JMS, Vol. 48, No. 6, 2012
GEOMECHANICS
FROTH GEL FOR GAS-BEARING COAL BED HYDROFRACTURING
IN MINE CONDITIONS
M. V. Kurlenya, L. K. Altunina, V. A. Kuvshinov, A. V. Patutin,
and S. V. Serdyukov
For the purposes of coal bed hydrofracturing and enhancement of coal methane recovery, frothed gel with small fluid volume residual has been developed. The article describes tests of the frothed gel composed of mixed methyl cellulose and aluminosilicate proppant.
Coal bed, degassing, methane recovery, hydrofracturing, hydrofracturing fluid
REFERENCES
1. Kurlenya, M.V. and Serdyukov, S.V., Methane Desorption and Migration in Thermodynamic Inequilibrium Coal Beds, Journal of Mining Science, 2010, vol. 46, no. 1, pp. 50–56.
2. Coalbed Methane: Principles and Practices, Halliburton, 2008. Available at: http://www.halliburton.com/public/pe/ contents/Books_and_Catalogs/web/CBM/CBM_Book_Intro.pdf.
3. Tagirov, K.M., Khachaturyan, M.V., and Khachaturyan, B.V., Hydraulic Fracturing of a Very Thick Bed by Froth-and-Acid Compositions, Vest. SKGTU, 2008, no. 2.
4. RD 15–09–2006 Metodicheskie rekomendatsii o poryadke degazatsii ugol’nykh shakht (RD 15–09–2006 Coal Mine Degassing Guidelines), Moscow: Gortekhnadzor RF, 2006.
WATER-TIGHT STRATUM RUPTURE UNDER LARGE-SCALE MINING. PART II
A. A. Baryakh and N. A. Samodelkina
The mathematical modeling of variations in the stress–strain state of a water-tight stratum under large-scale mining has been carried out in the frame of the calibrated geomechanical model of the said stratum. The authors assessed the mining impact using the movement trough parameters, found the mechanism for the shear and tensile crack formation inside a water-tight-stratum and worked out the criteria to assess its disturbed continuity.
Water-tight stratum, mathematical modeling, shear cracks, tensile cracks, failure criteria
REFERENCES
1. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob’ektov v usloviyakh Verkhne-Kamskogo mestorozhdeniya kaliinykh solei (Provisions for Protection of Undermined Objects against Mine Flooding at Verkhne-Kamsk Potassium Salt Deposit), Sankt-Petersburg, 2008.
2. Baryakh, A.A. and Samodelkina, M.A., Rheological Analysis of Geomechanical Processes, Journal of Mining Science, 2005, vol. 41, no. 6, pp. 522 530.
3. Baryakh, A.A., Samodelkina, M.A., and Pan’kov, I.L., Water-Tight Stratum Rupture under Large-Scale Mining. Part I, Journal of Mining Science, 2012, vol. 48, no. 5, pp. 771–780.
4. Kuznetsov, G.N., Mekhanicheskie svoistva gornykh porod (Mechanical Properties of Rocks), Moscow, Ugletekhizdat, 1947.
DEFORMATION OF ANISOTROPIC ROCK MASS
IN THE VICINITY OF. A. LONG TUNNEL
D. Kolymbas, S. V. Lavrikov, and A. F. Revuzhenko
The article deals with the stress and strain assessment in anisotropic rock mass in the vicinity of a lateral opening. The authors carry out numerical calculations for sets of elastic constants for orthotropic and transversally isotropic bodies and show that integrating and including more elastic constants allows keener estimation of load distribution in a stratified rock mass whereas minimum constant pool is enough for quality modeling.
Based on the presented computation for a structurally inhomogeneous anisotropic plastic model of rock mass, it is shown that accounting for plastic strains between structural grains results in the other stress distribution than in the elastic case and, thus, qualitatively influences behavior of the rock mass in whole.
The isolines of the stress and strain invariants, as well as the energy flow lines are presented.
Rock mass, opening, anisotropy, stratification, elasticity, plasticity, energy flow
REFERENCES
1. Stavrogin, A.N. and Protosenya, A.G., Mekhanika deformirovaniya i razrusheniya gornykh porod (Mechanics of Rock Deformation and Failure), Moscow: Nauka, 1992.
2. Il’chenko, V.L., Gorbatsevich, F.F., and Smirnov, Yu.P., Anisotropy of the Core Material Elasticity Properties and the Rock Mass Condition in the Short-Range Zone of The Kola Ultradeep Well at the Luchlompolsky Fault, Geoekolog. Inzhener. Geolog. Gidrogeolog. Geokriolog., 2005, no. 3.
3. Kolymbas, D., Tunnelling and Tunnel Mechanics, A Rational Approach to Tunnelling, Springer-Verlag, Berlin, Heidelberg, 2005.
4. Alimzhanov, M.T., Considering Nonuniformity in the Properties of Rocks in Investigating Mechanical Processes around a Deep Working, Journal of Mining Science, 1977, vol. 13, no. 5, pp. 450–454.
5. Lin’kov, A.M., Mechanics of Jointed Rocks, Journal of Mining Science, 1979, vol. 15, no. 4, pp. 309–314.
6. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Block-Structured Rock Mass Deformation Dynamics), Moscow: Akademkniga, 2003.
7. Revuzhenko, A.F., The Stress–Strain State of Weakened Rock around a Working, Journal of Mining Science, 1978, vol. 14, no. 2, pp. 131–140.
8. Ruzhich, V.V., Vostrikov, V.I., and Levina, E.A., Rockburst Prediction and Geomechanical Control in Mines, Proc. Russ. Conf. in Honor of the 80th Anniversary of Academician E. I. Shemyakin, Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2010.
9. Lavrikov, S.V., A Method of Increase in Bearing Strength of Rock Mass around a Mine Working, Journal of Mining Science, 2003, vol. 39, no. 5, pp. 444–552.
10. Demidov, S.P., Teoriya uprugosti (Elasticity Theory), Moscow: Vyssh. Shk., 1979.
11. Revuzhenko, A.F., Mekhanika uprugoplasticheskikh sred i nestandartnyi analiz (Elastoplastic Medium Mechanics and the Nonstandard Analysis), Novosibirsk: NGU, 2000.
12. Lavrikov, S.V., Mikenina, O.A., Revuzhenko, A.F., and Shemyakin, E.I., The Concept of Non-Archimedean Space and the Models of the Structured Plastic Medium, Fiz. Mezomekh., 2008,
vol. 11, no. 3.
13. Umov, N.A., Izbrannye sochineniya (Selected Oeuvre), Moscow–Leningrad, 1950.
14. Love, A., Matematicheskaya teoriya uprugosti (Mathematical Theory of Elasticity), Moscow–Leningrad: ONTI NKTI SSSR, 1935.
15. Kramarenko, V.I. and Revuzhenko, A.F., Flow of Energy in a Deformed Medium, Journal of Mining Science, 1988, vol. 24, no. 6, pp. 536–540.
MODELING DYNAMIC MANIFESTATIONS IN. A. SPACE-LIMITED DEFORMABLE BLOCK MEDIUM
A. P. Bobryakov
The author has studied unstable movements of stiff surfaces interlayered with soft material within experimental modeling of unstable deformation of rocks at a fault zone boundary. The stiff surfaces were simulated with rough metal plates placed at intervals in granular material. The author has defined boundary of influence zone that restrains deformation of immovable plates. The granular medium deforms so that growth of normal stresses relative to the plates is constrained. Shape and size of the distorted profile of free surface due to dilatancy are determined in the article. Slow increase in shearing strains on a moving plate can generate dynamic manifestations in the form of displacement jumps with partial stress relieving.
Shear, soft loading, granular medium, sliding friction, fault, dilatancy
REFERENCES
1. Kasahara, K., Earthquake Mechanics, Cambridge University Press, 1981.
2. Lin’kov, A.M., Numerical Modeling of Seismic and Aseismic Events in Geomechanics, Journal of Mining Science, 2005, vol. 41, no. 1, pp. 14–26.
3. Gerasimova, T.I., Kondrat’ev, V.N., and Kocharyan, G.G., Modeling Features of Shear Deformation of Fissures Containing Filler, Journal of Mining Science, 1995, vol. 31, no. 4, pp. 288–295.
4. Johnson, P., Savage, H., Knuth, M., Gomberg, J., and Marone, C., Effects of Acoustic Waves on Stick-Slip in Granular Media and Implications for Earthquakes, Nature, 2008, vol. 451.
5. Bobryakov, A.P., Modeling Simulation of Deformation in a Blocky Geomedium during Origination of Earthquake, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 722–729.
6. Chanyshev, A.I., Phenomenological Mechanical Block Model of an Element of a Deformable Medium. Part I: Definition and Basic Properties, Journal of Mining Science, 1998, vol. 34, no. 4, pp. 300–307.
7. Bobryakov, A.P., Stick-Slop Mechanism in a Granular Medium, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 600–605.
8. Kostyuchenko, V.N., Kocharyan, G.G., and Pavlov, D.V., Deformation Properties of Intermediate Spaces between Different Scale Blocks, Fiz. Mezomekh., 2002, vol. 5, no. 5.
9. Kocharyan, G.G., Kulyukin, A.A., and Pavlov, D.V., Some Characteristics of Deformation of Interblock Spaces in the Earth Crust, Geolog. Geofiz., 2006, vol. 47, no. 5.
10. Bobryakov, A.P. and Lubyagin, A.V., Experimental Investigation into Unstable Slippage, Journal of Mining Science, 2008, vol. 44, no. 4, pp. 336–344.
11. Kosykh, V.P., Displacement Discontinuity Distribution in Granular Materials under Confined-Space Shearing, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 234–240.
12. Gol’din, S.V., Dilatancy, Re-Packing and Earthquakes, Fiz. Zemli, 2004, no. 10.
13. Bobryakov, A.P. and Revuzhenko, A.F., Uniform Displacement of a Granular Material. Dilatancy, Journal of Mining Science, 1982, vol. 18, no. 5, pp. 373–379.
14. Adushkin, V.V and Spivak, A.A., The Tidal Force as a Trigger of Geophysical Process in the Environment, Triggernye effekty v geosistemakh: sb. nauch. tr. (Trigger Effects in Geosystems: Collected Scientific Works), Moscow: GEOS, 2010.
15. Gere, J. And Shah, H., Terra Non Firma: Understanding and Preparing for Earthquakes, PWC, 1995.
16. Kurlenya, M.V., Oparin,, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Some Characteristics of Blasting Response in Short-Range in Rocks, Dokl. AN SSSR, 1987, vol. 293, no. 1.
SATELLITE GEODESY-AIDED GEODYNAMIC MONITORING
IN MINERAL MINING IN THE URALS
A. A. Panzhin and N. A. Panzhina
The paper describes the specific deformation monitoring arrangement under the current mining-induced or natural geodynamic situations in operating mines. The paper reports the case studies with the satellite geodesy complexes applied to monitor rock mass movements with getting the strain tensor components and a three-dimensional model of the underworked earth surface.
Movement of rocks, geodynamic monitoring, geomechanics, strain field, satellite geodesy
REFERENCES
1. Oparin, V.N., Sashurin, A.D., Panzhin, A.A., et al., Sovremennaya geodinamika massivov gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics of the Upper Lithosphere: Origin, Parameters, Impact), Novosibirsk: SO RAN, 2008.
2. Instruktsiya po nablyudeniyam za sdvizheniem zemnoi poverkhnosti i podrabatyvaemymi sooruzheniyami
na ugol’nykh i slantsevykh mestorozhdeniyakh (Guidelines on Observation of Motions of the Earth Surface and Structures at Mined Coal and Schist Deposits), approved by Coal Ministry of the USSR, dated Dec. 30, 1987, Moscow: Nedra, 1989.
3. Instruktsiya po nablyudeniyam za sdvizheniem gornykh porod i zemnoi poverkhnosti pri
podzemnoi razrabotke rudnykh mestorozhdenii (Guidelines on Observation of the Rocks and Earth Surface Motions in Underground Mining Sites), approved by Gosgortekhnadzor SSSR, dated July 3, 1986, Moscow: Nedra, 1988.
4. Panzhin, A.A., Investigation of Earth Surface Motions Using Vulgar Instrument Methods, Izv. vuzov. Gorny Zh., 2009, no. 2.
5. Panzhin, A.A., Reconstruction of Basic Surveying Operations in Mines Using Satellite Geodesy Complexes, Gorn. Inform.-Analit. Byull., 2008, no. 3.
6. Panzhin, A.A. and Panzhina, N.A., Geodynamic Monitoring in Mines and Urbanized Areas, Gorn. Inform.-Analit. Byull., 2007, no. 3.
7. Zubkov, A.V., Geomekhanika i geotekhnologiya (Geomechanics and Geotechnology), Ekaterinburg: UB RAS, 2001.
8. Zubkov, A.V., Crust Stress State in the Urals, Lithosphere, 2002, no. 3.
9. Kuz’min, Yu.O., The Strain Study Problems in Modern Geodynamics, Gorn. Inform.-Analit. Byull.,
2008, no. 3.
10. Panzhin, A.A., Investigation into the Rock Strain in Large Spatial-Time Scope by Using Stationary GPS-Stations, Izv. vuzov. Gorny Zh., 2008, no. 8.
11. Panzhin, A.A., Role of Tectonic Disturbances in Rock Motion at Mines of Vysokogorny GOK, Gorn. Inform.-Analit. Byull., 2005, no. 4.
12. Sashurin, A.D., Draskov, V.P., Panzhin, A.A., et al., Studies of the Nature and Regularities in Formation of Induced Catastrophic Centers in Mineral Mining Sites, Inform. Byull. RFFI, 1997, vol. 7, no. 5.
EXPERIMENTAL INVESTIGATION INTO VARIABLE DENSITY OF GRANULAR MATERIAL UNDER DEFORMATION CYCLING
V. P. Kosykh
The experimental investigation into variations in density of quartz sand subjected to cyclic loading by a turning retaining wall has shown that the increasing number of loading cycles provokes expansion of a deformation zone inside a material along with a decrease in a material density. Based on measurements, the author has plotted local variations in relative volume of the deformation zone at different turn angles of the retaining wall. It is also shown that regular compaction and loosening zones tend to appear in the deformation zone under the pre-limit deformation.
Retaining wall, deformation cycling, granular material, density, variations in volume, slide plane
REFERENCES
1. Klein, G.K., Raschet podpornykh sten (Calculation of Retaining Walls), Moscow: Vyssh. Shk., 1964.
2. Ivanov, P.L., Grunty i osnovaniya gidrotekhnicheskikh sooruzhenii. Mekhanika gruntov (Soils and Foundations of Hydraulic Structures. Soil Mechanics), Moscow: Vyssh. Shk., 1991.
3. Sokolovskii, V.V., Statika sypuchei sredy (Granular Material Statics), Moscow: Fiz.-Mat. Lit., 1960.
4. Chanyshev, A.I. and Efimenko, L.L., Estimate of the Stability of Stratified Slopes Based on the Plastic Theory, Journal of Mining Science, 2007, vol. 43, no. 4, pp. 382–393.
5. Bishop, A.U., Parametry prochnosti pri sdvige nenarushennykh i peremyatykh obraztsov grunta. Opredelyayushchie zakony mekhaniki gruntov (Strength Parameters of Undisturbed and Broken Soil Specimens under Shear. Fundamentals of Soil Mechanics), Moscow: Mir, 1975.
6. Voznesenskii, E.A., Dinamicheskaya ustoichivost’ gruntov (Dynamic Stability of Soils), Moscow: Editorial, USSR, 1999.
7. Revuzhenko, A.F., Mekhanika sypuchei sredy (Granular Medium Mechanics), Novosibirsk: OFSET, 2003.
8. Bobryakov, A.P. and Revuzhenko, A.F., Uniform Displacement of the Granular Material. Dilatancy, Journal of Mining Science, 1982, vol. 18, no. 5, pp. 373–379.
9. Polukhin, P.I., Vorontsov, V.K., Kudrin, A.B., and Chichenev, N.A., Deformatsiya i napryazheniya pri obrabotke metalov davleniem. Primenenie metodov Mura i koordinatnykh setok (Deformation and Stresses in Pressure Processing of Metals. Moire and Coordinate Grid Methods), Moscow: Metallurgiya, 1974.
10. Sukharev, I.P., Eksperimental’nye metody issledovaniya deformatsii i prochnosti (Experimental Methods to Study Deformations and Stress), Moscow: Mashinostroenie, 1987.
11. Kobzar’, A.I., Prikladnaya matematicheskaya statistika dlya inzhenerov i nauchnykh rabotnikov (Applied Mathematical Statistics for Engineers and Researchers), Moscow: Fiz.-Mat. Lit., 2006.
12. Sobolev, G.A., Earthquake Prediction Problem, Priroda, 1989, no. 12.
SCIENCE OF MINING MACHINES
ROTARY GROUND ANCHORS WITH FLEXIBLE PULL BAR:
INTERACTION WITH GROUND
A. A. Kramadzhyan, E. P. Rusin, S. B. Stazhevsky, and G. N. Khan
The article describes design and installation of rotary ground anchors with flexible pull bar, reports in situ and laboratory research as well as discrete element modeling results, and discusses kinematics of load bearing slab and the force interaction of the anchor and ground.
Ground anchor, flexible pull bar, kinematics, load characteristics, air percussion machine, discrete element method
REFERENCES
1. Shirokov, A.P., Lider, V.A., Dzaurov, M.A., et al., Ankernaya krep’: spravochnik (Anchor Bolting: Guide), Moscow: Nedra, 1990.
2. Stillborg, B., Professional Users Handbook for Rock Bolting, Series on Rock and Soil Mechanics, Clausthal-Zellerfelt, Germany, Trans. Tech. Publications, 1994, no. 18.
3. Hutchinson, D.J. and Diederichs, M.S., Cablebolting in Underground Mines, Richmond, B.C., Canada: Bitech Publishers Ltd., 1996.
4. Strebel, R., Erd- und Felsanker—Ein State-of-the-Art-Report, Interne Berichte, ETH-Zurich, 1995, nr. 5.
5. Xanthakosm, P.P., Ground Anchors and Anchored Structures, N.Y.: Wiley, John & Sons, 1991.
6. Das, B.M., Earth Anchors, J. Ross Publishing, Fort Lauderdale, FL, USA, 2007.
7. Smorodinov, M.I., Ankernye ustroistva v stroitel’stve (Anchoring in Construction), Moscow:
Stroiizdat, 1983.
8. Proceedings of AIMS 2012, 7th Int. Symp. Rockbolting and Rock Mechanics in Mining, Aahen, Germany: AIMS, RWTH Aahen University, 2012.
9. Finno, R.J., Hashash, Y. M. A., and Arduino, P. (Eds.), Earth Retention, Geotechnical Special Publications, no. 208, Proc. 2010 Earth Retention Conference, Bellevue, WA, USA, 2010.
10. Stazhevsky, S. and Kolymbas, D., Vorgespannte Anker nach dem Dilatanzprinzip, Geotechnik,
1993, nr. 4.
11. Stazhevsky, S.B., Kolymbas, D., and Herle, I., Sand-Anchors, Theory and Application, Proc. Int. Symp. Anchors in Theory and Practice, A. A. Balkema, Rotterdam, Brookfield, 1995.
12. Rusin, E.P., Smolyanitsky, B.N., and Stazhevsky, S.B., Soil Anchors—The Methods and Machines for Their Installation, Journal of Mining Science, 2007, vol. 43, no. 6, pp. 640–645.
13. Stazhevsky, S.B. et al., RF patent no. 2366779, Byull. Izobret., 2009, no. 25.
14. Menard, L.P., United States patent no. 3,653,167, Apr. 4, 1972.
15. An introduction to Manta Ray and Sting Ray Earth Anchors, Foresight Products, http://foresightproducts. com/pdfs/intro_mr_sr.pdf (28.04.2012).
16. Duckbill Home, Foresight Products, http://www.earthanchor.net/duckbill/ (28.04.2012).
17. MilSpec Earth Anchors, Home of the Arrowhead Earth Anchors, https://www.milspecanchors.com/ (28.04.2012).
18. Esin, N.N., Kostylev, A.D., Gurkov, K.S., and Smolyanitsky, B.N., Pnevmaticheskie mashiny udarnogo deistviya dlya prokhodki skvazhin i shpurov (Pneumatic Percussion Machines for Driving Holes and Blastholes), Novosibirsk: Nauka, 1986.
19. Rusin, E.P., Smolyanitsky, B.N., Stazhevsky, S.B., and Syryamin, P.Yu., Mobile Machinery Team for Strengthening of Soil Foundations, Journal of Mining Science, 2007, vol. 43, no. 6, pp. 611–617.
20. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., Plavskikh, V.D., Rusin, E.P., Smolyanitsky, B.N., Tupitsyn, K.K, and Chepurnoi, N.P., Pnevmoproboiniki (Pneumatic Punchers), Novosibirsk: IGD SO AN SSSR, 1990.
21. Khan, G.N., Discrete Element Modeling of Rock Failure Dynamics, Journal of Mining Science, 2012,
vol. 48, no. 1, pp. 96–102.
22. Khan, G.N., Nonsymmetrical Failure of Rock Mass in the Vicinity of an Opening, Fiz. Mezomekh., 2008, vol. 11, no. 1.
23. Cundall, P.A. and Strack, O. D. L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29.
24. Construction Norms and Regulations 24.13330.2011. Pile Foundations, Moscow: Minregion, 2011.
25. Departmental Construction Norms 007–88. Construction of Long Distance and Field Pipelines, Moscow: Minneftegazstroi, 1989.
26. The Chance Encyclopedia of Anchoring, Bulletin No. 4–9401, Section B: Anchors and Anchor Tools, http://www.abchance.com/resources/literature/encyclopedia/049401B.pdf (28.04.2012).
27. Stazhevsky, S.B., Kramadzhyan, A.A., Rusin, E.P., and Khan, G.N., Claim for an invention
no. 2011101239/03 (001543), patent decision as of March 2, 2012.
MINERAL MINING TECHNOLOGY
EVALUATION METHODOLOGY FOR STRUCTURAL COMPLEXITY
OF ORE DEPOSITS AS DEVELOPMENT TARGETS
K. N. Trubetskoy, Yu. P. Galchenko, and G. V. Sabyanin
The authors offer a new methodology for evaluating complexity of geological structure of ore deposits and base the determination procedure of criteria for comparing effects exerted by geological structure constituents on a chosen geotechnology.
Deposit, geological structure, complexity coefficient, evaluation, geotechnology, development
REFERENCES
1. Kreiter, V.M., Teoreticheskie osnovy poiskov i razvedki tverdykh poleznykh iskopaemykh (Theoretical Bases for Solid Mineral Prospecting and Exploration), Moscow: Nedra, 1964.
2. Rubtsov, S.K. and Shemetov, P.A., Upravlenie vzryvnym deistviem na massiv (Explosion Load Control in Rocks), Tashkent: Fan, 2011.
3. Trubetskoy, K.N., Galchenko, Yu.P., Zamesov, N.F., et al., Structure of Mining-Altered Subsoil, Vestn. RAN, 2002, vol. 72, no. 11.
4. Galchenko, Yu.P., Rodionov, V.N., and Sabyanin, G.V., Physical and Engineering Basis for New Underground Geotechnologies, Inzh. Fiz., 2009, no. 6.
5. Razumovsky, O.S., Structured Foundation Idea, Dinamika i razvitie ierarkhicheskikh system. Teoreticheskie i prikladnye aspekty (History and Advance in Hierarchical Systems. Theoretical and Applied Aspects), Kazan: Volga-Press, 2003.
6. Cramer, H., Mathematical Methods of Statistics, Princeton University Press, 1999.
7. Galchenko, Y.P. and Sabyanin, G.V., Ecological Valuation of Geosphere Infringement due to Underground Mining, Geoekolog. Inzh. Geolog. Gidrogeoelog. Geokriolog., 2012, vol. 3.
8. Baikonurov, O.A., Klassifikatsiya i vybor metodov podzemnoi otrabotrki mestorozhdenii (Classification and Selection of Underground Mining Methods), Alma-Ata: Nauka, 1969.
9. Trubetskoy, K.N., Potapov, M.G., Vinitsky, K.E., et al., Spravochnik. Otkrytye gornye raboty (Reference Book. Opencast Mining), Moscow: Gornoe byuro, 1994.
10. Agoshkov, M.I., Borisov, S.S., and Boyarsky, V.A., Razrabotka rudnykh i nerudnykh mestorozhdenii (Metal and Nonmetal Deposit Mining), Moscow: Nedra, 1970.
11. Guretsky, V.M., Podzemnaya razrabotka mestorozhdenii s neravnomernym orudneniem (Underground Mining at Deposits with Nonuniform Ore Content), Moscow: Nedra, 1977.
12. Galchenko, Yu.P., Estimation of Structural Complexity of Ore Veins, Sovershenstvovanie metodov upravleniya izvlecheniem zapasov iz nedr pri razrabotke rudnykh mestorozhdenii (Improvement in Mineral Extraction Control in Metalliferous Deposits), Moscow: IPKON RAN SSSR, 1981.
13. Stefanovich, V.V., Primenenie koeffitsienta rudonosnosti (Ore Content Coefficient Application), Moscow: Nedra, 1972.
14. Chetverikov, L.I., A Mineral Deposit (Shape and Internal Structure), Geometrizatsiya mestorozhdenii poleznykh iskopaemykh (Geometrization of Mineral Deposits), Moscow: Nedra, 1977.
15. Galchenko, Yu.P., Estimation of Ore Content of Stoping Blocks in Lodes, Issledovanie parametrov i pokazatelei effektivnosti razrabotki zhil’nykh mestorozhdenii (Analysis of the Parameters and Indexes of Mining Performance in Lodes), Moscow: IPKON RAN SSSR, 1983.
GEOMECHANICAL SUBSTANTIATION OF MODIFIED ROOM-WORK IN FLAT THICK DEPOSITS WITH ORE DRAWING UNDER OVERHANG
A. A. Neverov
The author assesses stress–strain state of rock mass during mining with room-work and ore drawing under protection of overhang. It is determined how stability of chamber pillars and roof rocks depend on the type of geomechanical conditions of ore extraction. Besides, the article gives safe parametric ranges of the described geotechnology and its application areas for each of the discussed geomechanical models.
Mining method, stress–strain state, rock mass, pillar, room, roof, stability, safety
REFERENCES
1. Bronnikov, D.N., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep Level Ore Mining), Moscow: Nedra, 1982.
2. Freidin, A.M., Shalaurov, V.A., et al., Povyshenie effektivnosti podzemnoi razrabotki rudnykh mestorozhdenii Sibiri i Dal’nego Vostoka (Enhancement of the Efficiency of Underground Ore Mining in Siberia and Far East), Novosibirsk: Nauka, 1992.
3. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Mining-Induced Stress Fields), Novosibirsk: Nauka, 2005.
4. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part I: Modern Concept of the Stress State versus Depth, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 249–259.
5. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State.
Part II: Orebody Tectonotypes and Geomedium Models, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 421–428.
6. Nazarova, L.A., Freidin, A.M., and Neverov, A.A., Chamber Mining with Roof Caving at the Nikolaevsk Mine, Journal of Mining Science, 2005, vol. 41, no. 4, pp. 342–349.
7. Neverov, A.A., Vasichev, S.Yu., and Freidin, A.M., Flat Thick Ore Mining with Caving and Backfilling, Proc. All-Russian Conf. Fundamental Problems of the Industrial Geo-Environment, Novosibirsk: IGD Chinakala SO RAN, 2012.
8. Freidin, A.M., Neverov, A.A., Neverov, S.A., and Filippov, P.A., Sovremennye sprosoby razrabotki rudnykh zalezhei s obrusheniem na bol’shikh glubinakh (Current Deep Level Ore Mining Methods with Caving), Novosibirsk: SO RAN, 2008.
9. Gorbunov, S.P., et al., RF patent no. 2306418, Buyll. Izobret., 2007, no. 26.
10. Freidin, A.M., Tapsiev, A.P., Uskov, V.A., Nazarova, L.A., Zaporozhtsev, A.A., and Sergunin, M.P., Reequipment and Development of Mining Method at Zapolyarny Mine, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 290–299.
11. Zienkiewicz, O., The Finite Element Method in Engineering Science, New York: McGraw-Hill, 1971.
12. Litvinski, G.G., Analiticheskaya teoriya prochnosti gornykh porod i massivov (Analytical Theory of Strength of Rocks and Rock Masses), Donetsk: Nord-Press, 2008.
13. Kazikaev, D.M., Geomekhanika podzemnoi razrabotki rud/ucheb. dlya vuzov (Geomechanics of Underground Ore Mining/College Textbook), Moscow: MGU, 2005.
14. Freidin, A.M., Neverov, A.A., Neverov, S.A., and Filippov, P.A., Mine Stability with Application of Sublevel Caving Schemes, Journal of Mining Science, 2008, vol. 44, no. 1, pp. 82–91.
GEOINFORMATION SCIENCE
INFORMATION SUPPORT OF MINERAL MINING AND EXPLOITATION IN THE KHIBINY MOUNTAINS AREA
S. V. Lukichev and O. V. Nagovitsin
The paper deals with the creation and regular upgrading of the Khibiny Mountains ore-mining area model, including objects of geological environment, relief, open-cast and underground mining, industrial and social infrastructure. The authors show feasibility of creating such a model and indicate its potential users.
Mineral deposit, rocks, database, mining area, digital models, Khibiny Mountains, geotechnology, MineFrame system, infrastructure
REFERENCES
1. Kamenev, E.A. and Mineev, D.A., Novye Khibinskie apatitovye mestorozhdeniya (New Khibiny Apatite Deposits), Moscow: Nedra, 1982.
2. Svinin, V.S., Zvonar’, A.Yu., and Zaporozhets, V.Yu., Strategic Planning as the Basis of Stable Mine Operation, Gorny Zh., 2009, no. 9.
3. Mel’nikov, N.N. and Fedorov, S.G., Innovation Project for Development of Oleny Ruchey Deposit in the Khibiny, Gorny Zh., 2010, no. 9.
4. Lukichev, S.V. and Nagovitsin, O.V., MineFrame 3.0 Automated System, Gorn. Promyshl., 2005, no. 6.
5. Lukichev, S.V. and Nagovitsin, O.V., Computerized Engineering Support in Hard Mineral Mining Operations, Gorny Zh., 2010, no. 9.
6. Kamenev, E.A., Poiski, razvedka i geologo-promyshlennayay otsenka apatitovykh mestorozhdenii Khibinskogo tipa (Exploration, Geological and Production Survey of Khibiny-Type Apatite Deposits, Leningrad:
Nedra, 1987.
7. Kozyrev, A.A., Semenova, I.E., and Avetisyan, I.M., Geomechanical Model of the Khibiny Rockmass as the Basis to Predict the Stress–Strain State in Mineral Mining at Operating and Perspective Apatite Deposits, Proc. All-Russ. Conf. Geodynamics and Stress State of the Earth’s Interior, vol. 1, Novosibirsk, IGD SO RAN, 2011.
8. Kozyrev, A.A., Panin, V.I., and Semenova, I.E., Geodynamic Risk Management in Khibiny Apatite Mines, Gorn. Inform.-Analit. Byull., 2010, no. 12.
MINERAL DRESSING
IMPROVING GOLD FLOTATION SELECTIVITY BY
USING NEW COLLECTING AGENTS
V. A. Chanturia, T. V. Nedosekina, and A. O. Gapchich
As a result of the present research into the effect of xanthogenate and new collecting agents on flotation properties of gold, the authors defined selective characteristics of a nitrogen-containing agent (MTKh) and phosphorus-containing agent (DIPh) relative to gold. The article describes testing the new collecting agents on gravity tailings of the quartz–sulfide–gold ore.
Gold coating on pyrite, xanthogenate, nitrogen-containing agent MTKh, di-isobutyl dithiophosphinate (DIPh), monomineral flotation, adsorption, electrode potential, ore flotation
REFERENCES
1. Abramov, A.A., Design Principles of Selective Collecting Agents, Journal of Mining Science, 2011,
vol. 47, no. 1, pp. 109 121.
2. Busev, A.I. and Ivanov, V.M., Analiticheskaya khimiya zolota (Analytical Chemistry of Gold), Moscow: Nauka, 1973.
3. Chanturia, V.A., Nedosekina, T.V., Getman, V.V., and Gapchich, A.O., New Agents to Recover Noble Metals from Rebellious Ores and Other Materials, Journal of Mining Science, 2010, vol. 46, no. 1, pp. 66–71.
4. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii (Electrochemistry of Sulfides. Theory and Practice of Flotation), Moscow: Ruda i Metally, 2008.
5. Meretukov, M.A., Zoloto: khimiya, mineralogiya, metallurgiya (Gold: Chemistry, Mineralogy, Metallurgy), Moscow: Ruda i Metally, 2008.
6. Mitrofanov, S.I. and Ryskin, M.Ya., Electrochemical Properties of Minerals and Adsorption of Collecting Agents, Proc. VIII Int. Cong. Min. Proc., vol. 2, Leningrad, 1969.
7. Leonov, S.B. and Baranov, A.N., True Electrode Potentials of Minerals and their Relation to Adsorption of Reagents and Flotation Properties, Journal of Mining Science, 1974, vol. 10, no. 5, pp. 613 617.
ACTIVITY AND SELECTIVITY OF CARBOXYLIC ACIDS AS FLOTATION AGENTS
S. A. Kondrat’ev
The article proves that the strength of a flotation agent depends on the surface pressure of its molecules, or the ion–molecule associates, at the air–solution contact. Based on the found relationship of the flotation strength and surface pressure of a reagent, the author determines collecting activity and selectivity of the reagent, and suggests the method for enhancing quality of separation of minerals having akin surface properties.
Carboxylic acids, activity and selectivity of reagent
REFERENCES
1. Bogdanov, O.S., Maksimov, I.P., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Bogdanov, O.S. (Ed.), Moscow: Nedra, 1980.
2. Ryaboi, V.I., Hydroxide Collectors, Fiziko-khimicheskie osnovy teorii flotatsii (Physicochemical Basis of the Flotation Theory), Moscow: Nauka, 1983.
3. Kulkarni, R. D. and Somasundaran, P., Kinetics of Oleate Adsorption at the Liquid/Air Interface and Its Role in Hematite Flotation, Symposium Series, AIChE, 1975, vol. 71, no. 150.
4. Zhivankov, G.V. and Ryaboi, V.I., Collecting Ability and Surface Activity of Higher AEROFLOTS, Obog. Rud, 1985, no. 3.
5. Somasundaran, P., The Role of Ionomolecular Surfactant Complexes in Flotation, International Journal of Mineral Processing, 1976, vol. 3.
6. Kondrat’ev, S.A., Estimation of Flotation Activity of Collecting Agents, Obog. Rud, 2010, no. 4.
7. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part I, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 173–181.
8. Kondrat’ev, S.A., Reagenty-sobirateli v elementarnom akte flotatsii (Collecting Reagents in Unit Process of Flotation), Novosibirsk: SO RAN, 2012.
9. Ignatkina, V.A., Development of Theory on Selectivity of Collectors Combinations in Flotation of Complex Nonferrous Metal Ores, Doctorate (Tech. Sci.) Dissertation, Moscow: MISIS, 2011.
10. Finch, J.A. and Smith, G.W., Dynamic Surface Tension of Alkaline Dodecylamine Solutions, Journal of Colloid and Interface Science, 1973, vol. 45, No. 1.
11. Mitrofanov, S.I. and Sokolva, G.E., Flotation of Barite from Dolomitic Limestone Using Alkyl Sulfates at the Mirgalimsai Preparation Plant, Issledovanie obogatimosti rud tsvetnykh metallov (Analysis of Preparation Characteristics of Nonferrous Metal Ores), Moscow: Tsvetmetinformatsiya, 1965.
12. Kurkov, A.V., Basis for the Theory and Practice of Development of Flotation Reagents and Processes for Low-Grade Complex Rare Metal Ores Aimed at Low-Waste Production, Doctorate (Tech. Sci.) Dissertation, Moscow: VNIIKhT, 1999.
COMPREHENSIVE UTILIZATION OF THE FAR EASTERN
APATITE-CONTAINING RAW MATERIALS
T. N. Aleksandrova, N. M. Litvinova, M. A. Gurman, and A. V. Aleksandrov
The new apatite flotation mode with a collecting agent manufactured from the fish-processing wastes is worked out based on the investigation into the feasibility of the comprehensive apatite-containing material utilization.
Apatite-containing raw material, magnetic separation, flotation, mechanical activation, biotite concentrate
REFERENCES
1. Kolichestvennaya i geologo-ekonomicheskaya otsenka resursov nemetallicheskikh poleznykh iskopaemykh (Qualitative and Geoeconomical Evaluation of Nonmetallic Mineral Resources), vol. 1, Kazan: Novoe Znanie, 2007.
2. Beloborodov, V.I., Zakharova, I.B., Andronov, G.P., and Filimonova, N.M., Production of Apatite Concentrates from Fine-Grain Carbonate-Silicate Technological Sands, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 122–126.
3. Levin, B.V., Angelov, A.I., and Golovanov, V.G., Perspektivy polucheniya i pererabotki Kol’skogo apatitovogo kontsentrata povyshennoi krupnosti (Perspectives to Produce and Utilize Kola Coarse-Size Apatite Concentrates), Moscow: Mir Sery, N, Ð, and Ê, Issue 1, 2005.
4. Beloborodov, V.I., Zakharova, I.B., Andronov, G.P., Filimonova, N.M., and Barmin, I.S., Experience of Processing of Phosphorus-Bearing Material in Dumps at Kovdorsky Mining-and-Integrated Works, Gorny Zh., 2010, no. 9.
5. Ivanova, V.A. and Mitrofanova, G.V., Development of New Flotation Agents is a Way to Higher the Non-Sulfide Ore Treatment Efficiency, Gorny Zh., 2010, no. 9.
6. Barmin, I.S., Beloborodov, V.I., and Sedinin, D.F., Increasing the Apatite Flotation Efficiency by Using Hydroxyethylated Monoalkylphenols, Gorn. Inform.-Analit. Buyll., 2011, no. 4.
7. Mukatova, M.D., Petrov, B.F., and Petrovsky, A.A., RF patent no. 2079376, Byull. Izobret., 1997, no. 14.
8. Aleksandrov, A.V., Litvinova, N.M., and Aleksandrova, T.N., Physicochemical Modification of Rock Properties in Efficient Ore Preparation Process, Gorn. Inform.-Analit. Buyll., 2012, Special Issue.
9. Aleksandrova, T.N., Yatlukova, N.G., Litvinova, N.M., and Bilevich, I.Ya., RF patent no. 2323431, Byull. Izobret., 2008, no. 12.
10. Aleksandrova, T.N., Rasskazov, I.Yu., and Litvinova, N.M., Issues of Refractory Material Production, Ogneupory Tekhn. Keramika, 2010, nos. 4–5.
11. Aleksandrova, T.N., Aleksandrov, A.V., and Litvinova, N.M., Substantiation of Biotite Concentrate Production Process, Ogneupory Tekhn. Keramika, 2012, no. 3.
12. Sviridov, V.V. and Nikiforov, A.F., Fiziko-khimicheskie osnovy protsessov mikroflotatsii (Physicochemical Basis of Microflotation), Ekaterinburg: UGTU UPI, 2006.
OPTIMIZATION OF FLUSHING SLUICE FLOW IN
HYDROHOIST GOLD WASHING MACHINES
V. S. Litvintsev, A. M. Pulyaevsky, and P. P. Sas
The lab and commercial tests have validated basic parameters of flow at locks of high capacity sluice box with riffles. The found relations between the Darcy coefficient, Reynolds numbers and Froude numbers allow obtaining balanced design and technology parameters for industrial sluice boxes of the type of PGSH-II-50.
Gold placers, industrial device, flow parameters, high capacity sluice box, hydraulic resistance, Darcy coefficient
REFERENCES
1. Shorokhov, S.M., Tekhnologiya i kompleksnaya mekhanizatsiya razrabotki rossypnykh mestorozhdenii (Technology and All-Round Mechanization of Placer Mining), Moscow: Nedra, 1973.
2. Matsuev, L.P., Raschet i ekspluatatsiya promyvochnykh priborov (Calculation and Operation of Sluice Boxes), Magadan, 1958.
3. Bogdanov, V.I., Oborudovanie dlya transporta i promyvki peskov rossypei (Conveying and Washing Equipment at Placers), Moscow: Nedra, 1978.
4. Luchikhin, V.V., Using Nomograms in Sluice Designing, Kolyma, 1977, no. 5.
5. Leshkov, V.G., Razrabotka rossypnykh mestorozhdenii: ucheb. dlya vuzov (Placer Mining: College Textbook), Moscow: Gornaya kniga, 2007.
6. Mamaev, Yu.A., Litvintsev, V.S., Pulyaevsky, A.M., Ponomarchuk, G.P., and Korneeva, S.I., Regular Patterns in Migration and Concentration of High Density Valuable Minerals in Two-Phase Suspended Matter Carrying Flows, Gorn. Inform.-Analit. Byull., 1999, no. 1.
7. Sas, P.P., Fining Influence of Hydrodynamic Resistance of Two-Phase Flow on the Valuable Mineral Yield in Sluices, Izv. vuzov, Gorny Zh., 2011, no. 8.
8. Sas, P.P., Mathematical Model for Calculating Parameters of Sluice Flow, Proc. V Youth Science and Practice Conf. Problems in Subsoil Use, Ekaterinburg: UrO RAN, 2011.
9. Litvintsev, V.S., Development of Methods, Technologies and Equipment for Spoil Dumps Mining at Placers, Regional Conf. Problems of Gold Mining Spoil Dumps Development, Magadan: 2010.
10. Litvintsev, V.S., Ponomarchuk, G.P., and Banshchikova, T.S., Gold Content in the Gold Production-Generated Silt-and-Clayey Formations in the Far East Area, Journal of Mining Science, 2010, vol. 46,
no. 5, pp. 575–582.
GALENA AND ALKALI METAL XANTHATE INTERACTION
IN ALKALINE CONDITIONS
B. E. Goryachev and A. A. Nikolaev
Using the formal kinetics method, the authors have analyzed kinetics of galena and alkali metal xanthate interaction in strong alkaline conditions and explained the existence of the mixed-composition sorptive layer on galena surface.
Galena, ion-xanthate, flotation, kinetic circuit
REFERENCES
1. Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation Methods), Moscow: MGTU, 2008.
2. Abramov, A.A., Flotatsiya. Fiziko-khemicheskoe modelirovanie protsessov. Sobr. soch. (Flotation. Physicochemical Modeling of Processes. Collected Edition), Moscow: Gornaya kniga, 2010.
3. Abramov, A.A., Teoreticheskie osnovy optimizatsii selektivnoi flotatsii sul’fidnykh rud (Theoretical Bases for Optimization of Selectivity of Sulfide Ore Flotation), Moscow: Nedra, 1978.
4. Mashevsky, G.N., Petrov, A.V., Lyura, M., et al., Multisensor Electrochemical Flotation Control System CHENA® by OUTOTEC, Obog. Rud, 2009, no. 5.
5. Mashevsky, G.N., Petrov, A.V., Lyura, M., et al., Development of a new product line by OUTOTEC for Electrochemical Flotation Control, Tsvet. Metally, 2010, no. 2.
6. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemistry of Galena Oxidation as the Basis for Optimization of Agent Modes in Flotation of Polymetallic Ores, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 681–689.
7. Goryachev, B.E. and Nikolaev, A.A., Galena Oxidation Mechanism, Journal of Mining Science, 2012,
vol. 48, no. 2, pp. 354–362.
8. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemical Kinetics of Galen–Sulfhydryl Collector Interaction as the Basis to Develop Ion Models of Sorption Layer Formation on the Surface of Sulfide Minerals, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 382–389.
9. Goryachev, B.E., Model of Collector Sorption Layer Formation on the Surface of Nonferrous Heavy Metal Sulfides, Tsvet. Metally, 1989, no. 12.
10. Abramov, A.A., Leonov, S.B., and Sorokin, M.M., Khimiya flotatsionnykh sistem (Chemistry of Flotation Systems), Moscow: Nedra, 1982.
11. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part I, Journal of Mining Science, 2008, vol. 44, no. 6, pp. 628–635.
12. Vigdergauz, V.E. and Kondrat’ev, S.A., Role of Dixantogen in Froth Flotation, Journal of Mining Science, 2009, vol. 45, no. 4, pp. 398–403.
13. Woods, R., The Oxidation of Ethyl. Xanthate on Platinum, Gold, Copper and Galena Electrodes. Reaction to the Mechanism of Mineral Flotation, J. Phys. Chem., 1971, vol. 75, no. 3.
14. Woods, R., Electrochemistry of Sulphide Flotation, Proc. Aust. Inst. Min. and Met., 1972, no. 241.
DIXANTHOGEN FORMATION IN FLOTATION
N. I. Eliseev
It is illustrated using test data on liquid-phase Pb(NO3)2 and ROCSSK reactions that dixanthogen originates in the solution, and the origination mechanism is suggested. The said reaction can happen at galena surface in the course of galena oxidation in flotation.
Flotation, xanthate, dixanthogen, galena
REFERENCES
1. Kakovsky, I.A. and Arashkevich, V.M., Interaction of Xanthates and Sulfide Minerals, Tsvet. Metally, 1963, no. 4.
2. Arnaud, M., Partyka, S., and Cases, J.M., Ethylxanthate Adsorption onto Galena and Sphalerite, Colloids Surf., 1989, no. 37.
3. Persson, P. and Persson, J., Interactions between Sulfide Minerals and Slkylxanthate Ions: 3. A Vibration Spectroscopic, Calorimetric and Absorption Spectrophotometric Study of the Interaction between Galena and Ethylxanthate Ions in Aqueous Solution, Colloids Surf., 1991, no. 58.
4. Golikov, A.A., Interaction between Collectors of the Type of Xanthates on Sulfide Mineral Surface, Tsvet. Metally, 1961, no. 11.
5. Glazunov, L.A., Enhancement of Mineral Flotation by Forming Elemental Sulfur on the Mineral Surface, Tsvet. Metally, 1986, no. 6.
6. Eliseev, N.I., Kirbitova, N.V., and Glazyrina, L.N., Formation of Sulfur on Mineral in Sulfide Ore Flotation, Tsvet. Metally, 1984, no. 9.
7. Finkelstein, N.P. and Lovell, V.M., Fundamental studies of Flotation Process: The Work of the National Institute for Metallurgy, Journal of the South African institute of Mining and Metallurgy, 1972, Feb.
8. O?Dea, A.R., et al., Secondary Ion Mass Spectrometry Investigation of the Interaction of Xanthate with Galena, Int. J. Miner. Process, 2000, no. 61.
9. Lipets, M.E., Hydrophobe Effect of Ion Collectors in Flotation, Tsvet. Metally, 1945, no. 5.
10. Pomianowski, A. and Leja, J., Spectrophotometric Study of Xanthate and Dixanthogen Solutions, Canadian Journal of Chemistry, 1963, no. 41.
11. Avdokhin, V.M. and Abramov, A.A., Okislenie sul’fidnykh mineralov v protsessakh obogashcheniya (Oxidation of Sulfide Minerals in Processing), Moscow: Nedra, 1989.
12. Tanabe, K., New Solid Acids and Bases: Their Catalytic Properties, Kodansha, 1989.
13. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part I, Journal of Mining Science, 2008, vol. 44, no. 6, pp. 628–635.
14. Kondrat’ev, S.A., Physically Sorbed Collectors in Froth Flotation and Their Activity. Part II, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 173–181.
MINING ECOLOGY
PRINCIPLES OF MACRO-ECOLOGICAL RISK MAPPING OF MINING INDUSTRY AREAS
G. V. Kalabin
The article deals with research findings in choosing and validating the main ecological indexes and geoecological indicators for ranking mining and processing industry units according to their environmental impact, on the ground of quantity relatives characterizing environmental and health conditions in their location areas. It is suggested to use the presented indexes and figures of geoecological indicators as legend in macro-ecological risk mapping.
Mining industry units, ecological indexes, geoecological indicators, macro-ecological risk maps
REFERENCES
1. Zakharov, V.M., Baranov, A.S., and Borisov, V.I., Zdorov’e sredy: metodika otsenki (Environmental Health: Estimation Procedure), Moscow: Reform-Press, 2000.
2. Zakharov, V.M., Gubinishvili, A.T., Baranov, A.S., and Borisov, V.I., Zdorov’e sredy: praktika otsenki (Environmental Health: Practical Estimation), Moscow: Reform-Press, 2000.
3. Korte, F., Lehrbuch der okologischen Chemie, Stuttgart: Thieme Verlag, 1987.
4. Bashkin, V.N., Ekologicheskie riski: raschet, upravlenie, strakhovanie (Ecological Risks: Calculation, Control, Insurance), Moscow: Vyssh. Shk., 2007.
5. Prokhorov, B.B., Prikladnaya antropologiya (Applied Anthropology), Moscow: MNEPU, 1998.
6. Prokhorov, B.B., Mediko-ekologicheskoe raionirovanie i regional’nyi prognoz zdorov’ya naseleniya Rossii (Medical-Economical Zoning and Regional Forecast of Population Health in Russia), Moscow: MNEPU 1996.
7. Sverzhev, Yu.N. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biocommunities), Moscow: Nauka, 1996.
8. Gunin, P.D., Druk, A.Ya., Krasnoshchekov, Yu.N., et al., Anthropogenic Damage of Eco-Systems in Main Natural Zones, Izv. AN SSSR, Geogr., 1991, no. 2.
9. Kalabin, G.V., Qualitative Assessment of Vegetation in Disturbed Mining-and-Metallurgical Areas by the Remote and Surface Monitoring, Journal of Mining Science, 2011, vol. 47, no. 4, pp. 538–546.
10. Kalabin, G.V. and Galchenko, Yu.P., Bases for Quantitative Estimation of Area Damage by Joint Remote and Surface Monitoring Data and Approbations, Ekol. Sist. Pribor., 2007, no. 2.
11. Revich, B.A., Goryachie tochki khimicheskogo zagryazneniya okruzhayushchei sredy i zdorov’e naseleniya Rossii (Hot Spots of Chemical Pollution of the Environment and the Population Health in Russia), Zakharov, V.M. (Ed.), Moscow: Akropol,’ Obshch. Palata RF, 2007.
12. Governmental Report on Ecological Situation in Russian Federation in 2006–2009, Moscow: Gos. tsentr ekol. program, 2007–2010.
13. Review of Natural Pollutions in Russian Federation in 2006–2009, Moscow: Rosgidromet, 200–2010.
14. Antipanova, N.A., Development Risk for Cancer of Reproductive Organs of Inhabitants of a Large Iron Industry Center, Probl. Reproduk., 2007, no. 1.
15. Volzhensky, A.V., Integrated Processing and Use of Metallurgy Sludge in Construction, Stroit. Mater., 1986, no. 5.
16. Prusakov, V.M., Verzhbitskaya, E.A., et al., Sotsial’no-gigienicheskii monitoring i otsenka efektivnosti meropriyatii po snizheniyu riska zdorov’yu naselenia na ekologicheski neblagopriyatnykh territoriyakh (Social and Hygiene Monitoring and the Population Health Risk Reduction Effectiveness Evaluation in the Environmentally Neglected Areas), Moscow, 2003.
17. Vyznikov, V.V. and Korotkina, N.I., Integrated Estimate of Environmental Pollution of Child Health Risks in Shelekhov Town, Meditsinskie aspekty okhrany okruzhayushchei sredy (Medical Aspects of Environmental Protection), Novokuznetsk, 1991.
18. Trutnev, Yu.P., Doklad na Prezidiume Gossoveta po ekologii (Report at the Presidium of the State Council on Ecology), Elista, 2010.
19. Mormil, S.I., Sal’nikov, V.L., Amosov, L.A., et al., Tekhnogennye mestorozhdeniya Srednego Urala i otsenka ikh vozdeistviya na okruzhayushchuyu sredy (Mining Waste Dumps in the Mid-Urals and Their Ecological Impact Estimation), Moscow: NII-Priroda, 2002.
20. Malykh, O.L., Privalova, L.I., et al., Lead and Its Impact on Child Health in Terms of Pervouralsk Town in Sverdlovsk Region, Gigienich. Vestn. Ural., 2003, vol. 1, 18.
21. Prirodnye resursy i ekologiya Rossii, Federal’nyi atlas (Natural Resources and Ecology in Russia, Federal Atlas), Moscow: NII-Priroda, 2002.
22. Tronin, A.A., Kritsuk, S.G., and Latypov, I.Sh., Nitrogen Dioxide in the Air of Russia by Satellite Data, Sovr. Probl. Distants. Zond. Zemli iz Kosm., 2009, vol. 2, no. 6.
23. Tikunov, V.S., Modelirovanie v kartografii (Modeling in Map-Making), Moscow: MGU, 1997.
24. Kalabin, G.V., Types of Architectural and Physical Layouts of Underground Mine Infrastructure and the Ecological Impact Estimate, Marksheider. Nedropol’z., 2011, no. 2.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|