit Growth of Fracture in Gas-Bearing Materials, Fiz. Tverd. Tela, 1992, vol. 34, no. 2.
44. Alekseev, A.D., Revva, V.N., Gladkaya, E.V., and Chistokletov, V.I., Effective Surface Energy of Rocks, Fiz.-Tekh. Probl. Gorn. Proizv., 2001, issue 4.
45. Barenblatt, G.I., Mathematical Theory of Equilibrium Cracks under Brittle Failure, Prikl. Mekh. Tekh. Fiz., 1961, no. 4.


SCIENCE OF MINING MACHINES


DETERMINATION OF CONDITIONS FOR COMPRESSED AIR-ASSISTED REMOVAL OF PLASTIC SOIL IN HORIZONTAL PIPELINE IN DRILLING
B. B. Danilov, B. N. Smolyanitsky, and E. N. Sher

Under discussion is plastic soil removal in horizontal rotating pipeline by air flow. It is experimentally proved possible to remove soil by batches generated during rotation of the pipeline. The found relationship between soil conveying in the pipeline, the pipeline diameter and air forward pressure is made the basis for determination of the parameters of the main transporting line in a drilling installation.

Drilling, drill hole, pipeline, transportation, soil batch, pressure differential

REFERENCES
1. Rybakov, A.P., Osnovy bestransheinykh tekhnologii: Teoriya i praktika (Principles of Trenchless Technologies: Theory and Practice), Moscow: Press Byuro No. 1, 2005.
2. Danilov, B.B. and Smolyanitsky, B.N., RF patent no. 2344241, Byull. Izobret., 2009, no. 2.
3. Danilov, B.B., Increase in Efficiency of the Trenchless Underground Construction Methods by Using the Compressed Air Transfer, J. Min. Sci., 2007, vol. 43, no. 5, pp. 499–507.
4. Danilov, B.B. and Smolyanitsky, B.N., New Drilling Assembly for Long Horizontal Holes with the Compressed Air Removal of Drill Cuttings, Stroit. Dor. Mash., 2013, no. 7.
5. Smolyanitsky, B.N., Povyshenie effektivnosti i dolgovechnosti impul’snykh mashin dlya sooruzheniya protyazhennykh skvazhin v porodnykh massivakh (Higher Efficiency and Endurance of Impulse-Forming Machines for Long Hole Drilling in Rocks), Novosibirsk: SO RAN, 2013.
6. Danilov, B.B. and Smolyanitsky, B.N., Experimental Results of Horizontal Drilling with Air Removal of Soil in the Rotating Line, Journal of International Scientific Publications: Ecology&Safety, 2011, vol. 5.
7. Danilov, B.B. and Smolyanitsky, B.N., Experimental Substantiation of Broken Soil Transportation in Horizontal Borehole Drilling, J. Min. Sci., 2012, vol. 48, no. 3, pp. 480–486.
8. Gerts, E.V., Dinamika pnevmaticheskikh sistem mashin (Dynamics of Machinery Air Systems), Moscow: Mashinostroenie, 1985.
9. Iosilevich, G.B., Prikladnaya mekhanika: uchebnik dlya mashinostroit. spets. vuzov (Applied Mechanics: Machine Engineering University Textbook), Moscow: Mashinostroenie, 1989.
10. Tkach, Kh.B., Operation of a Pneumatic-Type Piston Drive with Discharge into a Medium with Pressure Greater than Atmospheric Pressure, J. Min. Sci., 1996, vol. 32, no. 6, pp. 493–500.
11. Danilov, B.B. and Smolyanitsky, B.N., Concerted Operation of Pneumatic Percussion Tool and Air-Aided Chips Removal Line in Horizontal Hole Drilling Machines, J. Min. Sci., 2013, vol. 49, no. 3, pp. 459–464.


INFLUENCE OF ENERGY PARAMETERS OF SHOCK PULSE GENERATOR ON THE PIPE PENETRATION VELOCITY IN SOIL
I. V. Tishchenko and V. V. Chervov

In the context of the problem of increase in efficiency of vibro-percussion driving of steel pipes in soil, a pilot model of shock generator with step speed adjustment for the bit and anvil impact is described. The authors report experimental modeling of pipe penetration depending on load of stalk. The influence of the stalk load parameters on the amplitude of generated shock pulses and the pipe penetration rate in elastoplastic soil is defined.

Air hammer, vibro-percussion puncture, shock pulse amplitude, impact speed, blow energy, penetration intensity and depth

REFERENCES
1. Nestle, H., Spravochnik stroitelya: Stroitel’naya tekhnika, konstruktsii i tekhnologii (Builder’s Manual: Construction Machines, Structures and Technologies), Moscow: Tekhnosfera, 2007.
2. Kostylev, A.D., Gileta, V.P., et al., Pnevmoproboiniki v stroitel’nom proizvodstve (Air Hammers in Construction), Novosibirsk: Nauka, 1987.
3. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (teoriya i praktika) (Principles of Trenchless Technologies: Theory and Practice), Moscow: Stroiizdat, 2006.
4. Tishchenko, I.V., Virbo-Impact Driving and Combination Method of Soil Core Removal, Stroit. Dor. Mash., 2013, no. 11.
5. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., et al., Sources of Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, J. Min. Sci., 2008, vol. 44, no. 5, pp. 490–496.
6. Chervov, V.V., Tishchenko, I.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on Vibro-Percussion Pipe Penetration in Soil, J. Min. Sci., 2011, vol. 47, no. 1, pp. 85–92.
7. Vostrikov, V.I., Oparin, V.N., and Chervov, V.V., On Some Features of Solid Body Motion under Combined Vibrowave and Static Action, J. Min. Sci., 2000, vol. 36, no. 6, pp. 523–528.
8. Smolyanitsky, B.N., Tishchenko, I.V., and Chervov, V.V., Improvement Prospects for Air Hammers in Building and Construction, J. Mining Science, 2009, vol. 45, no. 4, pp. 363–371.
9. Tishchenko, I.V. and Chervov, V.V., High-Frequency Air Hammer for Special Construction, Stroit. Dor. Mash., 2011, no. 7.
10. Tishchenko, I.V., Chervov, V.V., and Gorelov, A.I., Effect of Additional Vibration Exciter and Coupled Vibro-Percussion Units on Pipe Penetration in Soil, J. Min. Sci., 2013, vol. 49, no. 3, pp. 450–458.
11. Smolyanitsky, B.N., Chervov, V.V., Trubitsyn, V.V., et al., New Air Percussion Machines for Special Construction, Mekh. Stroit., 1997, no. 7.
12. Kuhn, G., Scheuble, L., and Schlick, H., Rohrvortrieb fur nichtbegehbare Leitungssysteme, Wiesbaden; Berlin, 1993.
13. Kershenbau, N.Ya. and Minaev, V.I., Prokhodka gorizontal’nykh i vertikal’nykh skvazhin udarnym sposobom (Horizontal and Vertical Percussion Drilling), Moscow: Nedra, 1984.
14. Isakov, A.L. and Shmelev, V.V., Wave Processes when Driving Metal Pipes into the Ground Using Shock-Pulse Generators, J. Min. Sci., 1998, vol. 34, no. 2, pp. 139–147.
15. Aleksandrova, N.I., Numerical-Analytical Investigation into Impact Pipe Driving in Soil with Dry friction. Part I: Nondeformable External Medium, J. Min. Sci., 2012, vol. 48, no. 5, pp. 856–869.
16. Aleksandrova, N.I., Numerical-Analytical Investigation into Impact Pipe Driving in Soil with Dry Friction. Part II: Deformable External Medium, J. Min. Sci., 2013, vol. 49, no. 3, pp. 413–425.
17. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., et al., Pnevmoproboiniki (Air Percussion Machines), Novosibirsk: IGD SO AN SSSR, 1990.
18. Poderni, R.Yu., Gornye mashiny i kompleksy dlya otkrytykh rabot (Open-Pit Mining Machines and Machine Sets), Moscow: Nedra, 1985.
19. Blokhin, V.S., Povyshenie effektivnosti burovogo instrumenta (Enhancement of Drilling Machine Efficiency), Kiev: Tekhnika, 1982.
20. Alimov, O.D., Manzhosov, V.K., Erem’yants, V.E., Udar. Rasprostranenie voln deformatsii v udarnykh sistemakh (Impact. Deformation Wave Propagation in Percussion Systems), Moscow: Nauka, 1985.
21. Chervov, V.V., Impact Energy of Pneumatic Hammer with Elastic Valve in Back-Stroke Chamber, J. Min. Sci., 2004, vol. 40, no. 1, pp. 74–83.
22. Makarov, R.A., Rensky, A.B., Berkunsky, G.Kh., et al., Tenzometriya v mashinostroenii (Tensometry in Machine Engineering), Moscow: Mashinostroenie, 1985.
23. Nubert, G.P., Izmeritel’nye preobrazovateli neelektricheskikh velichin (Primary Detectors of Nonelectrical Quantities), Leningrad: Energiya, 1970.
24. Erem’yants, V.E. and Demidov, A.N., Eksperimental’nye issledovaniya udarnykh sistem s netortsevym soudareniem elementov (Testing of Non-End Striking Systems), Frunze: Ilim, 1981.
25. Zakablukovsky, N.G., Pokrovsky, G.N., and Serpeninov, B.N., Effect of Loading Rate and Ratio of Masses and Rigidities of a Striking Element and a Tool on the Blow Transfer Efficiency, Peredacha udara i mashiny udarnogo deistviya (Blow Transfer and Percussion Machines), Novosibirsk: IGD SO AN SSSR, 1976.
26. Tishchenko, I.V., Chervov, V.V., and Gorelov, A.I., Power Impulse in a Rod under Vibro-Impact Driving in Ground, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2012.
27. Kotov, O.K., Poverkhnostnoe uprochnenie detalei mashin khimiko-termicheskimi metodami (Surface Strengthening of Parts by Thermochemical Treatment), Moscow: Mashinostroenie, 1969.
28. Repin, A.A., Alekseev, S.E., Popelyukh, A.I., and Teplykh, A.M., Influence of Nonmetallic Inclusions on Endurance of Percussive Machines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 798–806.
29. Sokolinsky, V. B. Mashiny udarnogo razrusheniya (Osnovy kompleksnogo proektirovaniya) (Impact Fracture Machines: Principles of Integrated Design), Moscow: Mashinostroenie, 1982.
30. Certification SO 134. 000À PS, Percussion Unit for Hole Making and Pipe Driving Machines, Novosibirsk: IGD SO AN SSSR, 1979.


MINERAL MINING TECHNOLOGY


APPLICATION RANGE OF INTERNAL DUMPING IN OPENCAST MINING OF STEEP MINERAL DEPOSITS
G. G. Sakantsev and V. I. Cheskidov

Under discussion are the issues of driving secondary access roadways without pushing ultimate pitwall limits in steep deposits with internal dumping. The calculation scheme and correlation analysis of key elements of the resource-saving technology are presented. Regressional relationships are obtained for length of an open pit mine bottom, specific weight of internal dumping and the open pit mine parameters. The article specifies the effective range of the developed technology.

Deep open pit mine, mined-out void, internal dump, access roadways

REFERENCES
1. Cheskidov, V.I., Performance Potential of the Coal Strip Mining in the East of Russia, J. Min. Sci., 2007, vol. 43, no. 4, pp. 429–435.
2. Molotilov, S.G., Norri, V.K., Cheskidov, V.I., and Mattis, A.R., Nature-Oriented Open Coal Mining Technologies Using Mined-Out Space in an Open Pit. Part I: Analysis of the Current Mineral Mining Methods, J. Min. Sci., 2006, vol. 42, no. 6, pp. 622–627.
3. Sakantsev, G.G., Vnutrennee otvaloobrazovanie v glubokikh rudnykh kar’erakh (Internal Dumping in Deep Open Pit Mines), Ekaterinburg: UrO RAN, 2008.
4. Sakantsev, G.G., Geotechnological Basis for Internal Dumping in Mining of Deep Orebodies of Limited Length, Dr. Tech. Sci. Dissertation, Ekaterinburg: UrO RAN, 2012.
5. Trubetskoy, K.N., Tekhnologiya primeneniya i parametry kar’ernykh pogruzchikov (Application Technology and Parameters of Loading Machines in Open Pit Mines), Moscow: Nedra, 1985.
6. Sakantsev, G.G., Analysis of Feasibility and Conditions of Steep Access Roadways in Deep Open Pit Mines, Izv. UGGU, Series: Mining, 2005, issue 21.
7. Chaadaev, A.S., Akishev, A.N., Bakhtin, V.A., and Babaskin, S.P., Scheme of Accessing and Extraction of Deep Levels Open Pit Diamond Mines Using Steep Roadways, Gorn. Prom., 2008, no. 2.
8. Brandon, D.B., Developing Mathematical Models for Computer Control, ISA Journal, 1959, no. 7.
9. Vasil’ev, E.I., Cheskidov, V.I., and Freidina, E.V., Open-Pit Mining of a Series of Slightly Inclined Coal Seams with Temporary Internal Piling, J. Min. Sci., 1999, vol. 35, no. 2, pp. 190–198.
10. Litvin, Ya.O. and Golubin, K.A., Stagewise Overburden Rehandling—A Tool for Stable Implementation of the Current Open Pit Mine Program, Proc. 12th Int. Sci. Conf. Economical Safety of Russia. New Approaches to Coal Mining, Kemerovo, 2010.
11. Sysoev, A.A., Effect of Mine-Technical Factors on Payback Time of Temporal Truck Dumps, Proc. Int. Sci. Conf. Sibresurs-2010, Kemerovo, 2010.
12. Sysoev, A.A. and Litvin, Ya.O., Planning Overburden Amount for Temporal Dumping by Trucks, Vestn. KuzGTU, 2011, no. 4.


OPTIMIZED OPEN PIT MINE DESIGN, PUSHBACKS AND THE GAP PROBLEM—A REVIEW
C. Meagher, R. Dimitrakopoulos, and D. Avis

Existing methods of pushback (phase) design are reviewed in the context of “gap” problems, a term used to describe inconsistent sizes between successive pushbacks. Such gap problems lead to suboptimal open pit mining designs in terms of maximizing net present value. Methods such as the Lerchs–Grossman algorithm, network flow techniques, the fundamental tree algorithm, and Seymour’s parameterized pit algorithm are examined to see how they can be used to produce pushback designs and how they address gap issues. Areas of current and future research on producing pushbacks with a constrained size to help eliminate gap problems are discussed. A framework for incorporating discounting at the time of pushback design is proposed, which can lead to mine designs with increased NPV.

Pushback design, open pit optimization, cardinality constrained graph closure

REFERENCES
1. Farrelly, C. and Dimitrakopoulos, R., Recoverable Reserves and Support Effects in Optimizing Open Pit Mine Design, International Journal of Surface Mining, 2002, vol. 16, no. 3.
2. Dowd, P.A., Risk in Minerals Projects: Analysis, Perception and Management, Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 1997, vol. 106.
3. Dimitrakopoulos, R., Farrelly, C.T., and Godoy, M.C., Moving Forward from Traditional Optimization: Grade Uncertainty and Risk Effects in Open-Pit Design, Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 2002, vol. 111.
4. Godoy, M.C., The Effective Management of Geological Risk in Long-Term Production Scheduling of Open Pit Mines, PhD Thesis, The University of Quensland,Brisbane, Qld, Australia, 2003.
5. Godoy, M.C. and Dimitrakopoulos, R., Managing Risk and Waste Mining in Long-Term Production Scheduling, SME Transactions, 2004, vol. 316.
6. Zuckerberg, M., J. van der Riet, Malajczuk, W., and Stone, P., Optimal Life-of-Mine Scheduling for a Bauxite Mine, J. Mining Science, 2011, vol. 47, no. 2, pp. 158–165.
7. Locchi, L., Carter, P., and Stone, P., Sequence Optimization in Longwall Coal Mining, J. Mining Science, 2011, vol. 47, no. 2, pp. 151–157.
8. Whittle, J., A Decade of Open Pit Mine Planning and Optimisation—The Craft of Turning Algorithms Into Packages, APCOM’99 Computer Applications in the Mineral Industries 28th International Symposum, Colorado School of Mines, Golden, Co, USA, 1999.
9. Dimitrakopoulos, R., Stochastic Optimization for Strategic Mine Planning: A Decade of Developments, J. Mining Science, 2011, vol. 47, no. 2, pp. 138–150.
10. Lerchs, H. and Grossman, I.F., Optimum Design of Open Pit Mines, Joint CORS and ORSA Conference, Montreal: Canadian Institute of Mining and Metallurgy, 1965.
11. Zhao, Y. and Kim, Y.C., A New Optimum Pit Limit Design Algorithm, APCOM’92 Computer Applications in the Mineral Industries 28th International Symposum, 1992.
12. Bondy, J.A. and Murty, U. S. R., Graph Theory with Applications, North-Holland, 1976.
13. Seymour, F., Pit Limit Parametrization from Modified 3D Lerchs-Grossmann Algorithm, Society of Mining, Metalurgy and Exploration, Manuscript, 1994.
14. Picard, J.C., Maximal Closure of a Graph and Applications to Combinatorial Problems, Management Science, 1976, vol. 22.
15. Hochbaum, D. and Chen, A., Improved Planning for the Open-Pit Mining Problem, Operations Research, 2000, vol. 48, no. 6.
16. Hochbaum, D., A New-Old Algorithm for Minimum-Cut and Maximum-Flow in Closure Graphs, Networks, 2001, vol. 37, no. 4.
17. Muir, D. C. W., Pseudoflow, New Life for Lerchs-Grossman Pit Optimisation, in: Orebody Modelling and Strategic Mine Planning, AusIMM Spectrum Series 14, 2007.
18. Gallo, G., Grigoriadis, M.D., and Tarjan, R.E., A Fast Parametric Maximum Flow Algorithm and Applications, SIAM Journal on Computing, 1989, vol. 18, no. 2.
19. Dagdelen, K. and Johnson, T.B., Optimum Open Pit Mine Production Scheduling by Lagrangian Parametrization, in: APCOM’86 Computer Applications in the Mineral Industries, 1986.
20. Tachefine, B. and Soumis, F., Maximal Closure on a Graph with Resource Constraints, Computers and Operations Research, 1997, vol. 24, no. 10.
21. Ramazan, S. and Dagdelen, K., A New Pushback Design Algorithm in Open Pit Mining, Proc. 17th Int. Symposium on Mine Planning and Equipment Selection, Calgary, Canada, 1998.
22. Stone, P., Froyland, G., Menabde, M., Law, B., Pasyar, R., and Monkhouse, P., Blasor-Blended Iron Ore Mine Planning Optimization at Yandi, Orebody Modelling and Strategic Mine Planning: Uncertainty and Risk Management Models, The Australian Institute of Mining and Metallurgy, Spectrum Series 14, 2007.
23. Boland, N., Dumitrescu, I., Froyland, G., and Gleixner, A.M., LP-Based Disaggregation Approaches to Solving the Open Pit Mining Production Scheduling Problem with Block Processing Selectivity, Computers and Operations Research, 2009, vol. 36, no. 4.
24. Rossi, M., Improving the Estimates of Recoverable Reserves, Mining Engineering, January, 1999.
25. Akaike, A., Strategic Planning of Long-Term Production Schedule Using 4D Network Relaxation Method, PhD Disertation, Colorado School of Mines, Eastwood, Co, 1999.
26. Ramazan, S., The New Fundamental Tree Algorithm for Production Scheduling of Open Pit Mines, European Journal of Operational Research, 2007, vol. 177, no. 2.
27. Crama, Y. and Mazzola, J.B., Valid Inequalities and Facets for a Hypergraph Model of the Nonlinear Knapsack and FMS Part-Selection Problems, Annals of Operations Research, 1995, vol. 58.
28. Bley, A., Boland, N., Fricke, C., and Froyland, G., A Strengthened Formulation and Cutting Planes for the Open Pit Mine Production Scheduling Problem, Computers and Operations Research, 2010, vol. 37, no. 9.
29. Vazirani, V.V., Primal-Dual Schema Based Approximation Algorithms, Theoretical Aspects of Computer Science: Advanced Lectures, 2002.
30. Tolwinski, B. and Underwood, R., A Scheduling Algorithm for Open Pit Mines, IMA Journal of Mathe-matics Applied in Business & Industry 7:247–270.
31. Bienstock, D. and Zuckerberg, M., Solving LP Relaxations of Large-Scale Precedence Constrained Problems. Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, 2010, vol. 6080.
32. Caccetta, L. and Hill, S.P., An Application of Branch and Cut to Open Pit Mine Scheduling, J. Global Optimization, 2003, vol. 27, nos. 2–3.
33. Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., and Rubio, E., A New Algorithm for the Open-Pit Mine Production Scheduling Problem, Operations Research, 2012, vol. 60.
34. Cullenbine, C., Wood, R., and Newman A., A Sliding Time Window Heuristic for Open Pit Mine Block Sequencing, Optimization Letters, 2011, 5.
35. Ferland, J.A., Amaya, J., and Djuimo, M.S., Application of a Particle Swarm Algorithm to the Capacitated Open Pit Mining Problem, Autonomous Robots and Agents, Mukhopadhyay S. and Sen Gupta G. (Eds.), Springer-Verlag, 2007.
36. Lamghari, A. and Dimitrakopoulos, R., A Diversified Tabu Search Approach for the Open-Pit Mine Production Scheduling Problem with Metal Uncertainty, European Journal of Operational Research, 2012, 222.
37. Lamghari, A., Dimitrakopoulos, R., and Ferland, J.A., A Variable Neighborhood Descent Algorithm for The Open-Pit Mine Production Scheduling Problem with Metal Uncertainty, J. Operational Research Society, doi:10.1057/jors.2013.81, 2013.
38. Ramazan, S. and Dimitrakopoulos, R., Recent Applications of Operations Research in Open Pit Mining, Transactions of the Society for Mining, Metallurgy and Exploration, 2004, vol. 316.
39. Dantzig, A. and Wolfe, P., The Decomposition Principle for Linear Programs, Operations Research, 1960, vol. 8.
40. Peattie, R. and Dimitrakopoulos, R., Forecasting Recoverable Ore Reserves and Their Uncertainty at Morila Gold Deposit, Mali: An Efficient Simulation Approach and Future Grade Control Drilling, Mathematical Geosciences, 2013, vol. 45, no. 8.
41. Strebelle, S. and Cavelius, C., Solving Speed and Memory Issues in Multiple-Point Statistics Simulation Program SNESIM, Mathematical Geosciences, 2014, vol. 46, no. 2.
42. Kolbjornsen, O., Stien, M., Kjonsberg, H., Fjellvoll B., and Abrahamsen, P., Using Multiple Grids in Markov Mesh Facies Modeling, Mathematical Geosciences, 2014, vol. 46, no. 2.
43. Dimitrakopoulos, R., Stochastic Optimization for Strategic Mine Planning: A Decade of Developments, J. Mining Science, 2011, vol. 47, no. 2, pp. 138–150.
44. Ramazan, S. and Dimitrakopoulos, R., Production Scheduling with Uncertain Supply: A New Solution to The Open Pit Mining Problem, Optimization and Engineering, DOI 10.1007/s11081–012–9186–2, 2012.
45. Birge, J.R. and Louveaux, F., Introduction to Stochastic Programming, Springer-Verlag, New York, 1997.
46. Dimitrakopoulos, R. and Jewbali, A., Joint Stochastic Optimization of Short- and Long-Term Mine Production Planning: Method and Application in a Large Operating Gold Mine, IMM Transactions, Mining Technology, 2013, vol. 122, no. 2.
47. Albor, F. and Dimitrakopoulos, R., Algorithmic Approach to Pushback Design Based on Stochastic Programming: Method, Application and Comparisons, IMM Transactions, Mining Technology, 2010, vol. 119.
48. Goodfellow, R. and Dimitrakopoulos, R., Algorithmic Integration of Geological Uncertainty in Pushback Designs for Complex Multiprocess Open Pit Mines, IMM Transactions, Mining Technology, 2013, vol. 122.
49. Montiel, L. and Dimitrakopoulos, R., Stochastic Mine Production Scheduling with Multiple Processes: Application at Escondida Norte, Chile, J. Mining Science, 2013, vol. 49, no. 4, pp.583–597.
50. Boland, N., Dumitrescu, I., and Froyland, G., A Multistage Stochastic Programming Approach to Open Pit Mine Production Scheduling with Uncertain Geology, Optimization Online. Available at: http://www.optimization-online.org/DB_FILE/2008/10/2123.pdf, 2008.
51. Asad, M. W. A. and Dimitrakopoulos, R., Implementing a Parametric Maximum Flow Algorithm for Optimal Open Pit Mine Design under Uncertain Supply and Demand, Journal of the Operational Research Society, DOI:10.1057/jors.2012.26, 2012.
52. Whittle, G., Global Asset Optimization, Orebody Modelling and Strategic Mine Planning: Uncertainty and Risk Management Models, The Australian Institute of Mining and Metallurgy, Spectrum Series 14, 2nd Edition, 2007.
53. De Lara, M. and Doyen, L., Sustainable Management of Natural Resources—Mathematical Models and Methods, Springer, Berlin, 2008.


CONCEPT OF MINERAL AND RAW MATERIAL BASE DEVELOPMENT IN THE KUZNETSK COAL BASIN
S. V. Shaklein and M. V. Pisarenko

The audit of minerals and raw material reserves in the producing, prepared for production and new areas in the Kuznetsk Coal Basin shows that the use of the available package of coal geotechnologies meant for a relatively narrow range of geological and mining conditions results in depletion of the explored high-processable reserves. It is thought that the Kuzbass development strategy should sidetrack the search of new mining areas with the assigned geological and mining conditions and aim at hunting and elaborating mining and processing technologies that enable extraction of previously proved and undeveloped reserves. Such progression and expansion of the mineral and raw material reserves base of Kuzbass will promote advance in the mining science and engineering and favor more comprehensive utilization of the available industrial potential, infrastructure and human resources.

Coal reserves and resources, coal mining, geological and mining conditions, subsoil use

REFERENCES
1. Ugol’naya baza Rossii. Ugol’nye basseiny i mestorozhdeniya Zapadnoi Sibiri (Kuznetsky, Gorlovsky, Zapadno-Sibirsky basseiny: mestorozhdeniya Altaiskogo kraya i respubliki Altai) (Coal Base of Russia. Coal Basins and Deposits in West Siberia (Kuznetsky, Gorlovsky, Zapadno-Sibirsky Basins: Deposits in the Altai Territory and the Republic of Altai)), Moscow: Geoinformtsentr, 2003.
2. Balans zapasov uglei kamennykh i burykh Kemerovskoi oblasti po sostoyaniyu na 01.01.2011 (Balance of Hard and Brown Coal in Kemerovo Region as of January 1, 2011), Novokuznetsk, 2011.
3. Balovnev, V.P., Shaklein, S.V., and Yarkov, V.O., Mineral and Raw Materials Base of Coal Industry in Kuzbass, Gorn. Prom., 2000, no. 2.
4. Pisarenko, M.V., Mining and Technological Estimate of Coal Deposits in Kuzbass, Nedropol’z. v 21 Veke, 2010, no. 6.
5. Shaklein, S.V. and Pisarenko, M.V., Approaches to Validation of Concept of Mineral and Raw Materials Base Development in Kuzbass, Rats. Osvoen. Nedr, 2012, no. 2.
6. Shaklein, S.V. and Pisarenko, M.V., Nonstandard Coal Geotechnologies—The Basis for the Intensive Development of Mineral and Raw Materials Base in Kuzbass, Gorn. Prom., 2010, no. 4.
7. Shaklein, S.V. and Pisarenko, M.V., Substantiation of the Transition to the Intensive Development of Coal Base in Kuzbass, Gorn. Inform.-Analit. Byull., 2013, Special Issue 6.
8. Pisarenko, M.V., Shaklein, S.V., and Rogova, T.B., Subsoil Use in Kuzbass: Lessons of the World Finance-and-Economy Regression, Mineral. Resurs. Rossii. Ekonom. Upravl., 2010, no. 4.
9. Pisarenko, M.V., State-of-the-Art and Development Trends in the Coal Industry in Kuzbass, Gorn. Prom., 2008, no. 4.
10. Shaklein, S.V. and Pisarenko, M.V., Intensive Development of Raw Materials Bases of the Coal Industry in Kuzbass, Mineral. Resurs. Rossii. Ekonom. Upravl., 2013, no. 6.
11. Artem’ev, V.B., Prospects for Plowing, Ugol’, 2004, no. 3.
12. Shraiber, A.A. and Red’kin, V.B., Current and Future Coal Mining Technologies, Probl. Obshch. Energ., 2008, no. 17.
13. Kreinin, E.V., Once More on Reviving of Underground Coal Degassing in Russia, Ugol’, 2006, no. 7.
14. Litvinsky, G.G., Mine of the 21st Century, Ugol’, 2006, no. 1.
15. Puchkov, L.A., Mikheev, O.V., Atrushkevich, V.A., and Atrushkevich, O.A., Integrirovannye tekhnologii dobychi uglya na osnove gidromekhanizatsii (Hydromechanization-Based Integrated Coal Mining Technologies), Moscow: MGGU, 2000.
16. Klishin, V.I., Klishin, S.V., and Opruk, G.Yu., Modeling Coal Discharge in Mechanized Steep and Thick Coal Mining, J. Min. Sci., 2013, vol. 49, no. 6, pp. 932–940.
17. Klishin, V.I., Validation of Coal Mining Technology for Thick Flat-Lying and Steep Coal Beds, Gorn. Inform.-Analit. Byull., 2013, Special Issue 6.


MINING ECOLOGY


EVALUATION OF DUST POLLUTION OF AIR IN KUZBASS COAL-MINING AREAS IN WINTER BY DATA OF REMOTE EARTH SENSING
V. N. Oparin, V. P. Potapov, O. L. Giniyatullina, N. V. Andreeva, E. L. Schastlivtsev, and A. A. Bykov

The article deals with estimation of snow cover condition and air pollution in areas of fast-paced coal mining. It is suggested to use data of remote earth sensing in winter, and snow cover in this case acts as a survey sheet-indicator of underlying ground contamination. The article exemplifies evaluation of data for a Kuzbass mining area of 100 km2 by snow quality.

Coal mining, remote sensing data, satellite images, geoecological monitoring, air pollution, fallout, snow cover, spectral reflectance analysis

REFERENCES
1. Oparin, V.N., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vliyaniya (Earth’s Crust Destruction and Self-Organization in Areas Subject to Strong Impact of Industry), Novosibirsk: SO RAN, 2012.
2. Potapov, V.P., Matematicheskoe i informatsionnoe modelirovanie geosistem ugol’nykh predpriyatii (Modeling Coal Mine Geosystems Based on Figures and Information), Novosibirsk: SO RAN, 1999.
3. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., Development of Distributed GIS Capacities to Monitor Migration of Seismic Events, J. Min. Sci., 2010, vol. 46, no. 6, pp. 666–671.
4. Kalabin, G.V., Quantitative Assessment Procedure for Environmental Conditions in the Mining and Processing Industry Areas, J. Min. Sci., 2012, vol. 48, no. 2, pp. 382–389.
5. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., and Andreeva, N.V., Water Body Pollution Monitoring in Vigorous Coal Extraction Areas Using Remote Sensing Data, J. Min. Sci., 2012, vol. 48, no. 5, pp. 934–940.
6. Potapov, V.P., Oparin, V.N., Logov, A.B., Zamaraev, R.Yu., and Popov, S.E., Regional Geomechanical-Geodynamic Control Geoinformation System with Entropy Analysis of Seismic Events (In Terms of Kuzbass), J. Min. Sci., 2013, vol. 49, no. 3, pp. 482–488.
7. Bychkov, I.V., Oparin, V.N., and Potapov, V.P., Cloud Technologies in Mining Geoinformation Sciences, J. Min. Sci., 2014, vol. 50, no. 1, pp. 142–154.
8. Kalabin, G.V., Gorny, V.I., and Kritsuk, S.G., Satellite Monitoring of Vegetation Mantle Response to the Sorsk Copper–Molybdenum Mine Impact, J. Min. Sci., 2014, vol. 50, no. 1, pp. 155–162.
9. Kovalev, V.A., Potapov, V.P., and Schastlivtsev, E.L., Monitoring sostoyaniya prirodnoi sredy ugledobyvayushchikh raionov Kuzbassa (Nature Monitoring in Coal Mining Districts in Kuzbass), Novosibirsk: SO RAN, 2013.
10. RF Public Health Regulations 2.2.1/2.1.1.1200–03. Protection Zones and Sanitary Classification of Plants, Buildings and Other Structures, Moscow, 2008.
11. USSR Federal Regulatory Document 86. Calculation Procedure for Toxic Substance Content of Emissions of Production Plants, Moscow: Gidrometeoizdat, 1987.
12. Annex to USSR Federal Regulatory Document 86. Calculation Procedure for Long-Term Period-Averaged Concentrations of Toxic Substance in Air Emissions, Saint-Petersburg: Voeikov GGO, 2005.
13. Kravtsova, V.I., Maslov, A.A., and Tutubalina, O.V., Izobrazheniya Zemli iz kosmosa: primery primeneniya (Satellite Images of Earth: Examples of Application), Moscow: Inzh.-Tekhnol. Tsentr Skaneks, 2005.
14. Mikhailov, S.I., Detection Procedure for Natural Terrain Environment Contamination by Satellite Data, Probl. Analiza Risk., 2009, vol. 6, no. 1.
15. Tolmacheva, N.I. and Shlyaeva, L.S., Kosmicheskie metody ekologicheskogo monitoringa: ucheb. posobie (Satellite Methods of Eco-Monitoring: Educational Guidance), Perm: Permsk. Univ., 2012.
16. Tolmacheva, N.I., Kosmicheskie metody issledovanii v meteorologii. Interpretatsiya sputnikovykh izobrazhenii (Satellite Methods in Meteorology. Interpretation of Satellite Images), Perm: Permsk. Univ., 2012.
17. Prokacheva, V.G., and Usachev, V.F., From Satellite Images to Eco–Hydrographic Statistics, GIS dlya ustoichivogo razvitiya territorii. Ch. 3. GIS i kartografiya v ekologii i okhrane prirody (GIS for Sustainable Territorial Development. Part 3: GIS and Mapping in Ecology and Environmental Protection), Yakutsk: YaGU, 1999.
18. Chepelev, O.A., Lomivorotova, O.M., Ukrainsky, P.A., and Terekhin, E.A., Analysis of Relationship between Dust Content and Spectral Reflectance of Snow, Izv. Samarsk. Nauch. Tsentra RAN, 2012, vol. 12, no. 1 (4).
19. Bogomolov, L.A., Deshifrovanie aerokosmosnimkov (Air Photography and Satellite Imagery Interpretation), Moscow: Nedra, 1976.
20. Landgrebe, D.A., Signal Theory Methods in Multispectral Remote Sensing, New Jersey: John Wiley & Sons, 2003.
21. Krinov, E.L., Sepktral’naya otrazhatel’naya sposobnost’ prirodnykh obrazovanii (Spectral Reflectance of Natural Bodies), Moscow: AN SSSR, 1947.
22. Clark, R.N. and Roush, T.L., Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications, J. Geophysical Research, 1984, vol. 89, no. B7.
23. De Jong, S.M. and van der Meer, F.D., Remote Sensing Image Analysis Including the Spatial Domain, New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, 2004.
24. Kapralov, E.G., Koshkarev, A.V., Tikunov, V.S., et al., Geoinformatika (Geoinformation Science), Moscow: Akademiya, 2005.


ASSESSMENT OF ECO-HAZARD OF COPPER–NICKEL ORE MINING AND PROCESSING WASTE
V. A. Masloboev, S. G. Seleznev, D. V. Makarov, and A. V. Svetlov

The authors examine oxidation of sulfide minerals in mine waste and the associated ecological problems. The highest environmental hazard is produced by fine-dispersed mill tailings, especially where sulfide content is comparable with nonmetal content of low-chemical activity. In terms of some production waste accumulations in Murmansk Region, it is shown that the eco-hazard source can be not only fine but also coarse particle waste (Allarechensky mine waste) and ore concentration waste with low sulfide content but highly chemical-active nonmetals (Pechenga ore field).

Overburden dumps, copper–nickel ore concentration tailings, ecological hazard, sulfide oxidation

REFERENCES
1. Chanturia, V.A. and Koryukin, B.M., Analysis of Technogenic Mineral Formations in the Urals and Processing Prospects, Proc. Int. Conf. Issues of Geotechnology and Subsoil Science: Mel’nikov’s Lectures), Ekaterinburg: UrO RAN, 1998.
2. Kalinnikov, V.T., Makarov, V.N., and Kremenetskaya, I.P., Mining Waste Classification by Their Ecological Hazard, Khim. Int. Ust. Razv., 1997, no. 5.
3. Makarov, V.N., Ekologicheskie problemy utilizatsii gornopromyshlennykh otkhodov (Ecology Issues of Mine Waste Disposal), Apatity: KNTS RAN, 1998.
4. Doyle, F.M., Acid Mine Drainage from Sulfide Ore Deposits, Sulfide Deposits—Their Origin and Processing, Inst. Mining and Metallurgy, 1990.
5. Walder, I.F. and Schuster, P.P., Acid Rock Drainage, Environmental Geochemistry of Ore Deposits and Mining Activities, SARB Consulting Inc., Albuquerque, New Mexico, 1997.
6. Emlin, E.F., Tekhnogenez kolchedannykh mestorozhdenii Urala (Technogenesis in the Ural Sulfide Deposits), Sverdlovsk: UGU, 1991.
7. Bortnikova, S.B., Gas’kova, O.L., and Airiyants, A.A., Tekhnogennye ozera: formirovanie, razvitie i vliyanie na okruzhayushchuyu sredy (Mining-Generated Ponds: Formation, Evolution and Ecological Impact), Moscow: SO RAN, 2003.
8. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton-Fong, C.J., and Stuparyk, R.A., Mineralogical Study of Base Metal Tailings with Various Sulfide Contents, Oxidized in Laboratory Columns and Field Lysimeters, Environmental Geology, 1998, vol. 33, nos. 2–3.
9. Nicholson, R.V. and Scharer, J.M., Laboratory Studies of Pyrrhotite Oxidation Kinetics, Environmental Geochemistry of Sulfide Oxidation, Alpers, C.N., Blowes, D.W. (Eds.), Am. Chem. Soc. Symp., Ser. 550, 1994.
10. Nicholson, R.V., Iron-Sulfide Oxidation Mechanisms: Laboratory Studies, Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of Canada, Jambo, J.L., Blowes, D.W. (Eds.), 1994.
11. Plaksin, I.N., Izbrannye trudy. Obogashchenie poleznykh iskopaemykh (Selectals. Mineral Dressing), Moscow: Nauka, 1970.
12. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sul’fidov: teoriya i praktika flotatsii (Electrochemistry of Sulfides: Theory and Practice of Flotation), Moscow: Ruda Metally, 2008.
13. Chanturia, V.A. and Shafeev, R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Chemistry of Surface Phenomena in Flotation), Moscow: Nedra, 1977.
14. Abramov, A.A. and Avdokhin, V.Ì., Oxidation of Sulfide Minerals in Benefication Processes, Gordon and Breach Science Publishers, 1997.
15. Buckley, A.N., Hamilton, I.C., and Woods, R., Flotation of Sulfide Minerals, Amsterdam: Elsevier, 1985.
16. Listova, L.P. and Bondarenko, G.P., Rastvorenie sul’fidov svintsa, tsinka i medi v okislitel’nykh usloviyakh (Lysing of Lead, Zink and Copper Sulfides under Oxidation), Moscow: Nauka, 1969.
17. Belzile, N., Chen, Y.-W., Cai, M.-F., and Li, Y., A Review on Pyrrhotite Oxidation, J. Geochemical Exploration, 2004, vol. 84, no. 2.
18. Sveshnikov, G.B., Elektrokhimicheskie protsessy na sul’fidnykh mestorozhdeniyakh (Electrochemical Processes in Sulfide Deposits), Leningrad: LGU, 1967.
19. Sakharova, M.S. and Lobacheva, I.K., Study of Microgalvanic Systems of Sulfides–Gold-Containing Solutions and Gold Settling-Down Peculiarities, Geokhim., 1978, no. 12.
20. Yakhontova, L.K. and Zvereva, V.P., Osnovy mineralogii gipergeneza: ucheb. posobie (Basics of Hypergenesis Mineralogy: Educational Guidance), Vladivostok: Dal’nauka, 2000.
21. Bortsov, V.D., Numov, V.P., and Lozhnikov, S.S., Natural Galvanic Elements in Sulfide and Complex Ore Bodies in the Rudny Altai, Tsv. Metally, 2004, no. 6.
22. Dobrokhotov, G.N., Chemistry of Acid Autoclave Leaching of Monosulfides of Nickel, Cobalt and Iron, Zh. Prikl. Khim., 1959, vol. 32, no. 11.
23. Plaksin, I.N., Effect of Gases and Chemical Agents on Minerals in Flotation, Izv. AN SSSR, Ser. Tekhn., 1950, no. 12.
24. Lowson, R.T., Aqueous Oxidation of Pyrite by Molecular Oxygen, Chemical Review, 1982, vol. 82, no. 5.
25. Ospanov, Kh.K., Zhusupova, A.K., Sharipova, S.A., and Syzdykov, R.R., Interaction between Copper Sulfides and Acid Solutions of Iron Chloride and Sodium Nitrite, J. Fiz. Khim., 1999, vol. 73, no. 5.
26. Ponomarev, V.D. and Ponomareva, V.I., Shchelochnye gidrokhimicheskie sposoby pererabotki polimetallicheskikh produktov (Alkali Hydrochemical Processing of Polymetallic Products), Alma-Ata: Nauka, 1969.
27. Karavaiko, G.I., Kuznetsov, S.I., and Golomzik, A.I., Rol’ mikroorganizmov v vyshchelachivanii metallov iz rud (Role of Microorganisms in Metal Leaching from Ore), Moscow: Nauka, 1972.
28. Adamov, E.V. and Panin, V.V., Tekhnologiya metallov: kurs lektsii (Process Metallurgy: Course of Lectures), Moscow: MISiS, 2008.
29. Janzen, M.P., Nicholson, R.V., and Scharer, J.M., Pyrrhotite Reaction Kinetics: Reaction Rates for Oxidation by Oxygen, Ferric Ion, and For Nonoxidative Dissolution, Geochimica et Cosmochimica Acta, 2000, vol. 64, no. 9.
30. Pol’kin, S.I., Adamov, E.V., and Panin, V.V., Tekhnologiya bakterial’nogo vyshchelachivaniya tsvetnykh i redkikh metallov (Bacteria Leaching Technology for Base and Rare Metals), Moscow: Nedra, 1982.
31. Yakovleva, A.K., Osokin, A.S., Dokuchaeva, V.S., et al., Analizy mineralov medno-nikelevykh mestorozhdenii Kol’skogo poluostrova (Analyses of Minerals in Copper–Nickel Deposits of the Kola Peninsula), Apatity: KNTS RAN, 1983.
32. Shteinberg, D.S. (Ed.), Magmatizm, metamorfizm i orudnenie v geologicheskoi istorii Urala (Magmatism, Metamorphism and Mineralization in the Geological History of the Ural), Sverdlovsk: UrNTS AN SSSR, 1974.
33. Kuznetsov, V.A. (Ed.), Geologiya rudnykh mestorozhdenii zony BAM (Geology of Ore Bodies in the Territory of the Baikal–Amur Mainline), Novosibirsk: Nauka, 1983.
34. Kulish, E.A. (Ed.), Protsessy i zakonomernosti metamorfogennogo rudoobrazovaniya (Processes and Patterns of Metamorphogene Mineralization), Kiev: Nauk. Dumka, 1988.
35. Chanturia, V.A., Makarov, V.N., and Makarov, D.V., Classification of Mine Waste by the Type of Mineral Associations and Oxidation Behavior of Sulfides, Geoekologiya, 2000, no. 2.
36. Ritcey, G.M., Tailings Management, Problems and Solutions in the Mining Industry, New-York: Elsevier, 1989.
37. Khalezov, B.D., Vatolin, N.A., Nezhivykh, V.A., and Tveryakov, A.Yu., Raw Material Base of the Underground and Heap Leaching, Gorn. Inform.-Analit. Byull., 2002, no. 5.
38. Seleznev, S.G. and Stepanov, N.A., Allarechensky Sulfide Copper–Nickel Deposit Dumps as a New Geological–Industrial Type of Mining-Generated Deposit, Izv. vuzov, Gorny Zh., 2011, no. 5.
39. Khalezov, B.D., Investigation and Development of Copper and Copper–Zink Ore Leaching Technology, Dr. Eng. Dissertation, Ekaterinburg, 2009.
40. Vigdergauz, V.E., Makarov, D.V., Zorenko, I.V., Belogub, E.V., Malyarenok, M.N., Shrader, E.A., and Kuznetsova, I.N., Effect Exerted by Structural Features of Copper–Zink Ores on Their Oxidation and Technological Properties, J. Min. Sci., 2008, vol. 44, no. 4, pp. 413–420.
41. Belogub, E.V., Shcherbakova, E.P., and Nikandrova, N.K., Sul’faty Urala: rasprostranennost’, kristallokhimiya, genesis (Ural’s Sulfates: Occurrence, Crystal Chemistry, Genesis), Moscow: Nauka, 2007.
42. Seleznev, S.G. and Boltyrov, V.B., Ecology of Mining-Generated Object “Allarechensky Deposit Dumps” (Pechenga District, Murmansk Region), Izv. vuzov, Gorny Zh., 2013, no. 7.
43. Chanturia, V.A., Makarov, V.N., and Makarov, D.V., Ekologicheskie i tekhnologicheskie problemy pererabotki tekhnogennogo sul’fidsoderzhashchego syr’ya (Ecological and Engineering Issues of Processing of Sulfide-Containing Mining Waste), Apatity: KNTS RAN, 2005.
44. Makarov, D.V., Makarov, V.N., Drogobuzhskaya, S.V., Alkatseva, A.A., Farvazova, E.R., and Tunina, M.V., Ni, Cu, Co, Fe and MgO Content of Pore Solutions of Long-Term Storage Copper–Nickel Ore Processing Tailings, Geoekologiya, 2006, no. 2.
45. Chanturia, V.A., Makarov, V.N., Makarov, D.V., and Vasil’eva, T.N., Nickel Occurrence in Aged Copper–Nickel Ore Tailings, Dokl. RAN, 2004, vol. 399, no. 1.
46. Makarov, V.N., Vasil’eva, T.N., Makarov, D.V., Alkatseva, A.A., Farvazova, E.R., Nesterov, D.P., and Lashchuk, V.V., Effect of Storage Conditions on Properties of Copper–Nickel Ore Processing Waste, Khim. Int. Ust. Razv., 2005, vol. 13, no. 1.
47. Chanturia, V.A., Makarov, V.N., Makarov, D.V., Vasil’eva, T.N., Pavlov, V.V., and Trofimenko, T.A., Influence Exerted by Storage Conditions on the Change in Properties of Copper–Nickel Technogenic Products, J. Min. Sci., 2002, vol. 38, no. 6, pp, 612–617.


MINERAL DRESSING


SURFACE ACTIVATION AND INDUCED CHANGE OF PHYSICOCHEMICAL AND PROCESS PROPERTIES OF GALENA BY NANOSECOND ELECTROMAGNETIC PULSES
V. A. Chanturia, I. Zh. Bunin, M. V. Ryazantseva, I. A. Khabarova, E. V. Koporulina, and N. E. Anashkina

X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are used to study the change of the surface layers and chemical state of atoms on galena surface after treatment by high-voltage nanosecond electromagnetic pulses. By XPS the induced structural changes of galena surface layer are associated with alteration of chemical state of sulfur atoms, which conditions the change of electrochemical and flotation properties of the semiconductor sulfide mineral: growth of electrode potential creates favorable conditions for adsorption of anion collector and promotes increased floatability of galena.

Galena, calcite, powerful nanosecond electromagnetic pulses, X-ray photoelectron spectroscopy, infrared spectroscopy, analytical electron microscopy, surface, sorption, flotation

REFERENCES
1. Shui, R.Ò., Poluprovodnikovye rudnye mineraly (Semiconducting Ore Minerals), Leningrad: Nedra, 1979. 2. Sadovnikov, S.I., Kozhevnikova, N.S., and Rempel’, À.À., Stability and Recrystallization of PbS Nanoparticles, Inorganic Materials, 2011, vol. 47, no. 8, pp. 837–843.
3. Zyubin, À.S., Zyubina, Ò.S., Yashina, L.V., and Shtanov, V.I., Oxygen Chemisorption on the PbS(001) Surface: Quantum-Chemical Modeling, Russian Journal of Inorganic Chemistry, 2009, vol. 54, no. 5, pp. 727–733.
4. Hagstrom, A.L. and Fahlman, A., The Interaction between Oxygen and the Lead Chalcogenides at Room Temperature Studied by Photoelectron Spectroscopy, Applied Surface Science, 1978, vol. 1, no. 4.
5. Eggleston, C. M., Initial Oxidation of Sulfide Sites on a Galena Surface: Experimental Confirmation of an Ab-Initio Calculation, Geochimica et Cosmochimica Acta, 1997, vol. 61, no. 3.
6. Kim, B.S., Hayes, R.A., Prestidge, C.A., and Ralston, J., Smart, R.St.C., Scanning Tunneling Microscopy Studies of Galena: the Mechanism of Oxidation in Air, Applied Surface Science, 1994, vol. 78, no. 4.
7. Rosso, J.J. and Vaughan, D.J., Reactivity of Sulfide Mineral Surfaces, Reviews in Mineralogy and Geochemistry, 2006, vol. 61, no. 1.
8. Chanturia, V.À., Gulyaev, Yu.V., Bunin, I.Zh., et al., Synergetic Effect of High-Power Electromagnetic Pulses and Pore Damp on Opening of Gold-Containing Raw Materials, Dokl. RAN, 2001, vol. 379, no. 3.
9. Chanturia, V.À., Bunin, I.Zh., Lunin, V.D., Gulyaev, Yu.V., et al., Use of High-Power Electromagnetic Pulses in Processes of Disintegration and Opening of Rebellious Gold-Containing Raw Material, J. Min. Sci., 2001, vol. 37, no. 4, pp. 427–437.
10. Chanturia, V.À., Bunin, I.Zh., Ryazantseva, Ì.V., and Khabarova, I.À., X-Ray Photoelectron Spectroscopy-Based Analysis of Change in the Composition and Chemical State of Atoms of Chalcopyrite and Sphalerite Surface before and after the Nanosecond Electromagnetic Pulse Treatment, J. Min. Sci., 2013, vol. 49, no. 3, pp. 489–498.
11. Plaksin, I.N. and Solnyshkin, V.I., Infrakrasnaya spektroskopiya poverkhnostnykh sloev reagentov na mineralakh (Infrared Spectroscopy of Surface Layers of Reagents on Minerals), Moscow: Nauka, 1966.
12. Chanturia, V.À. and Vigdergauz, V.Å., Elektrokhimiya sul’fidov (Sulfide Electrochemistry), Moscow: Ruda Metally, 2008.
13. CasaXPS Manual 2.3.15. Introduction to XPS and AES.?Neal Fairley. Casa Software Ltd, 2009. Available at: http://www.casaxps.com/ebooks/.
14. Farmer, V.C., The Infrared Spectra of Minerals, London: Mineralogical Society of Great Britain and Ireland, 1974.
15. Cases, J.M. and Donato, P.D., FTIR Analysis of Sulfide Mineral Surfaces before and after Collection, International Journal of Mineral Processing, 1991, vol. 33, no. 1.
16. Kuznetsov, Ì.V., Sovremennye metody issledovaniya poverkhnosti tverdykh tel: fotoelektronnaya spektroskopiya i difraktsiya, STM-mikroskopiya (Latter-Day Research Methods of Solid Surface: Photoelectron Spectroscopy and Diffraction, Scanning Tunneling Microscopy), Ekaterinburg: IKHTT, 2010.
17. Brion, D., Etude par Spectroscopie de Photoelectrons de la Degradation Superficielle de FeS2, CuFeS2, ZnS et PbS a l’Air et dans l’Eau, Applications of Surfuce Science, 1980, vol. 5, no. 2.
18. Fornasiero, D., Li, F., Ralston, J., and Smart, R. S. C., Oxidation of Galena Surfaces, Journal of Colloid and Interface Science, 1994, vol. 164, no. 2.
19. Laajalehto, K., Smart, R. S. C., Ralston, J., and Suoninen, E., STM and XPS Investigation of Reaction of Galena in Air, Applied Surface Science, 1993, vol. 64, no. 1.
20. Buckley, A.N. and Woods, R., An X-Ray Photoelectron Spectroscopic Study of the Oxidation of Galena, Applications of Surface Science, 1984, vol. 17, no. 4.
21. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii: spravochnik (X-Ray Electron Spectroscopy of Chemical Compounds: Reference Guide) Moscow: Khimiya, 1984.
22. Knipe, S.W., Mycroft, J.R., Pratt, A.R., Nesbitt, H.W., and Bancroft, G.M., X-ray Photoelectron Spectroscopic Study of Water Adsorption on Iron Sulfide Minerals, Geochimica et Cosmochimica Acta, 1995, vol. 59, no. 6.
23. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei (Modern Radiation Chemistry. Radiolysis of Gases and Liquids), Moscow: Nauka, 1986.
24. Chanturia, V.À., Bunin, I.Zh., and Kovalev, À.Ò., Energy Concentration in Electric Discharge between Particles of Semiconducting Sulfide Minerals under the Action of High-Power Nanosecond Pulses, Bulletin of the Russian Academy of Sciences: Physics, 2008, vol. 72, no. 8.
25. Chanturia, V.À., Gulyaev, Yu.V., Lunin, V.D., Bunin, I.Zh., Cherepenin, V.À., Vdovin, V.À., and Korzhenevsky, À.V., Opening of Rebellious Gold-Containing Ores under the Action of High-Power Electromagnetic Pulses, Dokl. RAN (Geokhim.), 1999, vol. 366, no. 5.
26. Bunin, I.Zh., Bunina, N.S., Vdovin, V.À., Voronov, P.S., Gulyaev, Yu.V., Korzhenevsky, À.V., Lunin, V.D., Chanturia, V.À., and Cherepenin, V.À., Experimental Research on Nonthermal Effect of High-Power Electromagnetic Pulses on Rebellious Gold-Containing Raw Materials, Bulletin of the Russian Academy of Sciences: Physics, 2001, vol. 65, no. 12.
27. Bunin, I.Zh., Theoretical Bases of Nanosecond Electromagnetic Pulse Action on Disintegration and Opening of Finely Dispersed Mineral Complexes and Depletion of Noble Metals, Dr. Eng. Sci. Dissertation, Moscow: IPKON RAN, 2009.
28. Ryazantseva, Ì.V., Mechanism of Nanosecond Electromagnetic Pulse Action on Structural-Chemical and Flotation Properties of Pyrite and Arsenopyrite, Cand. Eng. Sci., Dissertation, Moscow: IPKON RAN, 2009.
29. Khabarova, I.À., Upgrading of Contrast Range of Physical-Chemical and Flotation Properties of Pyrrhotite and Pentlandite on the Basis of Using Electromagnetic Pulse Action, Cand. Eng Sci., Dissertation, Moscow: IPKON RAN, 2011.
30. Chanturia, V.À., Ivanova, Ò.À., Khabarova, I.À., and Ryazantseva, Ì.V., Effect of Ozone on Physico-Chemical and Flotation Properties of Surface of Pyrrhotite under the Nanosecond Electromagnetic Pulse Treatment, J. Min. Sci., 2007, vol. 47, no. 1, pp. 83–90.
31. Goryachev, B.Å., Nikolaev, À.À., and Lyakisheva, L.N., Electrochemistry of Galena Oxidation as the Basis for Optimization of Agent Modes in Flotation of Polymetallic Ores, J. Min. Sci., 2010, vol. 46, no. 6, pp. 681–689.
32. Chanturia, V.A., Bunin, I.Zh., Kovalev, A.T., Nanosecond Electrical Discharge between Semiconducting Sulfide Mineral Particles in Water, Bulletin of the Russian Academy of Sciences: Physics, 2009, vol. 73, no. 5.
33. Kiehl, J., Ben-Azzouz, C., Dentel, D., Derivaz, M., Bischoff, J.L., Delaite, C., and Bistac, S., Grafting Process of Ethyltrimethoxysilane and Polyphosphoric Acid on Calcium Carbonate Surface, Applied Surface Science, 2013, vol. 264.
34. Pasarin, I.S., Bovet, N., Glyvradal, M., Nielsen, M.M., Bohr, J., Feidenhans’l, R., Stipp, S. L. S., Atomic Modifications by Synchrotron Radiation at the Calcite-Ethanol Interface, Journal of Synchrotron Radiation, 2012, vol. 19, no. 4.
35. Stipp, S.L., Hochella, Jr.M.F., Structure and Bonding Environments at the Calcite Surface as Observed with X-Ray Photoelectron Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED), Geochimica et Cosmochimica Acta, 1991, vol. 55, no. 6.
36. Chanturia, V.À. and Shafeev, R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Chemistry of Surface Phenomena in Flotation), Moscow: Nedra, 1977.
37. Levin, Ì.N., Tatarintsev, À.V., Kostsova, Î.À., and Kostsov, À.Ì., Semiconductor Surface Activation Caused by Pulsed Magnet Field Action, Zh. Tekh. Fiz., 2003, vol. 73, no. 10.


COAL DUST WETTABILITY ESTIMATION
V. A. Arkhipov, D. Yu. Paleev, Yu. F. Patrakov, and A. S. Usanina

The authors present a new method of estimating wettability of fine coal particles settled on water drops. Ratio of wetted particles is calculated by measured optical density of air and dust mixture. The offered method enables measurements to be taken immediately in the air and dust mixture, without mechanical treatment of coal dust particles, which improves accuracy of the particle wettability estimation.

Coal, coal dust, wettability, air and dust mixture, spectral transmittance, capture coefficient

REFERENCES
1. Toshiaki Murata, Wettability of Coal Estimated from the Contact Angle, Fuel, 1981, vol. 60, no. 8.
2. Fuerstenau, D.W. and Diao, J., Characterization of Coal Oxidation and Coal Wetting Behavior by Film Flotation, Coal Preparation, 1992, vol. 10.
3. Chander, S., Polat, H., and Mohal, B., Flotation and Wettability of Low-Rank Coal in the Presence of Surfactants, Miner. Metall. Process, 1994, vol. 11, no. 1.
4. Chander, S., Hogg, R., and Fuerstenau, D.W., Characterization of the Wetting and Dewetting Behavior of Powders, KONA, 2007, no. 25.
5. Li Man, Xu Hai-Hong, and Shu Xin-qian, Study on Coal Dust Wettability Measurement Using Cold Briquetting Technique, Journal of Coal Science and Engineering, 2008, vol. 14, no. 4.
6. Gbasouzor Austin Ikechuks, The Effect of Particle Size on the Wettability of Akwuke Coal Using Continuous Flow Technique, Proc. World Congress on Engineering and Computer Science, USA, 2011.
7. Pirumov, A.I., Obespylevanie vozdukha (Air Dedusting), Moscow: Stroiizdat, 1981.
8. Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation Methods), Moscow: MGGU, 2008.
9. de Gennes, P.G., Wetting: Statics and Dynamics, Usp. Fiz. Nauk, 1987, vol. 151, issue 4.
10. Birger, M.I., Val’dberg, L.Ya, and Myagkov, B.I., Spravochnik po pyle- i zoloulavlivaniy (Dust and Air Trapping Manual), Moscow: Energoatomizdat, 1983.
11. Kouzov, P.A. and Skryabina, L.A., Metody opredeleniya fiziko-khimicheskikh svoistv promyshlennykh pylei (Estimation Methods for Physicochemical Properties of Industrial Dusts), Leningrad: Khimiya, 1983.
12. Saranchuk, V.I., Zhuravlev, V.P., and Veisenberg, I.V., Khimicheskie veshchestva dlya bor’by s pyl’yu (Chemical Agents for Dust Control), Kiev: Naukova dumka, 1987.
13. Zimon, A.D., Adgeziya zhidkosti smachivaniem (Adhesion to Water in Wetting), Moscow: Khimiya, 1974.
14. Kossen, N.W. and Heertjes, P.M., The Determination of the Contact Angle for Systems with Powder, Chemical Engineering Science, 1965, vol. 20, no. 6.
15. Arkhipov, V.A., Paleev, D.Yu., Trofimov, V.F., and Usanina, A.S., RF patent no. 2457464, Byull. Izobret., 2012, no. 21.
16. Nemtsev, E.A., Paleev, D.Yu., and Usanina, A.S., Influence of Sample Preparation Technique on Coal Dust Wettability, Proc. 12th Int. Conf. Young Scientists on Actual Issues of Thermal Physics and Physical Gasdynamics, Novosibirsk, 2012.
17. Arkhipov, V.A., Paleev, D.Yu., Patrakov, Yu.F., and Usanina, A.S., Dust Material Wettability Characterization, Izv. vuzov, Fizika, 2012, vol. 55, no. 7/2.
18. Shilyaev, M.I. and Shilyaev, A.M., Aerodinamika i teplomassoobmen gazodispersnykh potokov (Air Flow Dynamics and Heat and Mass Transfer in Gas-Dispersion Flows), Tomsk: TGASU, 2003.
19. Arkhipov, V.A. and Bondarchuk, S.S., Opticheskie metody diagnostiki geterogennoi plazmy produktov sgoraniya: ucheb. posobie (Optical Methods for Diagnostics of Heterogeneous Combustion Plasma: Educational Guidance), Tomsk: TGU, 2010.
20. Gonor, A.L. and Rivkind, V.Ya., Dynamics of Drop, Itogi nauki i tekhniki. Mekhanika zhidkosti i gaza (Science and Technology: Resume. Series: Fluid and Gas Mechanics), Moscow: VINITI, 1982, vol. 17.
21. Raushenbakh, B.V., Bely, S.A., Bespalov, I.V., Borodachev, V.Ya., Volynsky, M.S., and Prudnikov, A.G., Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniya vozdushno-reaktivnykh dvigatelei (Physical Bases of Work Processes in Combustion Chambers of Air-Jet Engines), Moscow: Mashinostroenie, 1964.
22. Matveev, L.T., Fizika atmosfery (Physics of Atmosphere), Saint-Petersburg: Gidrometeoizdat, 2000.


JUSTIFICATION AND DESIGN OF ELECTROCHEMICAL RECOVERY OF SAPONITE FROM RECYCLED WATER
V. G. Minenko

The effective electrochemical method of saponite and slime removal from recycled water of Severalmaz JSC plants is scientifically and experimentally justified based on the analysis of electric properties of saponite surface. The method consists in utilizing electrophoretic attachment of negative-charge fine saponite particles to anode and electro-osmosis and clarified water exudation on cathode. The developed method will allow higher efficiency and regulation of diamond extraction and ecology problem resolution due to closed water rotation and no water discharge to the tundra.

Electrochemical separator, saponite extraction, slime removal, thickened product, clarified discharge, processing plant, electrophoretic effect, electro-osmosis

REFERENCES
1. Gorkin, A.P., Geografiya. Seriya: Sovremennaya illyustrirovannaya entsiklopediya (Geography. Series: Modern Pictorial Encyclopedia), Moscow: Rosmen, 2006.
2. Karpenko, F.S., Saponite-Containing Precipitation Accumulation Conditions and Thickening in Tailing Ponds of Lomonosov Diamond Deposit, Cand. Geol.-Min. Sci. Dissertation, Moscow: 2009.
3. Navratilova, Z. and Marsalek, R., Application of Electrochemistry for Studying Sorption Properties of Montmorillonite, Clay Minerals in Nature—Their Characterization, Modification and Application. Chapter 14, 2012.
4. http://saponit.com/rus/saponite.html.
5. Osipov, V.I., Sokolov, V.N., and Rumyantseva, N.A., Mikrostruktura glinistykh porod (Clayey Rock Microstructure), Moscow: Nedra, 1989.
6. Frolov, Yu.G., Kurs kolloidnoi khimii (Course of Colloid Chemistry), Moscow: Khimiya, 1989.
7. Osipov, V.I. and Sokolov, V.N., Gliny i ikh svoistva (Clays and Their Properties), Moscow: GEOS, 2013.


NEW METHODS AND INSTRUMENTS IN MINING


MULTICHANNEL ACOUSTIC CONTROL OF PNEUMATIC IMPACT MACHINE MOVEMENT IN SOIL AND MEASUREMENT INFORMATION PROCESSING ALGORITHM
V. N. Oparin, E. V. Denisova, A. P. Khmelinin, Ya. Z. Badmaev, and N. S. Polotnyanko

The acoustic data measurement system and processing algorithm are developed to position a pneumatic impact machine in soil. The method is based on recording lag time of entry of acoustic signal generated on interaction between the pneumatic impact machine and soil in the receiver of multichannel measurement system relative to reference signal of the machine. The measurement system and the algorithm have been trialed in full-scale conditions.

Acoustic method, spatial coordinates, control system, acceleration indicator, acoustic signal propagation velocity, soil, pneumatic impact machine

REFERENCES
1. Oparin, V.N. and Denisova, Å.V., Printsipy postroeniya radiochastotnykh sistem navigatsii dlya bestransheinykh tekhnologii prokladki podzemnykh kommunikatsii (Design Principles for Radio Frequency Navigation Systems in Trenchless Laying of Underground Services), Smolyanitsky, B.N., Legky, V.N., (Eds.), Novosibirsk: SO RAN, 2011.
2. Rybakov, À.P., Osnovy bestransheinykh tekhnologii (teoriya i praktika) (Principles of Trenchless Technologies (Theory and Practice)), Moscow: PressByuro № 1, 2005.
3. Nagovitsyn, À.L., Otkazy elektronnykh zondov dlya ustanovok gorizontal’no-napravlennogo bureniya: prichiny i sledstviya (Failures of Electronic Probes for Units of Horizontal Directional Drilling: Causes and Effects). Available at: http://gnb-electro-nics.ru/zagruzki.
4. Tareeva, Å.À., Innovative Developments for Borings Using Horizontal Directional Drilling, Neft’. Gaz. Novatsii, 2013, no. 3.
5. USA, United States patent no. 8, 213, 264. Method and Device of Measuring Location, and Moving Object, Samsung Electronics Co., Ltd., USA. Appl. No.: 12/656,024. Publ. July 3, 2012.
6. USA, United States patent no. 8, 264, 909. System and Method for Depth Determination of an Impulse Acoustic Source by Cepstral Analysis, The United States of America as represented by the Secretary of the Navy, USA. Appl. No.: 12/698,679. Publ. September 11, 2012.
7. Nagovitsyn, À.L., Elektropotreblenie burovykh zondov dlya GNB s batareinym pitaniem (Energy Consumption of Trial Boring Tools with Battery Supply for Horizontal Directional Drilling). Available at: http://gnb-electronics.ru/zagruzki.
8. Voznesensky, À.S., Sistemy kontrolya geomekhanicheskikh protsessov: ucheb. posobie (Control Systems for Geomechanical Processes: Educational Guidance), Moscow: MGGU, 2002.
9. Rasskazov, I.Yu., Kontrol’ i upravlenie gornym davleniem na rudnikakh Dal’nevostochnogo regiona (Rock Pressure Control in Mines in Russia’s Far East Region), Moscow: Gorn. kniga, 2008.
10. Denisova, E.V., Oparin, V.N., Khmelinin, A.P., and Konurin, À.I., Utility patent no. 136589, Byul. Izobret., 2013, no. 1.
11. Voznesensky, À.S., Sredstva peredachi i obrabotki izmeritel’noi informatsii (Equipment for Transmission and Processing of Measurement Information), Moscow: MGGU, 1999.
12. Berezin, S.Ya. and Karataev, Î.G., Korrelyatsionnye izmeritel’nye ustroistva v avtomatike (Correlation Measuring Devices in Automatics), Leningrad: Energiya, 1976.
13. Denisova, Å.V., Tishchenko, I.V., Khmelinin, À.P., and Badmaeva, Ya.Z., Possibility of Control of Rock Failure Using Drilling Machine by the Time Lags of the Acoustic Signal Generated by the Machine, Vestn. KuzGTU, 2013, no. 5.
14. Baukov, Yu.N., Gornaya geofizika. Geokontrol’ neideal’nykh i neodnorodnykh sred akusticheskimi metodami: ucheb. posobie (Mining Geophysics. The Control of Nonperfect and Nonhomogeneous Media Using Acoustic Methods: Educational Guidance), Moscow: MGGU, 1999.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå