JMS, Vol. 48, No. 5, 2012
GEOMECHANICS
WATER-TIGHT STRATUM FAILURE UNDER LARGE-SCALE MINING.
PART I
A. A. Baryakha, N. A. Samodelkinaa, and I. L. Pan’kovb
The physical simulation of water-tight stratum failure using one-layer and multi-layered plate-beams has revealed some patterns of formation of long main fissures in the plate-beams under bending, depending on thickness and amount of the layers. The experimental results become a parametric basis for mathematical modeling of real-time failure of a water-tight stratum.
Water-tight stratum, physical simulation and mathematical modeling, fissuring, failure
REFERENCES
1. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Mining-Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
2. Nazarova, L.A., Nazarov, L.A., and Leont’ev, A.V., Three-Dimensional Geomechanical Model of the Tashtagol Iron-Ore Deposit, Journal of Mining Science, 1998, vol. 34, no. 3, pp. 209–216.
3. Petukhov, I.M. and Linkov, A.M., Mekhanika gornykh udarov i vybrosov (Rockburst and Outburst Mechanics), Moscow: Nedra, 1983.
4. Zubkov, V.V., Zubkova, I.A., Linkov, A.M., and Mogilevskaya, S.G., Evaluating the Stress State of the Rock Bed near a Breakage Working of an Arbitrary Three-Dimensional Shape, Journal of Mining Science, 1986, vol. 22, no. 3, pp. 176–182.
5. Kuznetsov, S.V. and Trofimov, V.A., Deformation of a Rock Mass during Excavation of a Flat Sheet-Like Hard Mineral Deposit, Journal of Mining Science, 2007, vol. 43, no. 4, pp. 341–360.
6. Konstantinova, S.A. and Chernopazov, S.A., Mathematical Modeling of the Stress-Strain State in Rock and Artificial Masses during Slice Chamber Mining of Underpit Reserves of the Internatsionalnaya Kimberlite Pipe, Journal of Mining Science, 2005, vol. 41, no. 3, pp. 215–224.
7. Baryak, A.A. and Shumikhina, A.Yu., Large-Scale Mathematical Modeling of Geomechanical Processes in Potassium Mining, Izv. vuzov, Gorny Zh., 1993, no. 4.
8. Baryakh, A.A., Eremina, N.A., and Gracheva, E.A., Crack Development in Disturbed Salt Bed, Journal of Mining Science, 1994, vol. 30, no. 5, pp. 487–490.
9. Zhuravkov, M.A., Smychnik, A.D., and Bogdan, S.I., Modeling of Deformation Processes in the Rock Mass Full-Thickness. Part I: Criteria for Pointing Out Characteristic Zones in the Undermined Rock Mass, Gorn. Mekh., 2004, nos. 3 and 4.
10. Olovyanny, A.G., Mathematical Modeling of Crack Growth in Rock Mass above the Extracted Potash Salt Strata, Nauch. Vestn. MGGU, 2012, no. 3.
11. Wallner, M., Lux, K.-H., Minkley, W., and Hardy, H.R., The Mechanical Behavior of Salt—Understanding of THMC Processes in Salt, London: Taylor&Francis Group, 2007.
12. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob’ektov v
usloviyakh Verkhnekamskogo mestorozhdeniya kaliinykh solei (Instructions on Mine Flooding
Protection and Underworked Surface Safety in the Upper Kama Potassium Salt Deposit Conditions), Saint-Petersburg, 2008.
13. Deshkovsky, V.N., Nevel’son, I.S., and Novokshonov, V.N., Efficient Approach to Defining Safe Mining Parameters for Potassium and Salt Strata, Marksheider. Nedropol’z., 2007, no. 1.
14. Jeremic, M.L., Rock Mechanics in Salt Mining, Rotterdam: Balkema, 1995.
15. Krainev, B.A., Experimental Tests to Find Safe Mining Conditions for Water-Tight Strata in Potassium Mines, Aktual’nye voprosy dobychi i pererabotki prirodnykh solei. Sb. nauch. trudov (Priority Tasks in Mineral Salt Extraction and Processing. Collected Scientific Works), Saint-Petersburg: OAO VNII galurgii, 2001.
16. Fedos’ev, V.I., Soprotivlenie materialov (Strength of Materials), Moscow: Fizmatgiz, 1960.
17. Zienkiewicz, O., The Finite Element Method in Engineering Science, New-York: McGraw-Hill, 1971.
18. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creeping), Moscow: Mashinostroenie, 1975.
19. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (The Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
20. Lin’kov, A.M., Mechanics of Jointed Rocks, Journal of Mining Science, 1979, vol. 15, no. 4, 309–314.
21. Baryakh, A.A., Konstantinova, S.A., and Asanov, V.A., Deformirovanie solyanykh porod (Salt Rock Deformation), Ekaterinburg: UrO RAN, 1996.
22. Timoshenko, S.P and Goodier, J.N., Theory of Elasticity, McGraw-Hill, 1969.
INVERSE PROBLEM SOLUTION FOR ESTIMATING GAS CONTENT
AND GAS DIFFUSION COEFFICIENT OF COAL
L. A. Nazarova, L. A. Nazarova, G. Ya. Polevshchikov, and R. I. Rodin
The authors suggest the method of interpreting experimental data on gas pressure in a pressure flask containing a coal specimen, that allows defining gas content and gas diffusion coefficient of coal. The offered method is based on solving an inverse problem for a set of diffusion equations each fitting a certain size within the coal specimen grain-size composition. The numerical experiments have shown that a quantitative estimate of gas content has error not higher than a few per cents, even with input data distortion.
Coal, gas content, diffusion coefficient, inverse problem, data interpretation, experiment
REFERENCES
1. Chernov, O.I. and Rozantsev, E.S., Podgotovka shakhtnykh polei s gazovybrosoopasnymi plastami (Preparation of Gas Outburst-Hazardous Coal Fields), Moscow: Nedra, 1975.
2. Nozhkin, N.V., Zablagovremennaya degazatsiya ugol’nykh mestorozhdenii (Advanced Degassing of Coal Deposits), Moscow: Nedra, 1979.
3. Kryuger, D.V., Possibilities of International Recovery and Utilization of Mine Methane, Preprint of Methane Center, Kemorovo, 1995, no. 2.
4. United States Environmental Protection Agency, 1994: International Anthropogenic Methane Emission for 1990, EPA-230-R93–110, Office of Policy, Planning and Evaluation, Washington, D.C.
5. Polevshchikov, G.Ya., Shinkevich, M.V., and Plaksin, M.S., Gas-Kinetics of Coal–Methane Disintegration in the Belt Road of Extraction Site, Gorn. Inform.-Analit.Byull., 2011, no. 8.
6. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problem ugol’nykh plastov (Theoretical and Applied Methods for Settling Coal-Associated Issues), Moscow: AGN, 2000.
7. Polevshchikov, G.Ya. and Plaksin, M.S., Gas-Geomechanical Processes in Development Heading Operations, Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol’noi promyshlennosti (Scientific Center Bulletin on Safety in Coal Industry), Kemerovo, 2010.
8. Kozyreva, E.N., Shinkevich, M.V., and Rodin, R.I., Gas-Kinetic Consequence of the Nonlinearity of Geomechanical Processes in Rock Mass in Kuzbass Mines, Proc. 2nd Russia–China Conf. Nonlinear Geomechanical-Geodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012.
9. Tikhonov, A.N., Zhukhovitskii, A.A., and Zabezhinskii, Ya.L., Gas Absorption from Air Flow by a Granular Material Layer, Zh. Fiz. Khim., 1946, vol. 20, no. 2.
10. Skochinsky, A.A. and Khodot, V.V. (Eds.), Metan v ugol’nykh plastakh (Methane in Coal Seams), Moscow: Ugletekhizdat, 1958.
11. Khristianovich, S.A. and Kovalenko, Yu.F., Measurement of Gas Pressure in Coal Seams, Journal of Mining Science, 1988, vol. 24, no. 3, pp. 181–199.
12. Karev, V.I. and Kovalenko, Yu.F., Theoretical Model of Gas Filtration in Gassy Coal Seams, Journal of Mining Science, 1988, vol. 24, no. 6, pp. 528–536.
13. Nazarov, L.A. and Nazarova, L.A., Determination of the Filtration Properties and Stresses in Coal Seams by Solving the Inverse Problem, Journal of Mining Science, 2000, vol. 36, no. 2, pp. 106–113.
14. http://www.astm.org/Standards/D7569.htm.
15. Standards Association of Australia, 1999, Australian Standard AS. 3980–1999: Guide to the Determination of Gas Content of Coal Seams. Direct Desorption Method, North Sydney, NSW.
16. Smith, D.M., Methane Diffusion and Desorption in Coal, PhD Thesis, University of New Mexico, 1982.
17. Bertard, C., Bruyet, B., and Gunther, J., Determination of Desorbable Gas Concentration of Coal (Direct Method), Int. J. Rock Mech. Min. Sci., 1970, vol. 7, no. 1.
18. Tikhonov, A.N. and Samarsky, A.A., Uravneniya matematicheskoi fiziki (Mathematical Physics Equations), Moscow: Nauka, 1972.
19. Diamond, W.P. and Schatzel, S.J., Measuring the Gas Content of Coal: A Review, Int. J. of Coal Geology, 1998, vol. 35, Issues 1–4.
20. Frank-Kamenetsky, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 2nd Edition, 1971.
21. Samarsky, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to Theory of Difference Schemes), Moscow: Nauka, 1971.
22. Vasil’ev, F.P., Chislennye metody resheniya ekstremal’nykh zadach (Numerical Methods of Solving Extremum Problems), Moscow: Nauka, 1988.
23. Karchevsky, A.L., Numerical Solution of One-Dimensional Inverse Problem for an Elastic System, Dokl. AN, 2000, vol. 375, no. 2.
FORMATION OF TENSION AND DELAMINATION AREAS
IN. A. LONG EXCAVATION’S ROOF
S. V. Kuznetsov and V. A. Trofimov
The article discusses assessment of geomechanical state and behavior of roof rocks in a long excavation as the production heading is advanced. Initial conditions and propagation of growth conditions of delamination fractures have been found, including dynamic regime.
Mine excavation, excavation roof, rock lamination, rock pressure, dynamic events
REFERENCES
1. Kuznetsov, S.A. and Trofimov, V.A., Deformation of a Rock Mass during Excavation of a Flat Sheet-Like Hard Mineral Deposit, Journal of Mining Science, 2007, vol . 43, no. 4, pp. 341–360.
2. Kuznetsov, S.V., General Relationships and Characteristic Features of Stress Redistribution in a
Rock Mass during Development of a Worked-Out Space, Journal of Mining Science, 1988, vol. 24,
no. 6, pp. 501–513.
3. Kuznetsov, S.V. and Trofimov, V. A. Assessment Method for Sheeting of Rocks in an Extended
Stope Roof, Proc. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk:
IGD SO RAN, 2010.
4. Kuznetsov, S.V. and Trofimov, V.A., Izmenenie napryazhenno-deformirovannogo sostoyaniya kraevoi chasti ugol’nogo plasta, predshestvuyushchee gazodinamicheskim yavleniyam (Change in the Stress–Strain State in the Coal Seam Periphery prior to Gas-Dynamic Phenomena Occurrence), Alushta: Nauch. Shk. Akad. Khristianovicha, 2010.
5. Seryakov, V.M., Calculation of Stress–Strain State of an Over-Goaf Rock Mass, Journal of Mining Science, 2009, vol. 45, no. 5, pp. 420–426.
6. Baryakh, A.A. and Fedoseev, A.K., Sinkhole Formation Mechanism, Journal of Mining Science, 2011, vol. 47, no. 4, pp. 404–412.
7. Seryakov, V.M., The Inclusion of Rheological Properties of Rocks to Calculation of Stress–Strain State of an Undermined Rock Mass, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 606–611.
8. Kuznetsov, S.V. and Trofimov, V.A., Regular Patterns in Subsidence Process in a Long Excavation Roof, III Erzhanovskie chteniya (Erzhanov’s Readings III), Aktobe, 2010.
9. Alekseev, A.D., Nedodaev, N.V., Starikov, G.P., and Serebrova, N.N., Influence of Surfactant Water-Solutions on the Outburst Hazardous Seam Conditions, Vnezapnye vybrosy na bol’shikh glubinakh (Deep Outbursts), Kiev: Naukova dumka, 1979.
EFFECT OF WATER SATURATION ON ELASTIC CHARACTERISTICS
OF ALLUVIAL SANDS IN TERMS OF THE NAGIM RIVER PLACER
Yu. A. Mamaev and N. P. Khrunina
The authors define elastic moduli of high-argillaceous alluvial sand with natural humidity content, compare the experimentally obtained and calculated moduli for sands saturated with water to 30%, and give recommendation on disintegration of high-argillaceous sand with high fine gold content.
Disintegration, ultrasonic velocity, axial tension modulus, shear modulus
REFERENCES
1. Wan-Wan-E, A.P., Perspective Exploitation of Ancient and Buried Gold-Bearing Placer Deposits in the Far East, Gorn. Inform.-Analit. Byull., 2012, no. 2.
2. Shemyakin, S.A., Substantiation of the Efficient Open Mining Processes Based on the State-of-the-Art Rock Extraction Technology, Cand. Sci. (Eng.) Dissertation, Khabarovsk: IGD DVO RAN, 2004.
3. Mamaev, Yu.A., Pulyaevskii, A.M., and Khrunina, N.P., Theoretical and Practical Issues of the Influence of Wave Processes on a Dispersed Medium, Izv. vuzov, Gorny Zh., 2010, no. 7.
4. Mamaev, Yu.A. and Khrunina, N.P., Establishment of Optimal Initial Parameters of the Sound Effect on the Pulp in the Sump Collector in Open Mining of High Argillaceous Placers, Gorn. Inform.-Analit. Byull., 2009, no. 7.
5. Vilkov, K.V., Integrated Calculation–Theoretical Procedure for Simulation of Processes Accompanying Pulse Energy Emission in Condensed Media, Cand. Sci. (Phys.-Math.) Dissertation, Moscow, 2004.
6. Agranat, B.A., Bashkirov, V.I., Kitaigorodskii, Yu.I., and Khavskii, N.N., Ul’trazvukovaya tekhnologiya (Ultrasonic Technique), Moscow: Metallurgia, 1974.
7. Khrunina, N.P. and Mamaev, Yu.A., Russian Federation patent no. 2348809, Byull. Izobret., 2009, no. 7.
8. Khrunina, N.P., Rasskazov, I.Yu., and Mamaev, Yu.A., Russian Federation patent no. 2433867, Byull. Izobret., 2011, no. 32.
9. Grigor’ev, A.L., Generation of Shock Waves by Pulse Electrical Discharges in Water and Investigation into their Effect on Obstacles, Cand. Sci. (Eng.) Dissertation, Moscow, 2007.
10. Gimadeev, M.M., Up-Dating the Procedure for Calculation of Energy Parameters of a Shock Wave Generated by a High-Voltage Electrical Discharge in Water in Terms of the Thermophysical Approach, Cand. Sci. (Eng.) Dissertation, Naberezhnye Chelny, 2009.
RESIDUAL OIL POCKETS AND THEIR STIMULATION
IN PRODUCTIVE FORMATIONS
V. I. Pen’kovsky, N. K. Korsakova, B. F. Simonov, and A. V. Savchenko
The article analyzes processes running in an oil pool under contour water flooding and resulting in formation of bypassed oil. Based on stability criteria, the authors discuss destabilization of the residual oil pockets by vibration so that the bypassed oil becomes proved & developed.
Capillar lockout, bypassed oil, terrigene structure, vibration effect
REFERENCES
1. Chuoke, R.L., van Meures, P., and van der Poel, C., The Instability of Slow, Immiscible, Viscous Liquid–Liquid Displacement in Permeable Media, Petrol. Trans., AIME, 1959, vol. 216.
2. Danaev, N.T., Korsakova, N.K., Pen’kovsky, V.I., Massoperenos v priskvazhinnoi zone i elektromagnitnyi karotazh plastov (Mass Transfer in the Well Zone and the Electromagnetic Logging in an Oil Reservoir), Almaty, 2005.
3. Antontsev, S.N., Domansky, A.V., and Pen’kovsky, V.I., Fil’tratsiya v priskvazhinnoi zone i problemy intensifikatsii pritoka (Filtration in Well Zone and the Oil Inflow Intensification Problems), Novosibirsk: IGiL SO AN SSSR, 1989.
4. Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Engineering Bases of Oil Recovery Enhancement by the Vibration-and-Wave Techniques), Novosibirsk: Nauka, 2010.
5. White, J.E., Seismic Waves: Radiation, Transmission, and Attenuation, McGraw Hill, 1965.
6. Aleksandrova, N.I., Chernikov, A.G., and Sher, E.N., Experimental Investigation into the One-Dimensional Calculated Model of Wave Propagation in Block Medium, Journal of Mining Science, 2005, vol. 41, no. 3, 232–239.
NUMERICAL MODELING AND ANALYSIS OF THE STRESS-STRAIN STATE IN AN ANISOTROPIC ROCK MASS BY THE METHOD OF GRAPHS
A. A. Tyrymov
An anisotropic elastic medium is discrete-modeled in the form of an oriented graph, based on the energy conservation law in a continuous element and its discrete model. The proposed method is applied to calculate stress state of a host rock mass surrounding mine workings.
Mathematical modeling, numerical methods, elasticity, graphs, stresses, strains, rock mass
REFERENCES
1. Kuzovkov, E.G., The Graph Model of an Elastic Medium in Cartesian Coordinates, Probl. Prochn.,
1993, no. 12.
2. Kuzovkov, E.G., Axisymmetric Graph Model of an Elastic Solid, Probl. Prochn., 1996, no. 6.
3. Tyrymov, A.A., The Graph Model of an Elastic Medium in Polar Coordinates, Izv. vuzov. Mashinostroenie, 1999, no. 1.
4. Trent, H., Isomorphism between Oriented Linear Graphs and Lumped Physical Systems, J. Acoustical Society of America, 1955, vol. 27, no. 3.
5. Lekhnitsky, S.G., Teoriya uprugosti anizotropnogo tela (Theory of the Anisotropic Body Elasticity). Moscow: Nauka, 1977.
6. Erzhanov, Zh.S., The Model of a Rock Mass with Double-Periodic System of Physical Slots, Mekhanika deformiruemykh tel i konstruktsii (Mechanics of Deformable Bodies and Structures), Moscow: Mashinostroenie, 1975.
7. Nemirovskii, Yu.V. and Tyrymov, A.A., The Stressed State in an Undisturbed Rock Mass with Schistosity and Curvature of the Beds, Soviet Mining Science, 1977, vol. 13, no. 2.
8. Chanyshev, A.I. and Efimenko, L.L., Mathematical Models of Block Media in Problems of Geomechanics. Part I: Deformation of Stratified Medium, Journal of Mining Science, 2003, vol. 39, no. 3, pp. 271–280.
9. Evstigneev, V.A. and Kas’yanov, V.N., Tolkovyi slovar’ po teorii grafov v informatike i programmirovanii (Dictionary of the Graph Theory in Informatics and Programming), Novosibirsk: Nauka, 1999.
10. Svami, M. and Tkhulasiraman, K., Grafy, seti i algoritmy (Graphs, Nets and Algorithms), Moscow:
Mir, 1984.
11. Zykov, A.A., Osnovy teorii grafov (Fundamentals of the Graph Theory), Moscow: Nauka, 1987.
12. Sigorskii, V.P., Matematicheskii apparat inzhenera (Engineer’s Mathematical Apparatus), Kiev: Tekhnika, 1975.
13. Gallagher, R., Finite Element Analysis: Fundamentals, Prentice-Hall, 1974.
EVALUATION OF METHANE RESOURCES IN KUZBASS IN THE CONTEXT OF NEW IDEAS ON METHANE OCCURRENCE IN COAL BEDS
T. A. Kiryaeva
The author evaluates methane content of Kuzbass coal fields on the basis of three forms of methane occurrence: free methane, occluded methane and, mainly, solid gas-and-coal solution (SGCS).
Reserves, resources, coal, methane, gas content, coal-and-methane geomaterials
REFERENCES
1. http://ru.wikipedia.org/wiki / (Coal Bed Methane).
2. http://www.vesti.ru/doc.html?id=341465.
3. http://www.gazprom.ru/production/extraction/metan/.
4. Egorov, P.V., Kurekhin, V.V., Vylegzhanin, V.N., et al., Podzemnaya razrabotka mestorozhdenii poleznykh iskopaemykh (Underground Mineral Mining), Kemerovo: Kuzbassvuzizdat, 2000.
5. Bobin, V.A., Sorbtsionnye protsessy v prirodnom ugle i ego strukture (Sorption Process and Structure of Coal), Moscow: IPKON AN SSSR, 1987.
6. Airuni, A.T., Sposoby bor’by s vydeleniyami metana na ugol’nykh shakhtakh (Suppression Methods for Methane Releases in Coal Mines), Moscow: TsNIEIugol’, 1991.
7. Malyshev, Yu.N., Airuni, A.T., Khudin, Yu.L., and Bol’shinskii, M.I., Metody prognoza i sposoby predotvrashcheniya vybrosov gaza, uglya i porod (Methods of Forecasting and Prevention of Gas, Coal, and Rock Outbursts), Moscow: Nedra, 1995.
8. Ettinger, I.L., Solutions of Methane in Coal, Khim. Tverd. Topl., 1984, no. 4.
9. Alekseev, A.D., Airuni, A.T., Zverev, I.V., et al., Svoistva organicheskogo veshchestva uglya
obrazovyvat’ s gazami metastabil’nye odnofaznye sistemy po tipu tverdykh rastvorov (Ability of Organic Compound in Coal to Form Metastable Single-Phase Systems with Gases by Type of Solid Solutions), Moscow: AEN, 1994.
10. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problem ugol’nykh plastov (Fundamental and Applied Approaches to Handling Problems of Coal Beds), Moscow: AGN, 2000.
11. Polevshchikov, G.Ya., Kozyreva, E.N., Kiryaeva, T.A., and Shinkevich, M.V., Influence of Gas Component on Disintegration of Coal–Methane Bed, Diagnostika i bezopasnost’: sb. nauch. trudov, posvyashchenny 60-letiyu prof. B. L. Gerike (Diagnostics and Safety: Collected Works for the 60th Anniversary of Prof. B. L. Gerike), Kemerovo: KuzGTU, 2008.
12. Polevshchikov, G.Ya. and Kiryaeva, T.A., Physicochemical Characteristics of Metastable Conditions in Coal–Methane Beds, Proc. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2007.
13. Kiryaeva, T.A., Razrabotka metoda otsenki gazodinamicheskoi aktivnosti ugol’nykh plastov po geologo-razvedochnym dannym na primere Kuzbassa (Development of Estimation Method for Gas-Dynamic Activity of Coal Beds Based on Geological Exploration Data in Terms of Kuzbass), LAP LAMBERT Academic Publ. GmbH & Co. KG Dudweiler, 2011.
14. Ugol’naya baza Rossii. Ugol’nye mestorozhdeniya Zapadnoi Sibiri (Kuznetskii, Gorlovskii, Zapadno-Sibirskii basseiny: mestorozhdeniya Altaiskogo kraya i Respubliki Altai) (Coal Resources in Russia. Coal Fields of the West Siberia (Kuznetsky, Gorlovsky, West-Siberian Coal Fields: Deposits of the Altai Territory and the Republic of Altai), Moscow: Geoinformtsentr, 2003.
15. Polevshchikov, G.Ya. and Pisarenko, M.V., Obosnovanie parametrov gornotekhnologicheskikh modulei ugol’nykh shakht Kuzbassa (Validation of the Parameters for Mine Engineering Modules for the Kazbass Coal Mines), Kemerovo: IUU SO RAN, 2004.
16. Alimov, A.I., Lezhnin, A.I., Zimina, R.V., et al., Kuznetsk Coal Field Resources as of Jan 1, 1979, Pereotsenka prognoznykh zapasov uglei Kuzbassa (Reevaluation of Possible Coal Reserves in Kuzbass), Novokuznetsk, 1979.
ANALYSIS OF MATHEMATICAL MODEL OF ROAD SAFETY FENCING
IN OPEN PIT COAL MINES
S. V. Cherdantsev and N. A. Kucher
The analytical expressions have been obtained for internal forces, moments, deflection angles and drifts that are caused in auto tyres of open coal pit mine road safety fencing under hit of a vehicle.
Auto tyre, boundary value problem, internal forces and moments, deflection angles and drifts
REFERENCES
1. Protasov, S.I., Cherdantsev, S.V., and Baranov, S.L., Traffic Safety in Open Pit Mines Using Safety Fences Made of Old Truck Tyres, Vestn. KuzGTU, 2009, no. 1.
2. Cherdantsev, S.V., Kucher, N.A., and Rogozin, S.N., Kraevye zadachi o ravnovesii obzhatogo krugovogo sterzhnya (Boundary Value Problems on Equilibrium of a Squeezed Arc Rod), Kemerovo: KuzGTU, 2003.
3. Stepanov, V.V., Kurs differentsial’nykh uravnenii (Course on the Differential Equations), Moscow: Fizmatgiz, 1959.
ROCK FAILURE
NUMERICAL SIMULATION OF SHOCK WAVE PROCESSES IN ELASTIC MEDIA AND STRUCTURES. PART II: APPLICATION RESULTS
Ì. V. Ayzenberg-Stepanenko, Å. N. Sher, G. G. Osharovich,
and Z. Sh. Yanovitskaya
The authors present finite difference algorithms for solving nonstationary problems on dynamics of elastic media and structures, and perform numerical modeling of the following applied problems: stroke on an elastic half-plane by a rigid die; shock piling; generation of a pendulum wave in a blocky medium by a local impulse effect. One of the goals of the presented modeling is driving the problem solutions with minimized influence of spurious effects inherent to numerical approximation. Finally, the authors compare the results obtained in different models of elastic media.
Numerical modeling, contact-impulse problems, dynamic stress localization, pendulum waves
REFERENCES
1. Ayzenberg-Stepanenko, M.V., Osharovich, G.G., Sher, E.N., and Yanovitskaya, Z.Sh., Numerical Simulation of Shock-Wave Processes in Elastic Media and Structures. Part I: Solving Method and Algorithms, Journal of Mining Science, 2012, vo. 48, no. 1, pp. 76–95.
2. Vorovich, I.I., Aleksandrov, V.M., and Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti (Nonclassical Mixed Problems of the Elasticity Theory), Moscow: Nauka, 1974.
3. Aleksandrov, V.M., Asymptotic Methods in the Mixed Elastic Problems, Razvitie teorii kontaktnykh zadach v SSSR (Development of the Theory of Contact Problems in the USSR), Moscow: Nauka, 1976.
4. Slepyan, L.I. and Yakovlev, Yu.S., Integral’nye preobrazovaniya v nestatsionarnykh zadachakh mekhaniki (Integral Transformations in the Nonstationary Mechanics Problems), Leningrad:
Sudostroenie, 1980.
5. Babeshko, V.A., Glushkov, E.V., and Glushkova, N.V., Peculiarities at Corner Points of Nonplanar Dies in the Contact Problems, Dokl. AN SSSR, 1981, vol. 257, no. 2.
6. Poruchikov, V.B., Metody dinamicheskoi teorii uprugosti (Dynamic Elasticity Theory Methods), Moscow: Nauka, 1995.
7. Zhong, Z.-H. and Mackerie, J., Contact-Impact Problems: A Review with Bibliography, Appl. Mech. Rev., 1994, vol. 47, no. 2.
8. Gorshkov, A.G. and Tarlakovskii, D.V., Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami (Dynamic Contact Problems with Mobile Boundaries), Moscow: Nauka, 1995.
9. Vorovich, I.I. and Aleksandrov, V.M. (Eds.), Mekhanika kontaktnykh vzaimodeistvii (Mechanics of Contact Interactions), Moscow: Fizmatgiz, 2001.
10. Kubenko, V.D., Blow of a Blunt Body on the Surface of Liquid or Elastic Medium, Prikl. Mekh., 2004, vol. 40, no. 11.
11. Kubenko, V.D. and Marchenko, T.A., Nonstationary Indentation of a Rigid Body into an Elastic Layer: Flat Problem, Prikl. Mekh., 2008, vol. 44, no. 3.
12. Wang, F.-J., Wang, L.-P., Cheng, J.-G., and Yao, Z.-H., Contact Force Algorithm in Explicit Transient Analysis Using Finite-Element Method, Finite Elements in Analysis and Design, 2007, vol. 43, nos. 6, 7.
13. Kubenko, V. D. and Ayzenberg-Stepanenko, M. V., Impact Indentation of a Rigid Body into an Elastic Layer. Analytical and Numerical Approaches, Journal of Mathematical Sciences, 2009, vol. 161, no. 1.
14. Kubenko, V. D., Osharovich, G. G., and Ayzenberg-Stepanenko, M. V., Impact Indentation
of a Rigid Body into an Elastic Layer. Axisymmetric Problem, Journal of Mathematical Sciences, 2011, vol. 176, no. 5.
15. Ormonbekov, T., Mekhanika vzaimodeistviya deformiruemykh tel (Interaction Mechanics of Deformable Bodies), Frunze: Ilim, 1989.
16. Cornelius, C.S. and Kubitza, W.K., Experimental Investigation of Longitudinal Wave Propagation in an Elastic Rod with Coulomb Friction, Experimental Mechanics, 1970, vol. 10, no. 4.
17. Rausche, F., Moses, F., and Goble, G., Soil Resistance Predictions from Pile Dynamics, Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, vol. 98, no. SM9.
18. Isakov, A.L. and Shmelev, V.V., Shock-Pulse Transmission on Driving Metal Tubes into the Ground, Journal of Mining Science, 1998, vol. 34, no. 1, pp. 73–79.
19. Isakov, A.L. and Shmelev, V.V., Wave Processes when Driving Metal Pipes into the Ground Using Shock-Pulse Generators, Journal of Mining Science, 1998, vol. 34, no. 2, pp. 139–147.
20. Danilov, B.B. and Smolyanitsky, B.N., Methods to Gain Better Efficiency of Driving Steel Pipes into the Ground by the Pneumatic Hammers, Journal of Mining Science, 2005, vol. 41, no. 6, pp. 566–572.
21. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., Gileta, V.P., and Vanag, Yu.V., Sources for Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, Journal of Mining Science, 2008, vol. 44, no. 5, pp. 490–496.
22. Chervov, V.V., Tishchenko, I.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on the Vibro-Percussion Pipe Penetration Rate in Soil, Journal of Mining Science, 2011, vol. 47,
no. 1, pp. 85–92.
23. Gersevanov, N.M., Teoriya prodol’nogo udara s primeneniem k opredeleniyu soprotivleniya svai. Sobr. soch. (Axial Impact Theory Approach to Determination of Pile Resistance: Collected Edition), Moscow, 1948, vol. 1.
24. Smith, E., Pile Driving Analysis by the Wave Equation, ASCE, 1960, vol. 86, no. SM4.
25. Nikitin, L.V., Wave Propagation in Elastic Rod with Dry Friction, Inzhener. Zh., 1963, vol. 3, no. 1.
26. Nikitin, L.V. and Tyurekhodzhaev, A.N., Behavior of Loaded Elastic Rod Embedded in Soil, Problemy mekhaniki gornykh porod (Problems of Rock Mechanics), Alma-Ata: Nauka, 1966.
27. Wilms, E.V. and Wempner, G.A., Motion of an Elastic Rod with External Coulomb Friction, Trans. ASME, Ser. B, 1968, vol. 90.
28. Nikitin, L.V., Statika i dinamika tverdykh tel s vneshnim sukhim treniem (Statics and Dynamics of Hard Solids with External Dry Friction), Moscow: Mosk. Litsei, 1998.
29. Santos, J.A. (Ed.), Application of Stress Wave Theory to Piles, Proc. 8th Int. Conf. Science, Technology and Practice, Amsterdam: IOS Press BV, 2008.
30. Sen, R., Davies, T.G., and Banerjee, P.K., Dynamic Analysis of Piles and Pile Groups Embedded in Homogeneous Soils, Earthquake Engineering & Structural Dynamics, 1985, vol. 13, no. 1.
31. Smirnov, A.L. and Stepanenko M. V., Numerical Modeling of Driving Piles by Blows, Proc. 2nd All-Union Conf. Physico-Mechanical Strength Problems, Gorky: GGU, 1987.
32. Smirnov, A.L., Computation of the Process of Impact Submersion of a Pile into Ground, Journal of Mining Science, 1989, vol. 25, no. 4, 359–365.
33. Smirnov, A.L., Dynamics of Compound Structures in a Medium Exposed to Nonstationary Effects, Cand. Phys.-Math. Sci. Dissertation, Novosibirsk: IGD SO RAN, 1990.
34. Bartolomei, A.A., Omel’chak, I.M., and Fonarev, A.V., Mathemtical Modeling of Pile Embedding Dynamics, Proc. Int. Conf. Pile Foundation Construction Problems, Moscow, 1989.
35. Vasenin, V.A., Design Estimate of Ground Vibrations under Percussion Pile Driving, Rekonstrukts. Gorodov Geotekhn. Stroit., 2001, no. 4.
36. Mounir E. Mabsout and John L. Tassoulas, A Finite Element Model for the Simulation of Pile Driving, Int. J. Numer. Methods in Engineering, 1994, vol. 37.
37. Paik, K.H., Salgado, R., Lee, J.H., and Kim, B.J., The Behavior of Open- and Closed-Ended Piles Driven into Sand, ASCE, 2003, vol. 129, no. 4.
38. Masoumi, H.R., Degrande, G., and Lombaert, G., Prediction of Free Field Vibrations due to Pile Driving Using a Dynamic Soil–Structure Interaction Formulation, Soil Dynamics and Earthquake Engineering, 2007, vol. 27, no. 2.
39. Dynamic Modeling with QUAKE/W, 2007, An Engineering Methodology, GEO-SLOPE Int. Ltd, http://geotechref.coppernorthern.com/w/files/9/93/QUAKEW_EngineeringBook.pdf.
40. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4.
41. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Generation of Elastic Wave Trains under Pulsed Excitation in Block Media. Pendulum-Type Waves , Dokl. AN SSSR, 1993, vol. 333, no. 4.
42. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part I: State of
the Problem and Measuring Instrument and Computer Complexes, Journal of Mining Science, 1996, vol. 32, no. 3, pp. 159–163.
43. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part II:
Experimental Methods and Main Results of Physical Modeling, Journal of Mining Science, 1996, vol. 32, no. 2, pp. 245–273.
44. Kurlenya, M.V., Oparin, V.N., Vostrikov, V.I., Arshavskii, V.V., and Mamadaliev, N.,
Pendulum-Type Waves. Part III: Data of On-Site Observations, Journal of Mining Science, 1996, vol. 32, no. 5, pp. 341–361.
45. Aleksandrova, N.I., Elastic Wave Propagation in Block Medium under Impulse Loading, Journal of Mining Science, 2003, vol. 39, no. 6, pp. 556–564.
46. Alekasndrova, N.N. and Sher, E.N., Modeling of Wave Propagation in Block Media, Journal of Mining Science, 2004, vol. 40, no. 6, pp. 579–587.
47. Sher, E.N., Aleksandrova, N.I., Ayzenberg-Stepanenko, M.V., and Chernikov, A.G., Influence of the Block-Hierarchical Structure of Rocks on the Peculiarities of Seismic Wave Propagation, Journal of Mining Science, 2007, vol. 43, no. 6, pp. 585–591.
48. Aleksandrova, N.I., Sher, E.N., and Chernikov, A.G., Effect of Viscosity of Partings in Block-
Hierarchical Media on Propagation of Low-Frequency Pendulum Waves, Journal of Mining Science, 2008, vol. 44, no. 3, 225–234.
49. Aleksandrova, N.I., Chernikov, A.G., and Sher, E.N., Experimental Investigation into the One-Dimensional Calculated Model of Wave Propagation in Block Medium, Journal of Mining Science, 2005, vol. 41, no. 3, pp. 232–239.
50. Saraikin, V.A., Stepanenko, M.V., and Tsareva, O.V., Elastic Waves in a Medium with a Block Structure, Journal of Mining Science, 1988, vol. 24, no. 1, pp. 11–17.
51. Saraikin, V.A., Calculation of Wave Propagation in the Two-Dimensional Assembly of Rectangular Blocks, Journal of Mining Science, 2008, vol. 44, no. 4, pp. 353–362.
52. Saraikin, V.A., Elastic Blocks in the Low-Frequency Component of Waves in a 2D Medium, Journal of Mining Science, 2009, vol. 45, no. 3, 207–221.
53. Saraikin, V.A., Low-Frequency Wave Propagation in a Block Medium Model, Prikl. Mekh., Tekh. Fiz., 2009, no. 6.
54. Aleksandrova, N.I. and Sher, E.N., Wave Propagation in the 2D Periodical Model of a Block-Structured Medium. Part I: Characteristics of Waves under Impulsive Impact, Journal of Mining Science, 2010,
vol. 46, no. 6, pp. 639–649.
NUMERICAL-ANALYTICAL INVESTIGATION INTO IMPACT PIPE DRIVING IN SOIL WITH DRY FRICTION
PART I: NONDEFORMABLE EXTERNAL MEDIUM
N. I. Aleksandrova
The study focuses on propagation of longitudinal waves in an elastic pipe partly embedded in a medium with dry friction. Mathematical formulation of the problem on the impact pipe driving into the soil is based on the model of longitudinal vibration of an elastic rod with taking into account lateral resistance. The lateral resistance of soil is described by the law of the contact dry friction. Numerical and analytical solutions to problems on longitudinal impulse loading of a pipe are compared.
Longitudinal waves, elastic rod, dry friction, impulse loading, numerical modeling
REFERENCES
1. Kragel’sky, I.V. and Shchedrov, V.S., Razvitie nauki o trenii. Sukhoe trenie (Advance in the Friction Science. Dry Friction), Moscow: Izd. AN SSSR, 1956.
2. Mikhin, N.M., Vneshnee trenie tverdykh tel (External Friction of Solids), Moscow: Nauka, 1977.
3. Veklich, N.A. and Malyshev, B.M., Wave Propagation in Elastic Rods Embedded in a Medium with Dry Friction, Zadachi mekhaniki tverdogo tela (Problems of Solid Body Mechanics), Moscow: MGU, 1985.
4. Ormonbekov, T., Mekhanika vzaimodeistviya deformiryemykh tel (Mechanics of Interaction of Deformable Bodies), Frunze: ILIM, 1989.
5. Markeev, A.P., Dinamika tela, soprikasayushchegosya s tverdoi poverkhnost’yu (Dynamics of a Body in Contact with Solid Surface), Moscow: Nauka, 1992.
6. Nikitin L. V., Statika i dinamika tverdykh tel s sukhim treniem (Statics and Dynamics of Solid Bodies with Dry Friction), Moscow: Moskovskii litsei, 1998.
7. Yunin, E.K., Zagadki i paradoksy sukhogo treniya (Dry Friction: Whys and Paradoxes), Moscow: LIBROKOM, 2008.
8. Rozenblat, G.M., Sukhoe trenie i odnostoronnie svyazi v mekhanike tverdogo tela (Dry Friction and Unilateral Bonds in Solid Body Mechanics), Moscow: URSS, 2010.
9. Andronov, V.V. and Zhuravlev, V.F., Sukhoe trenie v zadachakh mekhaniki (Dry Friction in Mechanics Problems), Moscow Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2010.
10. Ivanov, A.P., Osnovy teorii system s sukhim treniem (Fundamentals of the Theory of the Dry Friction Systems), Moscow Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2011.
11. Nikitin, L.V. and Tyurekhodgaev, A.N., The Dry Friction Damping of Dynamic Loads in Fiber Composite Materials, Mekh. Kompozit. Mater., 1986, no. 1.
12. Nikitin, L.V. and Tyurekhodgaev, A.N., Behavior of a Loaded Elastic Rod Embedded in Soil, Problemy mekhaniki gornykh porod (Problems of Rock Mechanics), Alma-Ata: Nauka, 1966.
13. Nikitin, L.V., Solid Body Impact on Elastic Rod with External Dry Friction, Inzh. Zh. MTT, 1967, no. 2.
14. Nikitin, L. V., Dynamics of Elastic Rods with External Dry Friction, Usp. Mekh., 1988, vol. 11, issue 4.
15. Zharkova, N.V. and Nikitin, L.V., Applied Problems of Elastic Rod Dynamics, Izv. RAN, Mekh. Tverd. Tela, 2006, no. 6.
16. Nikitin, L.V. and Tyurekhodgaev, A.N., Wave Propagation and Vibration of Elastic Rods with Interfacial Frictional Slip, Wave Motion, 1990, vol. 12, no. 6.
17. Tyurekhodgaev, A.N. and Sergaziev, M.Zh., Excitation of Resonance Oscillations in a System with Contact Dry Friction, Proc. Int. Congr. Mechanics and Tribology of Transportation Systems-2003, vol. 2, Rostov-on-Don: RGUPS, 2003.
18. Tyurekhodgaev, A.N. and Sergaziev, M.Zh., Non-Linear Stabilized Oscilaltions of a Cyclic-Loaded Mechanical System with Dry Friction, Proc. Int. Congr. Mechanics and Tribology of Transportation Systems-2003, vol. 2, Rostov-on-Don: RGUPS, 2003.
19. Sultanov, K.S., Numerical Solution to the Problem of Wave Propagation in a Viscous-Elastic Rod with External Friction, Izv. AN SSSR, Mekh. Tverd. Tela, 1991, no. 6.
20. Smirnov, A.L., Computation of the Process of Impact Submersion of a Pile in Ground. Part I, Mathematical Modeling, Soviet Mining Science, 1989, vol. 25, no. 4.
21. Smirnov, A.L., Dynamics of Integrated Structures in a Medium under Non-Stationary Pulsed Deformation in Elastic Constructions, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk, 1990.
22. Stepanenko, M.V., A Method of Analyzing Transient Impulsive Deformation in Elastic Structures, Soviet Mining Science, 1976, vol. 12, no. 2, pp. 170–174.
23. Petreev, A.M., and Smolentsev, A.S., Blow Energy Transmission from a Striking Machine Element to a Pipe via Adaptor, Journal of Mining Science, 2011, vol. 47, no. 6. 787–797.
24. Isakov, A.L. and Shmelev, V.V., Wave Processes when Driving Metal Pipes into the Ground Using Shock-Pulse Generators, Journal of Mining Science, 1998, vol. 34, no. 2, pp. 139–147.
SCIENCE OF MINING MACHINES
VALIDATED PROCESS METHODS FOR PROOFNESS
OF HYDRAULIC CYLINDERS IN DRILLING INSTALLATIONS
E. A. Kudryashov, D. Yu. Lunin, and E. V. Pavlov
The article reports the studies aimed at ensuring stable quality surface treatment of inner grooves of hydraulic cylinder bushes without redesigning.
Drilling installations, hydraulic cylinders, reliability
REFERENCES
1. Bashta, T.M., Mashinostroitel’naya gidravlika: spravochnoe posobie (Machine-Engineering Hydraulics: Reference Aid), Moscow: Mashinostroenie, 1971.
2. Suslov, A.G., Kachestvo poverkhnostnogo sloya detalei mashin (Surface Layer Quality of Machine Parts), Moscow: Mashinostroenie, 2000.
3. Kudryashov, E.A., Higher Repair Efficiency of Machine Parts by a Batch Method, Stanki Instrumenty, 2008, no. 6.
4. Kudryashov, E.A., Prospects for Using a Composite Material in Interrupted Cutting, Stanki Instrumenty, 2008, no. 11.
5. Kudryashov, E.A., Structural and Technological Updating of Self-Contained Small-Size Drilling Facilities, Proc. Conf. Fundamental Problems of GeoEnvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.
MINERAL MINING TECHNOLOGY
GEOMECHANICAL ASSESSMENT OF DEEP MINING CONDITIONS
IN THE YUZHNOE COMPLEX ORE DEPOSIT
I. Yu. Rasskazov, G. A. Kursakin, M. I. Potapchuk, V. I. Miroshnikov,
A. M. Freidin, and S. P. Osadchy
The article analyzes geomechanical conditions of mining in rockburst-hazardous Yuzhnoe complex ore deposit located on the east of the Primorye Territory. Numerical modeling has revealed details of mining-induced stress field formation at different stages of stoping in the conditions of highly variable occurrence of the ore bodies. The study results have become the substantiation basis for enhanced safety and increased efficiency deep mining parameters.
Stress-strain state, rockburst hazard, mathematical modeling, ore body occurrence, mining method, pillars, preventive measures
REFERENCES
1. Pilenkov, Yu.Yu., Shock Capacity of the “Southern” Polymetalic Deposit in Primor’ye, Journal of Mining Science, 1995, vol. 31, no. 2, pp. 87–96.
2. Freidin, A.M., Shalaurov, V.A., Eremenko, A.A., et al., Povyshenie effektivnosti podzemnoi otrabotki rudnykh mestorozhdenii Sibiri i Dal’nego Vostoka (Enhanced Efficiency of Ore Underground Mining in Siberia and the Far East), Novosibirsk: Nauka, 1992.
3. Rasskazov, I.Yu., Kursakin, G.A., Freidin, A.M., Chernomortsev, V.N., and Osadchy, S.P., Rock Pressure Monitoring in Mines of the MGK Dalpolimetal JSC, Gorny Zh., 2006, no. 4.
4. Levi, K.G., Sherman, S.I., San’kov, V.A., et al., Karta sovremennoi geodinamiki Azii. Masshtab 1 : 5000000 (Map of the Modern Geodynamics of Asia. Scale 1 : 5000000), Irkutsk: IZK SO RAN, 2007.
5. Rasskazov, I.Yu., Numerical Modeling of the Modern Tectonic Stress Field at the Juncture of Central Asia and Pacific Ocean Belts, Tikhooken. Geolog., 2006, vol. 25, no. 5.
6. Timofeev, V.Yu., Ardyukov, D.G., Gornov, P.Yu., Boiko, E.V., Timofeev, A.V., In Situ Experimental Modeling of Platform Movement, Problemy seismichnosti i sovremennoi geodinamiki Dal’nego Vostoka i Vostochnoi Sibiri (Seismicity and Modern Geodynamics Problems in the Far East and East Siberia), Khabarovsk, 2010.
7. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
8. Zoteev, O.V., Rock Mass Stress–Strain Modeling with Numerical Methods, Izv. vuzov, Gorny Zh.,
2003, no. 5.
9. Rasskazov, I.Yu., Kursakin, G.A., Freidin, A.M., and Potapchuk, M.I., Selection of Deep Geotechnology in Terms of the Vostok-2 Orebody, Journal of Mining Science, 2012, vol. 48, no. 1, pp. 114–122.
10. Kurlenya, M.V., Seryakov, M.V., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
11. Freidin, A.M., Neverov, S.A., Neverov, A.A., and Filippov, P.A., Mine Stability with Application of Sublevel Caving Schemes, Journal of Mining Science, 2008, vol. 44, no. 1, pp. 82–91.
12. Rasskazov, I.Yu., Kursakin, G.A., Chernomortsev, V.N., Osadchy, S.P., et al., Ukazaniya po bezopasnomu vedeniyu gornykh rabot na Nikolaevskom i Yuzhnom mestorozhdeniyakh (OAO “GMK “Dal’polimetal”), opasnykh po gornym udaram (Instructions on Safe Mining at the Rockburst-Hazardous Nikolaevskoe and Yuzhnoe Deposits, GMK Dalpolimetal JSC), Khabarovsk: IGD DVO RAN, 2008.
MINE AEROGASDYNAMICS
OPTIMIZING ARRANGEMENT OF AIR DISTRIBUTION CONTROLLERS
IN MINE VENTILATION SYSTEM
S. A. Kozyrev and A. V. Osintseva
The authors report the research results on the upgrading of the automated design planning of the underground mine ventilation system by using modern mathematical methods with the discussion of the perspective application of the genetic methods to analyze alternative ventilation systems at the design stage. The integrated variants of the optimized number of auxiliary fans and brattices, their arrangement and parameters at new Olenii Ruchey and Partomchorr mines.
Ventilation, underground mine, control, genetic algorithm
REFERENCES
1. Tyan, R.B. and Potemkin, V.Ya., Upravlenie provetrivaniem shakht (Control of Mine Ventilation Management), Kiev: Naukova dumka, 1977.
2. Kazakov, B.P., Kruglov, Yu.V., Isaevich, A.G., and Levin, L.Yu., Development of Aeroset’ Computer Complex for Design Planning of Air Shafts and Mines, Gorn. Inform.-Analit. Byull. 2006, no. 3.
3. Nazarenko, V.I., Pochtarenko, N.S., and Turuta, I.A., REVOD Software to Calculate Air and Gas Distribution in the Mine Ventilation Network, Izv. DGU, 1999, no. 1.
4. Kozyrev, S.A. and Osintseva, A.V., Automation of the Underground Mine Ventilation System, Vestn. MGTU, 2009, no. 4.
5. Wasserman, A.D., Proektnye obosnovaniya parametrov ventilyatsii rudnikov i podzemnykh sooruzhenii (Design Substantiation of Ventilation Specifications for Mines and Underground Structures), Leningrad: Nauka, 1974.
6. Alekhichev, S.P. and Wasserman, A.D., Vozdukhoraspredelenie v rudnikakh s zonami obrusheniya (Air Distribution in Mines with Caved Areas), Leningrad: Nauka, 1973.
7. Davydov, E.G., Gabaidulin, R.I., and Chekhovskikh, A.M., The Proportional Belt Resistance Method to Calculate the Preset Air Distribution in the Ventilation Network, Izv. vuzov, Gorny Zh., 1992, no. 2.
8. Emel’yanov, V.V., Kureichik, V.V., and Kureichik, V.M., Teoriya i praktika evolyutsionnogo modelirovaniya (Theory and Practice of Evolution Modeling), Moscow: Fizmatlit, 2003.
9. Boulos, P., Optimal Pump Operation of Water Distribution Systems Using Genetic Algorithms, Proc. AWWA Conf., Seattle: WA, 2000.
10. Lowndes, I.S., Fogarty, T., and Yang, Z.Y., The Application of Genetic Algorithms to Optimize the Performance of a Mine Ventilation Network: the Influence of Coding Method and Population Size, Soft Comput., 2005, no. 9.
11. Osintseva, A.V. and Kozyrev, S.A., Substantiation of the Cost-Effective Variants of the Control of the Underground Mine Ventilation and Optimization of the Controller Specifications by Using the Genetic Algorithm, Vest. MGTU, 2011, vol. 14, no. 3.
MINERAL DRESSING
INNOVATIVE TECHNOLOGIES AND EXTRACTION OF COMMERCIAL COMPONENTS FROM UNCONVENTIONAL AND DIFFICULT-TO-PROCESS
MINERALS AND MINING-AND-PROCESSING WASTE
V. A. Chanturia, A. P. Kozlov, T. N. Matveeva, and A. A. Lavrinenko
The technological capability of extraction of platinum from zonal basic–ultrabasic dunite ore is theoretically stated and experimentally proved. The article describes development of new selective complexing agents meant for extraction of sulfide minerals with emulsion gold shots. The authors also inform on a method and regimes of extra sulfur removal and platinum group metal extraction from final rejects at the Talnakh copper-nickel preparation plant with a view to their further introduction in backfilling mixtures as binding components.
Platinum and gold ores, copper-nickel ore concentration tailings, sulfide flotation, flocculation, flotation agents
REFERENCES
1. Chanturia, V.A., Kozlov, A.P., and Tolstykh, N.D., Dunite Ore—A New Platinum Source, Gorn. Inform.–Analit. Byull., 2011, no. OV1.
2. Kozlov, A.P. and Chanturia, V.A., Technological Outlook for Development of Large Platinum Bearing Orebodies in Zonal Basic–Ultrabasic Dunite Rocks, Platina Ross., 2011, vol. 7.
3. Chanturia, V.A., Ivanova, T.A., and Koporulina, E.V., Evaluation Procedure for Interaction Efficiency between Flotation Agents and Gold-Bearing Pyrite, Tsvet. Metally, 2010, no. 8.
4. Ivanova, T.A. and Koporulina, E.V., Comparison of Flotation Activity of Phosphorus-Containing Collecting Agents at Artificially Nanosize Gold-Coated Pyrite, Plaksinskie chteniya 2010 (Plaksin’s Readings-2010), Moscow, 2010.
5. Ivanova, T.A., Matveeva, T.N., and Gromova, N.K., Modification of Diethyldithiocarbamate Solutions for Obtaining a Selective Nonionic Collecting Agents for Platinum-Containing Sulphide Flotation, Gorny Zh., 2010, no. 12.
6. Chanturia, V.A., Matveeva, T.N., Ivanova, T.A., Gromova, N.K., and Lantsova, L.B., New
Complexing Agents to Select Auriferous Pyrite and Arsenopyrite, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 102–108.
7. Matveeva, T.N., Ivanova, T.A., and Gromova, N.K., Theoretical Approaches to Creating Selective Agents for Extraction of Sulphides with Emulsion Gold Shots, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Ekaterinburg, 2011.
8. Chanturia, V.A., Ivanova, T.A., and Zimbovskii, I.G., Complexing in Flotation of Noble Metals by Sulphur–Nitrogen-Containing Collecting Agents, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Ekaterinburg, 2011.
9. Chanturia, V.A., Ivanova, T.A., Nedosekina, T.V., Dal’nova, Yu.S., Gapchich, A.O., and Zimbovskii, I.G., Claim for Invention no. 2012 1101/015150.
10. Gapchich, A.O. and Nedosekina, T.V., New Reagents for Gold-Containing Material Flotation, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Ekaterinburg, 2011.
11. Lavrinenko, A.A., Sarkisova, L.M., Shrader, E.A., and Glukhova, N.I., Flotation of Commercial Components from Copper–Nickel Ore Processing Tailings, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Ekaterinburg, 2011.
SUFFUSION PROCESSES IN THE TECHNOLOGY OF FORMATION
OF ENRICHED ZONES INSIDE GOLD PLACER MINING WASTE DUMPS
V. S. Litvintsev, V. S. Alekseev, and A. M. Pulyaevsky
Under analysis are suffusion properties of alluvial rocks in the waste dumps formed in the course of surface and underwater mining of natural placers. The authors describe calculation process for one of the main characteristics of suffusion ability of alluvial rocks in the placer mining waste dumps—the maximal diameter of a filtration channel in rocks depending on the ratio of combinations of its typical diameters.
Placer mining waste dumps, suffusion processes, typical diameters of filtration channel in rocks, filtration flows
REFERENCES
1. Litvintsev, V.S., Substantiation of Geotechnological Parameters of the Comprehensive Exploitation of Placer Mining Wastes in the Far-East Region, Dr. Sci. (Eng.) Dissertation, Khabarovsk, 2000.
2. Pulyaevsky, A.M., Theoretical and Technological Arguments for Hydraulic Excavation and Processing of Gold-Bearing Alluvial Sands, Dr. Sci. (Eng.) Dissertation, Khabarovsk, 2006.
3. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., and Alekseev, V.S., Development of the Theory of the Foundation of Placer Mining Waste Formations, Gorn. Inform.-Analit. Byull., Special Issue Far East-3, 2007, no. 16.
4. Litvintsev, V.S., Banshchikova, T.S., Leonenko, N.A., and Alekseev, V.S., Effective Methods for Gold Recovery from Mining Wastes at Placers, Journal of Mining Science, 2012, vol. 48, no. 1.
5. Litvintsev, V.S., Khrunina, Yu.A., Mamaev, Yu.A., and Alekseev, V.S., Russian Federation patent no. 2327039, Byull. Izobret., 2008, no. 17.
6. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., Banshchikova, T.S., and Shokina, L.N., Investigation into Specific Genetic Features of Large Gold-Bearing Placer Mining Wastes for Planning Their Efficient Foundation and Processing in the Far East Region, Problemy kompleksnogo osvoeniya superkrupnykh rudnykh mestorozhdenii (Problems of Comprehensive Exploitation of Superlarge Mineral Deposits), Moscow: IPKON RAN, 2004.
7. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., and Shapovalov, V.S., Problems of Foundation and High-Efficient Exploitation of Placer Mining Waste in the Far East Region, Geotekhnologicheskie problemy kompleksnogo osvoeniya nedr (Geotechnological Problems of Comprehensive Exploitation of Mineral Resources), Transactions, Issue 2(92), Ekaterinburg: IGD UO RAN, 2004.
8. Chugaev, R.R., Gidravlika (tekhnicheskaya mekhanika zhidkosti) (Hydraulics: Technical Mechanics of Liquids), Leningrad: Energiya, 1971.
9. Mamaev, Yu.A., Litvintsev, V.S., and Alekseev, V.S., Regularities in the Formation of Present-Day Precious Metal Mining Waste Dumps, Izv. vuzov. Gorny Zh., 2011, no. 8.
10. Loitsyansky, L.G., Mekhanika zhidkosti i gaza (Liquid and Gas Mechanics) Moscow: Nauka, 1970.
IMPROVING THE FINELY DISSEMINATED CARBONATE–FLUORITE ORE FLOTATION WITH FLOTOL-7,9 AGENT
V. D. Pomazov, S. A. Kondrat’ev, and V. I. Rostovtsev
The article presents experimental research into intensification of fine-disseminated carbonate–fluorite ore flotation by adding FLOTOL-7,9 agent. It is shown that the optimal agent modes allow the yield of the saleable fluorite product of above 90% CaF2 grade at higher than 60% fluorite extraction.
Carbonate–fluorite ore, FLOTOL-7,9 agent, flotation
REFERENCES
1. Kienko, L.A. and Samatova, L.A., Improvement of Carboxylic Collectors Efficiency in Flotation of Finely-Disseminated Carbonate-Fluorite Ores, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Verkhnyaya Pyshma, 2011.
2. Berger, G.S., Flotiruemost’ mineralov (Mineral Floatability), Moscow: Gostorgtekhizdat, 1962.
3. Berlinskii, A.I., Kinetics of the Liquid Glass Effect in Flotation, Tsv. Metal., 1963, no. 24.
4. Myasnikova, G.A., et al., Influence of the Crystal Lattice Structure of Calcium-Bearing Minerals on Their Interaction with Flotation Agents, Transactions of A. A. Skochinsky Mining Institute, Moscow, 1962.
5. Eigeles, M.A., Osnovy flotatsii nesul’fidnykh mineralov (Fundamentals of Non-Sulfide Mineral Flotation), Moscow: Nedra, 1964.
6. Eigeles, M.A., Flotatsiya silikatov i okislov (Silicate and Oxide Flotation), Moscow: Goskhimizdat, 1961.
7. Glazunov, L.A., Improved Fluorite Ore Processing, Tsv. Met., 2000, no. 3.
8. Shubov, M.Ya., Ivankov, S.I., and Shcheglova, I.K., Flotatsionnye reagenty protsessa obogashcheniya mineral’nogo syr’ya (Flotation Agents in Mineral Processing), Book 2, Moscow: Nedra, 1990.
9. Eigeles, M.A. and Antonova, T.N., Concurrent Production of the High-Grade Fluorite Concentrate from Multi-Carbonate Poor-Fluorite Ores, Tsv. Met., 1964, no. 11.
10. Shautenov, M.R., Abdykirova, G.Zh., Ulasyuk, S.M., Nurakhmetova, G.B., and Suleimenova, U.Ya., Enhanced Depressing Effect of Liquid Glass on Calcite, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Verkhnyaya Pyshma, 2011.
11. Bogdanov, O.S., Maksimov, I.I., Podnek, A.K., et al., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1990.
12. Kurkov, A.V. and Pastukhova, I.V., Russian Federation patent no. 2319550 C1, Byull. Izobret.,
2008, no. 8.
13. Koltashev, D.V., Nasrtdinova, T.Yu., and Radushev, A.V., New Flotation Agents to Recover Fluorite, Plaksinskie chteniya 2011 (Plaksin’s Readings-2011), Verkhnyaya Pyshma, 2011.
14. Kienko, L.A., Effective Process for Beneficiation of Voznesensk Carbonate Fluorite Ores, Cand. Sc. (Eng.) Dissertation, Khabarovsk, 2008.
15. Krasnukhina, A.V., Kotlyarevskii, I.L., Pomazov, V.D., and Bezrukova, V.I., USSR Inventor’s Certificate no. 497788.
16. Pomazov, V.D., Krasnukhina, A.V., Egorov, N.V., Kotlyarevskii, I.L., Alfer’ev, I.S., Nedorezov, A.N., Pavlov, V.E., Shestovets, V.Z., and Korotkin, I.N., USSR Inventor’s Certificate no. 1045486.
PERFORMANCE EVALUATION OF COMPREHENSIVE PROCESSING
OF ZINC–FLUORITE ORE IN THE VOZNESENSKY MINING AREA
L. A. Kienko and O. V. Voronova
The article presents the research results aimed at improving the comprehensiveness of zinc–fluorite ore processing in the Primorye Territory, and discusses two variants of the technology of saleable sphalerite and fluorite concentrates production. Besides, the authors offer model engineering solutions for the efficient change of flotation regime or sequence using sulfhydryl and oxihydryl collecting agents.
Flotation, zinc–fluorite ore, calcium cations, neutralization, conditioning, xanthogenate, carboxylic collecting agents
REFERENCES
1. Ryazantseva, M.D. and Shkurko, E.I., Fluority Primor’ya (The Primorye Fluorites), Moscow:
Nedra, 1992.
2. Kienko, L.A., Samatova, L.A., Voronova, O.V., and Kondrat’ev, S.A., Lower Temperature Flotation of Carbonate–Fluorite Ores, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 317–323.
3. Zhilin, V.V. and Saenko, V.I., Background of Processing Zinc–Fluorite Ore of the Voznesensky Ore Filed, Gorny Zh., 2000, no. 9.
4. Kienko, L.A. and Voronova, O.V., Problems of Comprehensive Processing of the Voznesensky Zinc–Fluorite Ore, Proc. Russ. Sci. Conf. Problems of Comprehensive Exploitation of Georesources, Khabarovsk, 2011.
5. Fat’yanov, A.V., Nikitina, L.G., Shcheglova, S.A., and Dolgikh, O.L., Efficient Flotation Technology for High Grade Fluorite Concentrates at New Transbaikalia Ore Deposits, Gorny Zh., 2011, no. 3.
6. Glembotsky, V.A., Fiziko-khimiya flotatsionnykh protsessov (Flotation Physics-and-Chemistry), Moscow: Nedra, 1972.
7. Eigeles, M.A., Reagenty regulatory vo flotatsionnom protsesse (Regulating Reagents in Flotation), Moscow: Nedra, 1977.
8. Kienko, L.A. and Voronova, O.V., Perspective of Fluorite Extraction from Zinc Flotation Tailings of
Zinc–Fluorite Ore Processing in the Primorye Territory, Proc. Plaksins’s Readings–2011, Verkhnyaya Pyshma, 2011.
9. Bogdanov, O.S., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1990.
10. Samatova, L.A., Kienko, L.A., Voronova, O.V., and Plyusnina, L.N., Enhanced Flotation of Fluorite from Fine Dispersion Sludge by the Desludging “Starving Flotation” Technique, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2009.
GEOECOLOGY AND SUBSOIL USE
WATER BODY POLLUTION MONITORING IN VIGOROUS COAL EXTRACTION AREAS USING REMOTE SENSING DATA
V. N. Oparin, V. P. Potapov, O. L. Giniyatullina, and N. V. Andreeva
The use of the remote earth sensing data in analyzing water bodies situation in areas where vigorous coal mining, including open pit mining, is considered in the article. The authors describe the space image processing procedure and present the revealed changes in the spectral response of water bodies in the images if they contain polluting agents.
Remote sensing data, satellite images, geoecology monitoring, water body pollution, spectral reflectance, coal mining
REFERENCES
1. Metodicheskie ukazaniya po sanitarnoi okhrane vodoemov ot zagryazneniya stochnymi vodami predpriyatii ugol’noi promyshlennosti (Instructional Guidelines on Sanitary Protection of Water Bodies against Coal Mining Impact), dated December 22, 1959, no. 308–59.
2. Metodicheskie ukazaniya po sanitarnoi okhrane vodoemov ot zagryazneniya stochnymi vodami predpriyatii ugol’noi promyshlennosti (Instructional Guidelines on Sanitary Protection of Water Bodies against Coal Mining Impact), dated June 30, 1976, no. 1435–76.
3. Bukanov, V.I., Process and Data on the Satellite Monitoring of Oil Pollution in the South-East Baltic Sea, Geomatika, 2011, no. 1(10).
4. Deshifrovanie mnogozonal’nykh aerokosmicheskikh snimkov. Metodika i rezul’taty (Decoding of Multi-Zonal Space Images. Procedure and Results), Moscow: Nauka, 1982.
5. Vinogradov, B., Aerokosmicheskii monitoring ekosistem (Aerospace Monitoring of Ecosystems), Moscow: Nauka, 1984.
6. Davis, S.M., Landgrebe, D.A., Phillips T. L., Swain, P.H., Hoffer, R.M., Lindenlaub, J.C., and Silva, L.F., Remote Sensing: the Quantitative Approach, McGraw-Hill Int. Book Co., 1978.
7. Kul’sky, L.A., Dal’, V.V., and Lenchina, L.G., Voda znakomaya i zagadochnaya (Water: Familiar and Mysterious), Kiev: Ryadyanska Shkola, 1982.
8. Chandra, A.M. and Gosh, S.K., Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy (Remote Sensing and Geographical Information Systems), Moscow: Tekhnosfera, 2008.
9. Haralick, R.M., Shanmugam, K., and Dinstein, I., Textural Features for Image Classification. IEEE Trans. on Systems, Man and Cybernetics, 1973, vol. 3.
10. Stol’berg, V., Ekologiya goroda (Urban Ecology), Kiev, Libra, 2000.
11. Clark, R.N. and Roush, T.L., Reflectance spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications, J. Geophys. Research, 1984, vol. 89, no. B7.
12. De Jong S. M., van der Meer F. D., Remote Sensing Image Analysis Including The Spatial Domain, New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, 2004.
GEOECOLOGICAL VALUATION OF NATURAL-AND-MINE ENGINEERING SYSTEMS ON THE SOUTH OF THE FAR EAST
M. B. Bubnova and Yu. A. Ozaryan
The article points at advisability of implementing geoecological valuation of the environment in mineral extraction areas within the limits of the already formed natural and mine engineering systems, since the area of geochemical mining impact on the environment is always larger than non-mining impact area (this is valid for long-standing local nature-and-mine engineering systems).
Local nature-and-mine engineering systems, mining-induced geochemical flows, ecological risk, regional mine-and-ecology monitoring
REFERENCES
1. Elpat’evsky, P.V., Geochemistry of Mining Industry-Produced Objects, Proc. Conf. Problems of Geoecology and Efficient Nature Use Countries of Asian-Pacific Region, Vladivostok, 2000.
2. Perel’man, A.I., Geokhimiya prirodnykh vod (Geochemistry of Natural Waters), Moscow: Nauka, 1982.
3. Shurova, M.V., Ecological-Geochemical Estimate of Natural Environment State in the Area of Vesely Mine, Cand. Geol.-Mineral. Sci. Dissertation, Tomsk, 2006.
4. Saksin, B.G. and Bubnova, M.B., Regional Impact of Mining Industry on the Environment: Comprehensiveness of Study and Problems of Monitoring, Gorn. Inform.-Analit. Byull., 2007, no. OV9.
5. Zvereva (Postnikova), V.P., Ecological Consequences of Technogenesis in Tin Mining Areas in the Far East, Rudnye mestorozhdeniya kontinental’nykh okrain (Ore Deposits on the Continental Periphery), Vladivostok: Dal’nauka, 2000.
6. Zvereva, V.P., Hypergenesis and Technogenesis After-Effect on Ecology of Tin Mining Areas in the Far East, Dr. Geol.-Mineral. Sci. Dissertation, Vladivostok, 2005.
7. Borisova, V.N. and Elpat’evsky, P.V., Potential Handling of Some Ecological Problems in the Stage of Geological Exploration, Tikhooken. Geolog., 1992, no. 3.
8. Morozov, N.P., Prerequisites for Calculation Procedure of Maximum Permissible Discharge of Pollutants to Natural Sea Zones, Ekologicheskie aspekty khimicheskogo i radioaktivnogo zagryazneniya vodnoi sredy (Ecological Aspects of Chemical and Radioactive Contamination of Aqueous Environment), Moscow: Leg. Pishch. Prom., 1983.
9. Grekhnev, N.I., Ostapchuk, V.I., and Kislitsyn, L.F., Heavy Metals in Geosystems of the Tin and Complex Ore Mining and Processing Areas on the South of the Far East, Vliyanie protsessov gornogo proizvodstva na ob’ekty prirodnoi sredy (Mining Industry Impact on the Natural Environment Objects), Vladivostok: Dal’nauka, 1998.
10. Chudaeva, V.A., Migratsiya khimicheskikh elementov v vodakh Dal’nego Vostoka (Migration of Chemical Elements in Waters of the Far East), Vladivostok: Dal’nauka, 2002.
11. Letuvninkas, A.I., Quantitative Characteristic of Typomorphic Level of Chemical Element and Complexity of Mining-Induced Geochemical Flows in Bottom Sediments, Golog. Geofiz., 1996, vol. 37, no. 3.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|