Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 ×èíàêàë Íèêîëàé Àíäðååâè÷ Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2012 ãîä » JMS, Vol. 48, No. 4, 2012

JMS, Vol. 48, No. 4, 2012


GEOMECHANICS


EARTHQUAKE IMPACT ON PITWALL STABILITY
D. V. Yakovlev, S. V. Tsirel’, B. Yu. Zuev, and A. A. Pavlovich

The paper reviews calculation methods for pitwall stability under seismic impact of earthquakes. The physical modeling allowed determination of seismic vibration influence on sliding of probable wedge of failure, the latter is assumed to be bounded by stressed sliding surfaces. Finally, the authors advise on choice of the pitwall stability factors for seismically active areas.

Seismic waves, earthquakes, Newmark’s method, slope stability, stability factor, pseudo-static approach

REFERENCES
1. Construction Norms and Regulations II-7–81, Construction in Seismically Active Regions, Moscow: Gosstroi Rossii, 2010.
2. Shvarts, A.V., “Seismic Effect on Stability Hillsides Apt to Landsliding (in Terms of the Shing River Valley and the Rogunskaya Hydraulic Power Generation Station Area),” Extended Abstracts of PhD Geology and Mineralogy Theses, Moscow, 1982.
3. Beierle V. R., “Analysis of Large Landslide Dynamics in a Seismically Active Region in Uzbekistan,” Extended Abstracts of PhD Geology and Mineralogy Theses, Moscow, 1983.
4. Lekhatinov A. M., “Influence of Earthquakes on Landsliding in Stone Streams in the Baikal Rift Zone,” in Proc. Regional Conf. “Landslides, Landfalls and Mudflows, Their Prediction and Prevention in Areas with High Seismic Activity, Dushanbe, 1990.
5. Bagdasar’yan A.G., Lukishin B. G., and Shemetov, “Mechanism of Wall Caving in Muruntau Open Pit Mine,” Journal of Mining Sciences, 2008, vol. 44, no. 5, pp. 482 — 489.
6. Bagdasar’yan A.G., Fedyanin A. G., and Shemetov P. A., “Estimate of the Formation Time and Other Parameters of a Disruption Structure in Open Pit Walls in Terms of Muruntau Open Pit,” 2009, vol. 45, no. 2, pp. 146 — 151.
7. Oleinikov A. V. and Oleinikov N. A., “Paleo-Seismic-Geology and Seismic Hazard in the Primorski Krai,” Vestn. DVO RAN, 2006, no. 3.
8. Fedotova Yu.V., “Mining-Induced Seismicity of the Kola Peninsula,” in Zemletryaseniya i mikroseismichnost’ v zadachakh sovremennoi geodinamiki Vostochno-Evropeiskoi Platformy (Earthquakes and Micro-Seismicity in Modern Geodynamics of the East-European Platform), Petrozavodsk: KRTs RAN, 2007.
9. Metodicheskie ukazaniya po opredeleniyu uglov naklona bortov, otkosov ustupov i otvalov stroyashchikhsya i ekspluatiruemykh kar’erov (Inclination Determination Guidelines for Walls, Benches and Dumps in Open Pit Mines under Construction and Operation), Leningrad: VNIMI, 1972.
10. Metodicheskie ukazaniya po raschetu ustoichivosti i nesushchei sposobnosti otvalov (Dump Stabiliyt and Carrying Capacity Calculation Guidelines), Leningrad: VNIMI, 1987.
11. Pravila obespecheniya ustoichivosti otkosov na ugol’nykh razrezakh (Slope Stability Maintenance Practice at Coal Open Pits), Saint Petersburg, 1998.
12. Rekomenmdatsii po vyboru metodov rascheta koeffitsienta ustoichivosti sklona i opolznevogo davleniya (Instructions to Select Calculation techniques for Slope Safety Factor and Landslide Pressure), Moscow: TsBNTI Minmontazhspetstroi SSSR, 1986.
13. Rekomendatsii po raschetuustoichivosti skal’nykh otkosov (Instructions to Calculate Slope Stability in Hard Rocks), Moscow: Gidroproekt.
14. Emel’yanova E.P., Osnovsnye zakonomernosti opolznevykh protsessov (Basic Patterns of Landsliding), Moscow: Nedra, 1972.
15. Revazov M. A. and Pustovoitova T. K., “Inclusion of Seismic Forces in Calculations of Open Pit Slope Stability in Seismic-Hazardous Areas,” Trudy VIMI, 1967, no. 67.
16. Rasulov Kh.Z., Seismostoikost’ gruntovykh osnovanii (Seismic Stability of Soil Foundations), Tashkent: Uzbekistan, 1984.
17. Sadykov A.Kh., “Landslide Resistance of Forested Hills and Slopes under Seismic Impacts,” Extended Abstracts PhD Geology and Mineralogy Theses, Tashkent, 2011.
18. Kusonsky O. A. and Gulyaev A. N., “Possible Triggers of Earthquakes in the Ural,” Ural. Geofiz. Vestn., 2004, no. 6.
19. Zoteev O. V. and Osintsev V. A., Geomekhanika: ucheb. posobie (Geomechanics: Educational Aid), Ekaterinburg: UGGGA, 1997.
20. Astaf’ev Yu.P., Popov R. V., and Nikolashin Yu.M., Upravlenie sostoyaniem massiva gornykh porod pri otkrytoi razrabotke mestorozhdenii poleznykh iskopaemykh (Rock Mass Control in Open Pit Mineral Mining), Kiev: Vysshaya shkola, 1986.
21. Mironov P. S., Vzryvy i seismobezopasnost’ sooruzhenii (Explosions and Seismic Safety of Buildings and Installations), Moscow: Nedra, 1973.
22. Medvedev S. V., Seismika gornykh vzryvov (Explosion-Induced Seismicity in Mining), Moscow: Nedra, 1964.
23. Sarma, S.K. and Bhave, M.V., “Critical Acceleration versus Static Factor of Safety in Stability Analysis of Earth Dams and Embankments,” Geotechnique, 1974, vol. 24, no. 4.
24. Hynes-Griffin, M.E. and Franklin, A.G., “Rationalizing the Seismic Coefficient Method,” in U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, Miscellaneous Paper, 1984, GL-84–13.
25. Seed, H.B., “Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams,” Geotechnique, 1979, vol. 29, no. 3.
26. Morgenstern, N.R. and Price, V.E., “The Analysis of the Stability of Generalised Slip Surfaces,” Geotechnique, 1965, no. 15. 27. Newmark, N.M., “Effects of Earthquakes on Dams and Embankments,” Geotechnique, 1965, vol. 15.
28. Jibson, R.W., “Predicting Earthquake-Induced Landslide Displacements Using Newmark’s Sliding Block Analysis: Transportation Research Board, National Research Council,” Transportation Research Record 1411, 1993.
29. Saygili, G. and Rathje, E.M., “Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes,” Journal of Geotechnical and Geoenvironmental Engineering, 2008, vol. 134, no. 6.
30. Bray, J.D. and Travasarou, T., “Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements,” Journal of Geotechnical and Geoenvironmental Engineering, 2007, vol. 133.
31. Shang-Yu Hsieh and Chyi-Tyi Lee, “Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration,” Engineering Geology, 2011, vol. 122, nos. 1, 2.
32. Graham, J., “Methods of Stability Analysis,” in Brundsen, D. and Prior, D.B. (Eds.) Slope Instability, Wiley, New York, 1984.
33. Pradel, D., Smith, P.M., Stewart, J.P., and Raad, G., “Case History of Landslide Movement during the Northridge Earthquake,” Journal of Geotechnical and Geoenvironmental Engineering, 2005, vol. 131.
34. Zakharov, V.S., Simonov, D.A., and Koptev, A.I., “Computer-Aided Modeling of Seismicity-Induced Landsliding,” Elektron. Nauch. Izd. GEOrazrez, 2009, vol. 1, no. 3.
35. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hal, 1996.
36. Kramer, S.L. and Smith, M.W., “Modified Newmark Model for Seismic Displacements of Compliant Slopes,” J. Geotech. Geoenv. Eng., 1997, vol. 123.
37. Ambraseys, N. and Srbulov, M., “Earthquake Induced Displacements of Slopes,” Soil Dyn. Earthq. Eng., 1995, vol. 14.
38. Mochalov, A.M., “Forecasting deformations in Pitwall Rocks by Slope Observations and Modeling Results,” in Izuchenie i prognoz sdvizhenii i deformatsii gornykh porod, gidrogeomekhanicheskikh protsessov pri razrabotre mestorozhdenii podzemnym i otkrytym sposobom: s. nauch. tr. (Analysis and Prediction of Displacements and Deformations in Rocks and the Hydrogeomechanical Processes in Underground and Open Mineral Mining: Collected Works), Leningrad: VNIMI, 1991.
39. Lyakhov, G.M., Osnovy dinamiki vzryvnykh voln v gruntakh i gornykh porodakh (Principles of Blast Wave Dynamics in Soils and Rocks), Moscow: Nedra, 1974.
40. Romm, E.S., Strukturnye modeli porogovogo prostranstva gornykh porod (Structural Models of Critical Level Areas in Rocks), Leningrad: Nedra, 1985.
41. Rats, M.V. and Chernyshev, S.N., Treshchinovatost’ i svoistva treshchinovatykh porod (Jointing and Jointy Rock Properties), Moscow: Nedra, 1970.
42. Mokhnachev, M.P. and Pristash, V.V., Dinamicheskaya prochnost’ gornykh porod (Dynamic Strength of Rocks), Moscow: Nauka, 1982.
43. Aptikaev, F.F. and Shebalin, N.V., “Refining Correlations between Microseismic Effect Level and Movement Dynamics Parameters in Soil,” in Issledovaniya po seismicheskoi opasnosti (Seismic Hazard Studies), Moscow: Nauka, 1988.
44. Shteinberg, V.V., “Quantitative Characteristics of Strong Earthquake-Induced Vibrations in Soils,” in Otsenka vliyanii gruntovukh uslovii na seismicheskuyu opasnost’ (Estimating the Soil Conditions Effect on Seismic Hazard), Moscow: Nauka, 1988.
45. Mochalov, A.M., “Open Pit Slope Stability Assessment by Deofmrations Observed,” in Sovershenstvovanie metodo rascheta sdvizhenii i deformatsii gornykh porod, sooruzhenii i bortov razrezov pri razrabotke ugol’nykh plastiv v slozhnykh gorno-geologicheskikh usloviyakh: sb. nauch. tr. (Improvement in Calculation Techniques for Displacements and Deformations in Rocks, Structures and Open Pitwalls in Coal Mining in Complicated Geological and Mining Conditions), Leningrad: VNIMI, 1985.
46. Shebalin, N.V., “Earthquake Magnitude/Intensity Depending on the Earthquake Focus Depth,” Byull.Soveta Seismol., 1957, no. 6.
47. Shebalin, N.V., “Methods of Applying Seismic-Engineering Data in Seismic Zoning,” in Seismicheskoe raionirovanie SSSR. Ch. 1, gl. 6 (Seismic Zoning of the Territory of USSR. Chapter 1, Paragraph 6), Moscow: Nauka, 1968.
48. Abovsky, N.P., Sibgatulina, V.G., and Simonov, K.V., Razrabotka sistemy geotekhnologii dlya seismostoikogo stroitel’stva v razlichnykh godinamichski slozhnykh usloviyakh (Development of Earthquake-Resistant Construction Geotechnology for Various Geodynamically-Complicated Conditions), Krasnoyarsk: SFU, 2008.
49. Ulomov, V.I. and Peretokin, S.A. “Updating of the Seismic Zoning Standard Maps for the Territory of Russian Federation.,” Inzh. Izysk., 2010, no. 1.


EXPERIMENTAL AND ANALYTICAL PROCESSES FOR ASSESSING THE MINE WORKING STABILITY
M. V. Kurlenya, V. D. Baryshnikov, and L. N. Gakhova

The researchers have obtained parametric criteria for geomechanical assessment of excavations stability based on numerical modeling of the closing rock mass stress-strain state and using the in situ observations. The authors present the predictive estimate of stability of stopes in the bottom-up slice mining in the Internatsionalnaya kimberlite mine.

Stress-strain state, mathematical modeling, strength properties, stability criteria, excavation stability

REFERENCES
1. Segerlind, L., Primenenie metoda konechnykh elementov (Finite Element Method: Application), Moscow: Mir, 1979.
2. Krauch, S. and Starfield, A., Metod granichnykh elementov v mechanike tverdogo tela (Boundary Element Methodin Solid-State Mechanics), Moscow: Mir, 1987.
3. Grauholm, S., Mining with Backfill, Sweden: Luleo University of Technology, A. A. Balkema, Rotterdam, 1983.
4. Gritsko, G.I. and Tsytsarkin V. N., “Determination of the Stress-Strain Stateof the mass around Extended Seam Workings,” Journal of Mining Science, 1995, vol. 31, no. 6.
5. Vremennaya tekhnologicheskaya instruktsiya po primeneniyu sloevykh system razrabotki s tverdeyushchei zakladkoi na rudnike “Internatsionalny” (Interim Operating Guide on Slice Mining with consolidating Backfill at Internatsionalny Mine), Mirny, 2004.
6. Baryshnikov, V.D., Gakhova, L.N., and Kramskov, N.P., “Stress State of Ore Mass in the Ascending Slice Mining System,” Journal of Mining Science, 2002, vol. 38, no. 6.
7. Baryshnikov, V.D. and Gakhova, L.N., “Geomechanical Conditions of Kimberlite Extraction in Terms of Internatsionalnaya Kimberlite Pipe,” Journal of Mining Science, 2009, vol. 45, no. 2.
8. Bulychev, N.S., Mekhanika Podzemnykh sooruzhenii (Mechanics of Underground Constructions), Moscow: Nedra, 1982.
9. Vitke, V., Mekhanoika skalnykh porod (Hard Rock Mechanics), Moscow: Nedra, 1990.
10. Gudman, R., Mekhanoika skalnykh porod (Hard Rock Mechanics), Moscow: Stroiizdat, 1987.
11. Gakhova, L.N., The Software for Calculation of the Stress Strain State of a Block Mass by Using the Boundary Integral Equation Method (ELB2D), RosAPO, Certificate of Registration No. 960814.


DETERMINING DEFORMATION AND STRENGTH OF. A. FILLING MASS DURING STOPING BY THE INVERSE PROBLEM SOLVING
L. A. Nazarova, L. A. Nazarov, and N. A. Miroshnichenko

The authors have developed a method of quantitative estimation of filling mass deformation and strength characteristics in the course of stoping at sheet ore deposits by the in situ measurements of relative displacements of points at the mined-out stope contour. The article also analyses the structure of objective functions of the formulated inverse coefficient problems for the elastic-plastic rock deformation model, and examines their resolvability.

Rock mass, sheet deposit, backfill, elastic-plastic model, finite element method, inverse coefficient problem

REFERENCES
1. Bronnikov D. M., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinakh (Deep Ore Mining), Moscow: Nedra, 1982.
2. Bronnikov, D.M. and Tsyganova, M.N. (Eds.)., Zakladochnye raboty v shakhakh: spravochnik (Manual on Backfilling in Mines), Moscow: Nedra, 1989.
3. Turchaninov, I.A., Iofis, M.A., and Kaspar’yan E.V., Osnovy mekhaniki gornykh porod (Foundations of Rock Mechanics), Leningrad: Nedra, 1989.
4. Nazarov, L.A., Nazarova, L.A., and Artememova, A.I., “Statistic Approach to the Equivalent Modeling of Rock Masses,” Journal of Mining Science, 2009, vol. 45, no. 6, pp. 525 — 533.
5. Raphanel, J., Dimanov, A., Nazarova, L.A., Nazarov, L.A., and Artemova, A.I., “High Temperature Rheology of Synthetic Two-Phase Gabbroic Aggregates: Microstructural Heterogeneities and Local Deformation Mechanisms,” Journal of Mining Science, 2010, vol. 46, no. 5, pp. 495 — 502.
6. Nowacki, W., Theory of Asymmetric Elasticity, 2nd Edition, Pergamon Pr., 1985.
7. Nazrova, L.A., “Stress-Stae of a Sloping-Bedded Rock Mass around a Working,” Journal of Mining Science, 1985, vol. 21, no. 2, pp. 132 — 135.
8. Zienkiewicz, O., Finite Element Method in Engineering Science, McGraw Hill Education, 1971.
9. Kuznetsov, S.V., Odintsev, V.N., Slonim, M.E., Trofimov, V.A., Metodologiya rascheta gornogo davleniya (Rock Pressure Calculation Procedure), Moscow: Nauka, 1981.
10. Fizicheskie svoistva gornykh porod I poleznykh iskopaemykh (petrofizika): spravochnik geofizika (Physical Properties of Minerals and Rocks: Geoscientist’s Reference Book), Moscow: Nedra, 1976.
11. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., et al., USSSR Discovery no. 40, Byull. Izobret., 1992, no. 1.


ON ACCUMULATION OF FAULTS IN. A. PIECEWISE-HOMOGENEOUS ROCK BLOCK UNDER COMPRESSION
V. E. Mirenkov and A. A. Krasnovsky

The accumulation of faults in a rock mass is conventionally controlled by detecting the acoustic emission signals from a rock specimen compressed by a gradually increasing load on a plate at a press. The research problem under these conditions is to establish the relationship between the stress-strain state of a test specimen and the failure initiation, viz., geometry of accumulated pores. When solving direct problems it is found that the initiation of the specimen failure depends on respective boundary conditions emerged under plates of a loading device. The authors considered the cases of the fault accumulation in rocks and the rock failure initiation as examples.

Failure, pores, rock block, stresses, displacements, reverse problems, equations, boundary conditions

REFERENCES
1. Mirenkov, V.E. and Shutov, V.A., Matematicheskoe modelirovanie deformirovaniya gornykh porod okolo poslablenii (Mathematical Simulation of Rock Deformation in the Vicinity of Weakened Areas), Novosibirsk, Nauka, 2009.
2. Mirenkov, V.E., “Ill-posed problems in geomechanics,” Journal of Mining Science, 2011, vol. 47, no. 3.
3. Botvina, L.R., “Evolution of Faults in Different Scales,” Fizika Zemli, 2011, no. 10.
4. Kuksenko, V.S., Damaskinskaya, E.E., and Kadomtsov, A.G., “Character of Granite Failure under Different Stress Conditions,” Fizika Zemli, 2011, no. 10.
5. Mukhamediev, Sh.A., and Ul’kin, D.A., “The Model of Weakening Band Formation along Compression Axis in Weakly Cemented Sedimentary Rocks,” Fizika Zemli, 2011, no. 10.
6. Du Bernard, X., Eichhube, P., and Aydin, À., ‘Dilation bands: a new form of localized failure in granular media,” Geophys. Res. Lett. 2002, vol. 19(24), 2176, doi: 10. 1029/2002 GL015966.
7. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonal’naya dezintegratsiya gornykh porod I ustoichivost podzemnykh vyrabotok (Zonal Rock Disintegration and Underground Face Stability), Novosibirsk, SO RAN, 2008.
8. Esterhuizen, G. S., Dolinar, D. R., and Ellenberger, J. L., “Pillar strength in underground stone mines in the United States,” Int. J. Rock Mech. Min. Sci., 2001, vol. 48, pp. 42 — 50.


RELATION BETWEEN THE THERMALLY INDUCED ACOUSTIC EMISSION IN HARD ROCKS AND THEIR ULTIMATE COMPRESSION STRENGTH
V. L. Shkuratnik and E. A. Novikov

The authors experimentally established and substantiated the relation between the ultimate strength of compressed hard rock specimens and the activity of low-temperature thermally induced acoustic emission, averaged in a preset temperature range. This relation is explicit under conditions of the preliminary censoring of the test specimen collection with rejection of specimens with abnormal defectiveness, detected from the analysis of TIE. The study case of the ultimate strength evaluation for Kapustinsky granite by using the thermoacoustic emission measurements is reported.

Hard rocks, ultimate compression strength, thermally induced acoustic emission, sample censoring, fissuring

REFERENCES
1. Trofimov, V.T., Korolev, V.A., Voznesensky, E.A., Golodkovskaya, G.A., Vasil’chuk, Yu.K., and Ziangirov, R.S., Gruntovedenie (Soil Science), edit. Trofimov V. T. Edition 6, Moscow: MGU, 2005.
2. Zhigalkin V. M., Rychkov, B.A., Usoltseva, O.M., Tsoi, P.A., and Chynybaev, M.K., “Estimation of Strength Properties of Rock Samples in Terms of Calculated Mohr’s Envelopes,” Journal of Mining Science, 2011, vol. 47, no. 6.
3. Lomtadze, V.D., Fiziko mekhanicheskie svoistva gornykh porod. Metody laboratornykh issedovanii (Physical Mechanical Properties of Rocks. Laboratory Research Methods), Higher Education Textbook , Edition 2, Leningrad: Nedra, 1990.
4. Savich, A.I., Koptev, V.I., Nikitin, V.N., et al., Seismoakusticheskie metody izucheniya massivov ckalnykh porod (Seismic and Acoustic Methods for Investigation of Hard Rock Masses), Moscow: Nedra, 1969.
5. Lavrov, A.V. and Shkuratnik, V.L., “Acoustic Emission in Deformation and Failure of Rocks (Review),” Acoustic Journal, 2005, vol. 51, no. S.
6. Vinnikov, V.A., Voznesenskii, A.S., Ustinov, K.B., and Shkuratnik, V.L., “Theoretical Models of Acoustic Emission in Rocks at Different Thermal Treatment Modesof Their,” PMTF, 2010, vol. 51, no. 1.
7. Yamshchikov, V.S., Kontrol protsessov gornogo proizvodstva (Mining Control), Higher Education Texbook, Moscow: Nedra, 1989.
8. Karabutov, A.A., Makarov, V.A., Cherepetskaya, E.B., and Shkuratnik, V.L., Lazerno ultrazvukovaya spektroskopiya gornykh porod (Laser Ultrasonic Spectroscopy of Rocks), Moscow: Gornaya Kniga, 2008.


EFFECT OF NONUNIFORM DRILL MUD CAKE ON STRESS STATE OF RESERVOIR ROCKS
V. Ya. Rudyak and A. V. Seryakov

The article describes simulation of stress state in pore pressure in a reservoir, in the vicinity of a horizontal well, subjected to the hydromechanical effect of drilling mid, using the poroelastic model of reservoir deformation, which accounts for the dynamics of the drill mud cake formation on the well walls. It is illustrated how the stress and pore pressure are distributed when no cake is formed and in cases of the uniform-permeable and nonuniform-permeable cake.

Reservoir, stress, strain, pore pressure, drill mud cake, poroelasticity

REFERENCES
1. Manakov, A.V. and Rudyak, V.Ya., “Mixed Simulation Algorithm for Filtration and Geomechanics in Well Bore Zone,” Sib. Zh. Idustr. Matem., 2012, no. 1.
2. Tran, M.H., Abousleiman, Y.N., and Nguyen, V.X., “The Effect of Low-Permeability Mudcake on Time-Dependent Wellbore Failure Analyses,” Proc. 2010 IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, SPE Papers No. 135893.
3. El’tsov, I.N., Nazarov, L.A., Nazarova, L.A., Nesterova, G.V., and Epov, M.I., “Geophysical Borehole Measurement Interpretation with Accounting for Hydrodynamic Processes in an Invasion Zone,” Dokl. AN, 2012, vol. 445, no. 6.
4. Biot, M.A., “Theory of Elasticity and Consolidation for a Porous Anisotropic Solid,” Journal of Applied Physics, 1955, vol. 26, no. 2.
5. Wang, H.F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton: Princeton University Press, 2000.
6. Tien,C., Bai,R., and Ramarao, B., “Analysis of Cake Growth in Cake Filtration,” AIChE Journal, 1997, vol. 43, no. 1.
7. Collins, R., Flow of Fluids through Porous Material, New York: Reinhold Publishing Corporations, 1961.
8. Manakov, A.V., Rydyak, V.Ya., and Seryakov, A.V., “Mixed Geomehcanics and Filtration Modeling in the Well Bore Zone during Drilling,” in Proc. Conf. Geodynamics and Stress State of the Earth’s Interior, vol. 1, Novosibirsk: IGD SO RAN, 2011.
9. Darley, H. C. H. and Gray George R., Composition and Properties of Drilling and Completion Fluids, Houston: Gulf Publishing Company, 1980.


INSTABILITY DETECTION IN PIPING SUPPORTS BY ACOUSTIC NOISE
Yu. I. Kolesnikov, K. V. Fedin, A. A. Kargapolov, and A. F. Emanov

Physical simulation has displayed possibility to determine free frequencies and geometrical forms of bending stationary waves in pipelines by the recorded acoustic noise on the pipelines surface. The authors show the usability of the obtained data to the pipeline support stability assessment. Partial or total instability, that makes the span between the rigid joints of the pipe longer, shows itself as the sharp structural change of the field of bending stationary waves induced by acoustic noise in the pipe.

Pipeline, free frequencies, vibration forms, noise field, instability, physical simulation

REFERENCES
1. Oparin, V.N., Simonov, B.F., Yushkin V. F., et al., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Engineering Background for Oil Recovery Enhancement in the Vibration Wave Technologies), Novosibirsk: Nauka, 2010.
2. Metodicheskie rekomendatsii po raschetam konstruktivnoi nadezhnosti magistral’nykh truboprovodov. RD 51–4.2–003.09 (Main Pipeline Structural Reliability Calculation Guidelines), Moscow: RAO Gazprom, 1997.
3. Ukazaniya po raschety na prochnost’ i vibratsiyu tekhnologicheskikh stal’nykh truboprovodov. Rukovodyashchii tekhnicheskii material RTM 38.001.94 (Stress Calculation and Vibration Analysis Instructions for Steel Industrial Pipelines. Governing Technical Matters RTM 38.001–94), Moscow: VNIPIneft’, 1994.
4. Lee, U. and Oh, H., “The Spectral Element Model for Pipelines Conveying Internal Steady Flow,” Engineering Structures, 2003, vol. 25.
5. Tong, Z., Zhang, Y., Zhang, Z., and Hu, H., “Dynamic Behavior and Sound Transmission Analysis of a Fluid Structure Coupled System Using the Direct-BEM/FEM,” Journal of Sound and Vibration, 2007, vol. 299.
6. Nestrov V.S, Akulenko, L.D., and Korovina, L.I., “Bending Vibrations of a Pipeline Containing a Uniform Flow Liquid,” Dokl. Akad Nauk, 2009, vol. 427, no. 6.


RADAR INTERFEROMETRY-BASED DETERMINATION OF GROUND SURFACE SUBSIDENCE UNDER MINERAL MINING
Yu. A. Kashnikov, V. V. Musikhin, and I. A. Lyskov

The authors report on interferometric processing of satellite radar data with the aim of determining the subsidence of the ground surface in the underworked areas of civil and industrial infrastructure. The interferometry method results and the instrumental monitoring data are compared in terms of a few actual mines.

Differential radar interferomerty, synthetic aperture radar, radar scene, ground surface subsidence, underworked area, digital relief model, gas-condensate field

REFERENCES
1. Instruktsiya po nablyudeniyam za sdvizheniem gornykh porod i zemnoi poverkhnosti pri podzemnoi razrabotke ugol’nykh i slantsevykh mestorozhdenii (Operating Instructions for Rock Mass and Ground Surface Movement Monitoring in Coal and Shale Underground Mining), Moscow: Nedra, 1989.
2. Instruktsiya po nablyudeniyam za sdvizheniem gornykh porod i zemnoi poverkhnosti pri podzemnoi razrabotke rudnykh mestorozhdenii (Operating Instructions for Rock Mass and Ground Surface Movement Monitoring in Ore Underground Mining), Moscow: Nedra, 1989.
3. Instruktsia po sozdaniyu nablyudatel’nykh stantsii i proizvodstvu instrumental’nykh nablyudenii za protsessami sdvizheniya zemnoi poverkhnosti pri razrabotke neftyanykh mestorozhdenii v regione Verkhnekamskogo mestorozhdeniya kaliino-magnievykh solei (VKMKS) (Operating Instructions for Observatory Networking and Instrumental Monitoring of the Ground Surface Movements under Oil Field Development in the Area of the Upper Kama Potash-Magnesium Salt Deposit), Perm: Perm GTU, 2003.
4. Iofis, M.A. and Shmelev, A. I. Inzhenernaya geomekhanika pri podzemnykh rabotakh (Geomechanical Engineering in Underground Mining), Moscow: Nedra, 1985.
5. Cumming, I.G. and Wong, F.H., Digital Processing of Synthetic Aperture Radar Data, Norwood, MA: Artech House, Inc., 2005.
6. ESA TM-19. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, Noordwijk: ESTEC, 2007.
7. Raney, R.K., “Radar Fundamentals: Technical Perspective, in Principles and Applications of Imaging Radar,” Manual of Remote Sensing, Henderson, F.M. and Lewis, A.J. (Eds.), vol. 2, New York: John Wiley & Sons, 1998.
8. Rees, W.G., Physical Principles of Remote Sensing, Cambridge University Press, 2001.
9. ESA TM-19. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, Noordwijk: ESTEC, 2007.
10. Elachi, C., Spaceborne Radar Remote Sensing: Applications and Techniques, New York, IEEE Press, 1987.
11. Bakulev, P.A., Radiolokatsionnye sistemy (Radar Systems), Moscow: Radiotekhnika, 2004.
12. Guzhov, V.I. and Il’inykh, S.P., Komp’yuternaya interferomnetriya: ucheb. posobie (Computer-Aided Interferometry: Educational Guidance), Novosibirsk, NGTU, 2004.
13. Wegmuller, U., Users Guide, Gamma Remote Sensing, 2006.
14. Kashnikov, Yu.A. and Krivenko, A.A., “Determination of the Ground Surface Subsidence due to Gas-Condensate Field Mining by the Data of Interferometric Processes of the Radar Survey,” Marksheider. Vest., 2009, no. 3.
15. Bush, V., Hevel, H.-P., Schaffer, M., Walter, D., and Baryakh, A., “Control of Underworked Areas Subsidence using the Radar Interferometry Methods,” Marsheideriya Nedropol’z., 2009, no. 2.


ROCK FAILURE


ACOUSTIC EMISSION ACCUMULATION STAGE IN COMPRESSION AND IMPACT RUPTURE OF GRANITE
I. P. Shcherbakov, V. S. Kuksenko, and A. E. Chmel’

Laboratory specimens of granite were exposed to uniaxial compression and impacted by a dropping load unit failure in order to obtain time sequences of acoustic emission signals generated due to micro-cracking. Time resolution in the impact fracturing was 10 ns. Both under compression and impact, the macroscale failure stage was preceded by micro-scale damages accumulation stage. The accumulation stage duration under compression is far much longer than the failure stage, while the situation is opposite in case of failure under impact.

Impact failure, granite, acoustic emission, damage accumulation

REFERENCES
1. Damaskinskaya, E.E., Kuksenko, V.S.,m and Tomilin, N.G., “Two-Stage Rock Failure Model,” Fiz. Zemli, 1994, no. 10.
2. Amitrano, D., “Rupture by Damage Accumulation in rocks,” Int. J. Fract., 2003, vol. 139.
3. Kadomtsev, A.G., Domsakinskaya, E.E., and Kuksenko, V.S., “Features of Fracturing Granite under Varied Deformation Conditions,” Fiz. Tverd. Tela. 2011, vol. 53, no. 9.
4. Makarov, P.V., “Evolutionary Behavior of Failure in Solids and Solid Media,” Fiz. Mezomekh., 2007, vol. 10, no. 3.
5. Yakovitskaya, G.E., Metody i tekhnicheskie sredstba diagnostiki kriticheskikh sostoyanii gronykh porod na osnove elekromagntinoi emissii (Methods and Means for Diagnostics of Limit Conditions in Rocks by Electromagnetic Emission), Novosibirsk: Parallel’, 2008.
6. Smirnov, V.B., Ponomarev, A.V., and Zav’yalov, A.D., “Structure of Acoustic Regime in Rock Specimens and the Seismic Process,” Fiz. Zemli, 1995, no. 1.
7. Chmel, A. and Shcherbakov, I., “Acoustic, Electromagnetic, and Photon Emission from Dynamically Fracturing Granite,” PAGEOPH, 2012, vol. 167, no. 11.
8. Morgunov, V.A. and Malzev, S.A., “A Multiple Fracture Model of Pre-Seismic Electromagnetic Phenomena,” Tectonophysics, 2007, vol. 431, nos. 1 4.
9. Kuksenko, V., Tomilin, N., and Chmel, A., “The Rock Fracture Experiment with a Drive Control: A Spatial Aspect,” Tectonophysics, 2007, vol. 431, nos. 1 4.
10. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., “Relation of Linear Block Dimensions of Rocks to Crack Opening in the Structural Hierarchy of Masses,” Journal of Mining Science, 1993, vol. 29, no. 3, pp. 197 — 203.
11. Makarov, P.V., Physical Nature of Deformation and Failure of Solids and Solid Media,” Fiz. Mezomekh., 2004, vol. 7, no. 4.
12. Saether, E. and Taasan, S., “Hierarchical Approach to Fracture Mechanics,” NASA Technical Reports, 2004, NASA/TM-2004–213499.


MINING THERMOPHYSICS


A METHOD TO DETERMINE THE BODY THERMAL STATE
A. I. Chanyshev

Given the known temperature and its gradient at a body’s boundary, the heat distribution, including the location and geometry of heat sources in the body interior is recovered. The article analyzes the plane stationary problem formulation and solution, and the Hadamard’s example. The proposed scheme of numerical solution (with an option of extension for a 3D case) is compared with the analytical solution.

Temperature, gradient, boundary, heat distribution, heat sources

REFERENCES
1. Tikhonov, A.N. and Samarsky A. A., Uravneniya matematichskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.
2. Courant, R. and Hilbert, D., Methods of Mathematical Physics: Partial Differential Equations, John Wiley, 1961.
3. Vladimirov, V.S., Uravneniya matematichskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1971.
4. Haberman, R., Elementary Applied Partial Differential Equations, New Jersey: A Paramount Communications Company Englewood Cliffs, 1987.
5. Muskhelishvili, N.N., Nekotorye osnovnye zadachi matematicheskoi teorii uprogosty (Some Principal Problems of Mathematical Elastic Theory), Novosibirsk: Nauka, 2009.
6. Kabanikhin, S.I., Obratnye i nekorrektnye zadachi (Inverse and Ill-Posed Problems), Novosibirsk: Nauka, 2009.
7. Sobolev, S.L., Uravneniya matematichskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1966.
8. Shvab, A.A., “Inverse Overspecified Problem for Inhomogeneous Elastic Medium,” Sib. Zh. Idust. Matem., 2004, vol. 7, no. 4.
9. Chanyshev, A.I. and Vologin, D.A., “Determination of the Stress-Strain State and Damages in a Rock Mass by the Displacement Measurement on Its Surface. Part I: Analytical Solutions,” Journal of Mining Science, 2012, vol. 47, no. 4, pp. 395 — 403.


SCIENCE OF MINING MACHINES


ENHANCING RELIABILITY OF PARTS OF PERCUSSION MACHINES
A. A. Repin, S. E. Alekseev, and A. I. Popelyukh

It is proposed to wholistically ensure reliable operation of downhole air hammers. The article describes testing of stresses of air hammer model P150, indicates ways to increasing strength of impacting parts, shows how thermal treatment regimes may influence strength of steel the parts are made of, and present a downhole air hammer design with reduced amount of stress risers in the impacting parts.

Downhole air hammer, borehole, thermal treatment, stress risers, strength, reliability

REFERENCES
1. Ivanov, K.I., Glazunov, B.N., and Nadion, M.F., Sovremennnye metody bureniya krepkikh porod (Current Hard Rock Drilling Methods), Moscow: Gos. nauch.-tekh. izd. lit. po gorn. delu, 1963.
2. Repin, A.A., Alekseev, S.E., and Pyatnin, G.A., “Expanding the Field of Application of P150 Downhole Air Hammer,” in Proc. 4th Conf. High-Tech Mineral Mining and Processing, Novosibirsk: IGD SO RAN, 2005.
3. Popelyukh, A.I., Bataev, A.A., Teplykh, A.M., Ognev, A.Yu., and Golovin, E.D., “Thermal Treatment of Engineering Steels with Mixed Martensite-Bainite Transformation of Austenite,” Stal’, 2011, no. 4.
4. Popelyukh, A.I., Teplykh, A.M., Terent’ev, D.S., and Ognev, A.Yu., “Increase Structural Strength of the Percussive Machine Parts under Thermal Treatment and Generation of a Mixed Structure,” Obrabot. Metall., 2009, no. 2.
5. Repin, A.A., Alekseev, S.E., Popelyukh, A.I., and Teplykh, A.M., “Influence of Nonmetallic Inclusions on Endurance of Percussive Machines,” Journal of Mining Science, 2011, vol. 47, no. 6, pp. 798 — 806.
6. Alekseev, S.E., RF patent no. 2090730, in Byull. Izobret., 1997, no. 26.
7. Repin, A.A., Alekseev, S.E., and Pyatnin, G.A., RF patent no. 2343266 ÐÔ, in Byull. Izobret., 2009, no. 1.


VOLTAGE STABILIZATION IN SYNCHRONOUS CONSTANT-MAGNET GENERATOR WITH. A. VARIABLE SHAFT ROTATION FREQUENCY
S. A. Kharitonov, B. F. Simonov, D. V. Korobkov, and D. V. Makarov

The paper proposes the analysis of three design and control scenarios for the system intended to generate the variable-frequency constant-voltage energy on the basis of a synchronous generator and a paralleled semiconductor converter. The research scientists demonstrate the stabilization of the synchronous generator voltage, evaluation of basic electrical parameters, and the relationship between them and operation modes of the system.

Synchronous generator, constant magnets, variable frequency, voltage control, semiconductor converter

REFERENCES
1. Levin, A.V., Alekseev, I.I., Kharitonov, S.A., Kovalev, L.K., Elektricheskii samolet: ot idei do realizatsii (Elektrical Airplane: from Idea to Realization), Moscow: Mashinostroenie, 2010.
2. Treshchev, I.I., Elektromekhanicheskie protsessy v mashinakh peremennogo toka ( Electromechanical Processes in AC Machines), Leningrad: Energiya, 1980.
3. Kharitonov, S.A., Elektromagnitnye protsessy v sistemakh generirovaniya elektricheskoi energii dlya avtonomnykh ob’ektov (Electromagnetic Processes in Power Generating Systems for Self –Contained Entities), Novosibirsk: NGTU, 2011.


MINERAL MINING TECHNOLOGY


PROBLEMS AND PROSPECTS IN THE RESOURCE-SAVING AND RESOURCE-REPRODUCING GEOTECHNOLOGY DEVELOPMENT FOR COMPREHENSIVE MINERAL WEALTH DEVELOPMENT
K. N. Trubetskoy, D. R. Kaplunov, and M. V. Ryl’nikova

The article deals with procedural aspects and development prospects of the resource-saving and resource-reproducing geotechnologies as the foundation and conditions for the profitable functioning of the mineral resource complex in Russia. The definition and implementation of the full cycle comprehensive subsoil exploitation are described, the advantages of the modular mobile backfill manufacturing units are illustrated and the main ways of development of the beneficial production waste utilization are pointed at.

Resource-saving and resource-reproducing geotechnologies, full cycle comprehensive ore field development, low quality material utilization

REFERENCES
1. Trubetskoy, K.N., Razvitie novykh napravleniy v kompleksnom osvoenii nedr (Development of New Trends in the Comprehensive Exploitation of the Subsoil), Moscow: IPKON AN SSSR, 1990.
2. Kaplunov, D.R., Ryl’nikova, M.V., and Arsent’ev, V.A., “Resource-Saving Technology and Equipment for High Capacity Backfilling in Hard Mineral Underground Mining,” Gorny Zh., 2012, no. 8.


INCREASED ORE EXTRACTION FROM THIN FLAT DIPPING VEINS USING SELF-PROPELLED EQUIPMENT
A. P. Tapsiev and V. A. Uskov

The options of improving ore extraction from underground thin flat and inclined ore veins using self-propelled machine complexes are discussed in terms of renovated technology application in the Karalveem gold ore field.

Gold ore veins, geology, mining conditions, geotechnology, ore loss, ore dilution, self-propelled machine complexes, broken rock backfill

REFERENCES
1. Trubetskoy, K.N., Galchenko, Yu.P., and Sabyanin, G.V., “Strategy of Technological Innovation in Lode Ore Extraction,” Journal of Mining Science, 2011, vol. 47, no. 4, pp. 476 — 483.
2. Oparin, V.N., Rusin, E.P., Tapsiev, A.P., et al., Mirovoi opyt avtomatizatsii gornykh rabot na podzemnykh rudnikalh (The World-Wide Experience of Underground Mining Automatization), Novosibirsk: SO RAN, 2007.
3. Korern’kov, E.N., Artemenko, Yu.V., and Uskov, V.A., “Gently Dipping Vein Ore Mining with Self-Propelled Equipment,” in Fundamental’nye problem formirovaniya tekhnogennoi sredy (Fundamental Problems of Geoenvironment Formation under Industrial Impact), vol. 1, Novosibirsk: IGD SO RAN, 2007.
4. Lyubin, A.N., “Calculation of Drilling and-Blasting Parameters for Narrow Faces,” Gorny Zh., 2001, no. 12.
5. Agabalyan, Yu.A., Oganesyan, A.G., and Sarkisyan, A.G., “Optimized Extraction of Very Thin Orebodies,” Gorny Zh., 2005, no. 1.
6. Uskov, V.A., RF patent no. 2397324, in Byull. Izobret., 2010, no. 23.
7. Freidin, A.M., Tapsiev, A.P., Uskov, V.A., et al., “Reequipment and Development of Mining Method at Zapolyarny Mine,” Journal of Mining Science, 2007, vol. 43, no. 3, pp. 290 — 299.


ORE METAL PROVISION OF METALLURGY INDUSTRY IN WEST SIBERIA
P. A. Filippov and A. M. Freidin

The authors discuss the current situation in the iron and steel industry and the iron ore mining in West Siberia, and evaluate the prospects and ways of improvement in the indicated sphere.

Iron ore deposit, iron and steel industry, open and underground mining, technology, mining method, sublevel caving, self-propelled equipment, production capacity, investment

REFERENCES 1. Kalugin, A.S., Kalugina, T.S., Ivanov, V.I., et al., Zhelezorudnye mestorozhdeniya Sibiri (Iron Ore Deposits in Siberia), Novosibirsk: Nauka, 1981.
2. Roslyakov, A.V. and Sviridov, V.G., Geologicheskoe stroenie i poleznye iskopaemye Zapadnoi Sibiri (Geology and Minerals of West Sibria), vl. 2, Novosibirsk: NII OIGGM, 1998.
3. Shrepp, B.V., Kvochin, V.A., Boyarkin, V.I., et al., “Rockbursting Origination in Iron Ore Deposis in Siberia,” Bezop. Truda Prom., 19984, no. 8.
4. Gaidin, P.T., Kovalenko, V.A., Dubynin, N.G., and Shaposhnikov, V.D., “Continuous Level Caving and Vaibrating Ore Drawing Technology,” Gorny Zh., 1971, no. 1.
5. Filippov, P.A., “Social Backrground of Up-Dating the Underground Iron-Ore Mining Technology in Siberia,” Journal of Mining Science, 2008, vol. 44, no. 5, pp. 512 — 517.
6. Shrepp, B.V., Tsinker, L.M., and Kvochin, V.A., “Geodynamic Safety of the Industrial Infrastructure in the Town of Novokuznetsk,” in First KGU Inter. Conf Proceedings, Novokuznetsk: KGU, 2005.
7. Freidin, A.M., “Concept of Developing Technology in Underground Mines of Siberia and the Far East,” Journal of Mining Science, 1999, vol. 35, no. 3, pp. 291 — 303.
8. Freidin, A.M., Filippov, P.A., Gaidin, A.P., et al., “Prospects of Technical Re-Equipment in Underground Mines of the Metallurgy Complex of West Siberia,” journal of Mining Science, 2004, vol. 40, no. 3, pp. 283 — 291.
9. Filippov, P.A., “Underground Iron Ore Mining in West Siberia: The Current Situation and Futute Considerations,” Vest. KuzGTU, 2007, no. 4.
10. Oparin, V.N., Rusin, E.P., Tapsiev, A.P., et al., Mirovoi opyt avtomatizatsii gornykh rabot na podzemnykh rudnikakh (The World-Wide Underground Mining Automation Experience), Novosibirsk: SO RAN, 2007.
11. Freidin, A.M., Neverov, A.A., Neverov, A.S., and Filippov, P.A., Sovremennye sposoby razrabotki rudnykh zalazhei s obrusheniem na bol’shikh glubinakh (The Up-to-Date Deep Ore Mining Methods with Caving), Novosibirsk: SO RAN, 2008.
12. Rybak, V.L., Nalivaiko, A.S., and Mikhailov, N.F., “Underground Mining Practice in the Olenegorsky Ferruginous Quartzite Deposit,” Gorny Zh., 2009, n. 7.
13. Filippov, P.A., “The Potential of Technogenic Formations in Mines of the West Siberia,” 2008, vol. 44, no. 4, pp. 386 — 390.
14. Onofreichuk, V.Ya., Freidni, A.M., and Filippov, P.A., “Gravimetric and Qualitative Compositions of Mine Wastes,” in 7th Int. Conf. Proc. State-of-the-Art Mineral Mining Technologies , vol. II, Krasnoyarsk: SFU, 2009.
15. Fillipov, P.A., “Iron Ore Mining Waste Processing in Siberia as an Aspect of the Regional Ecology Policy Realization and the Improvement of the Mining Companies Efficiency,” Innovats., 2009, no. 3.
16. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., et al., “Fine and Disperse Gold Extraction from Tailings by Physicochemical Methods,” Obog. Rud, 2003, no. 4.
17. Kaplunov, D.R. and Yukov, V.A., “Assessment of Mining Waste Processing Capacity,” Marksheider. Vest., 2008, no. 5.
18. Chanturia, V.A., Shadrunova, I.V., Medyanik, N.L., and Mishurina, O.A., “Electric Flotaton Extraction of Manganese from Hydromineral Wastes at Yellow Copper Deposits in the South Ural,” Journal of Mining Science, 2010, vol. 46, no. 3, pp. 311 — 316.


GEOMECHANICAL SUBSTANTIATION OF RESOURCE-SAVING MINING PROCESSES: THE INDUCED BLOCK CAVING SYSTEM
G. N. Volchenko, V. M. Seryakov, and V. N. Fryanov

The paper analyzes probability of improving ore blasting efficiency in rock masses under the natural, gravitational tectonic and mining-induced stresses. The safe, resource-saving process proposed by the authors for the induced block caving in the deep hard rock mining provides lower consumption of commercial explosives by utilizing the rock pressure energy in the blasting process.

Rock mass, stresses, strain, mine, mining system, explosive charge, short-delay blasting, energy

REFERENCES
1. Matveev, I.F., Control of the Rockburst Hazard in a Rock Mass by Adjusting the Blasting Breakage Parameters at Siberian Iron Ore Mines, Doctorate (Engineering) Dissertation, Novokuznetsk: SibGIU, 2004.
2. M. V. Kurlenya, M.V., Eremenko, A.A., Tsinker, L.M., and Shrepp, B.V., Tekhnologicheskie problem rasrabotki zhelezorudnykh mestorozhdenii Sibiri (Technological Mining Problems in Development of Siberian Iron Ore Deposits), Novosibirsk: Nauka, 2002.
3. Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.
4. Gzovskii, M.V., Osnovy tetonofiziki (Tectonophysics Fundamentals), Moscow: Nauka, 1975.
5. Adushkin, V.V., Actual Geomechanical Problems in the Earth’s Crust, Electr. Nauch.-Inf. Zh. “Vestnik OGGGN RAN”, 2001, vol. 16, no. 1.
6. Volchenko, G.N., Energoresursosberegaushchie tekhnologii vzryvnoi otboiki napryazhennykh porod na rudnikakh (Energy-Resource-Saving Processes for the Blasting Breakage of Stressed Rocks at Mines), Novokuznetsk: Siberian State Industrial University, 2010.
7. Volchenko, N.G., Influence of Charge Arrangement Geometry and Short-Delay Blasting on the Crushing Indices in Compression Blasting, Soviet Mining Science, 1977, vol. 13, no. 5.
8. Volchenko, N.G., Blinov, A.A., Emelianov, V.P., and Afanasenko, G.V., The Rock Mass Failure in the Blasting Crater Zone, publ. in Issledovanie tekhnologii i opredelenie parametrov razrabotki rudnykh mestorozhdenii (Investigation in the Technology and Evaluation of Mineral Ore Mining Parameters), O.Yu. Schmidt Institute of Earth’s Physics, Moscow: Nauka, 1971.
9. Seryakov, V.M., Volchenko, G.N., and Seryakov, A.V., Geomechanical Substantiation of Ore Block Mining Schemes with Account for Redistribution of the Static Field of Stresses in Short-Delay Blasting, Journal of Mining Science, 2005, vol. 41, no. 1.
10. Karapetyan, Yu.M., Pokrovsky, B.V., and Volchenko, N.G., USSR Inventor’s Certificate no. 972905, MKI E21S 37/00. Process for Ore Breaking by Explosives, SMI, no.3254854; applied March 04, 1981.
11. Volchenko, G.N., Fryanov, V.N., and Seryakov, V.M., Investigation into the Rock Mass Pre-fracturing Effect on the Reduction in the Energy Intensity of Ore Crushing in Blasting, Vest. Nauchn. Tsentra Bezop. Ugol. Prom., 2011, no. 1.
12. Volchenko, G.N. and Fryanov, V.N., Improvement of Mining Safety and Efficiency in the Deep Induced Block Caving at Hard Rock Mines, Vest. Nauchn. Tsentra Bezop. Ugol. Prom., 2012, no. 1.
13. Volchenko, G.N., USSR Inventor’s Certificate no. 1540434, MKI E 21 S 41/06. Process for Pillar Extraction, VostNIGRI, no. 4428931; applied May 23, 1988, publ. October 22, 89.
14. Khanukaev, A. N., Belyatsky, V.P., and Ionin, A.A., Dynamic Tensile Strength in Blasting of Pre- Stressed Rocks, Soviet Mining Science, 1976, vol. 12, no. 2.
15. Belinder, E.N., Klyatchenko, V.F., Kozachuk, A.I., et al., Breaking Resistance of Rocks with Loading Time of 10–2–10–6 s, Journal of Mining Science, 1991, vol. 27, no. 2.
16. Adushkin, V.V., and Spivak, A.A., Podzemnye vzryvy (Underground Blasting), Moscow: Nauka, 2007.
17. Petukhov, I.M., Litvin, V.A., Kuchersky, L.V., et al., Gornye udary i borba s nimi na shakhtakh Kizilovskogo basseina (Rock Bursts and their Control at Kizilovsky Basin Mines), Perm, 1969.
18. Zorin, A.N., Khalimendik Yu.M., and Kolesnikov, V.G., Mekhanika razrusheniya gornogo massiva I ispolzovanie ego energii pri dobyche poleznykh iskopaemykh (Mechanics of Rock Failure and Use of Rock Mass Energy in Mineral Mining), Moscow: Nedra, 2001.
19. Kaplenko, Yu.P., Control of the Rocks Stress State and Rock Breaking Parameters in Stoping at Deep Levels, Doctorate (Engineering) Dissertation, 1987.
20. Vlokh, N.P., Sashurin, A.D., Upravlenie gornym davleniem na zhelezorudnykh rudnikakh (Rock Pressure Control at Iron Ore Mines), Moscow: Nedra, 1974.
21. Mashukov, V.I., Boyarkin, V.I., and Mashukov, I.V., Control of Break-down Energy in Stressed Media by Working Deposits at Great Depths, Journal of Mining Science, 1980, vol. 16, no.2.
22. Oparin, V.N., Tapsiev, A.P., and Freidin, A.M., Classification of Methods for Ore Mining at a Large Depth,” Journal of Mining Science, 2008, vol.44, no. 6.


MINERAL DRESSING


INFLUENCE OF NANOSECOND ELECTROMAGNETIC PULSES ON THE PHASE COMPOSITION OF SURFACE NANOSTRUCTURES. ELECTROCHEMICAL, SORPTION, AND FLOTATION PROPERTIES OF CHALCOPYRITE AND SPHALERITE
V. A. Chanturia, I. Zh. Bunin, M. V. Ryazantseva, and I. A. Khabarov

The mechanism for the powerful nanosecond electromagnetic pulse (MNEMP) effect on the phase composition of new-formed chalcopyrite and sphalerite structures is studied by IR Fourier spectroscopy method. The authors establish the effect of the higher sorption activity of sulfide minerals subjected to the electromagnetic pulse treatment. The research data are confirmed by the experimental data on MNEMP effect on electrochemical and flotation properties of chalcopyrite and sphalerite.

Chalcopyrite sphalerite, powerful nanosecond electromagnetic pulses, IR spectroscopy, electrode potential, flotation

REFERENCES
1. Chanturia, V.A., Trubetskoi, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya I vaskrytiya materialov (Nanoparticles in Material Fragmentation and Exposure Processes), Moscow: IPKON RAN, 2006.
2. Chanturia, V.A., Ivanova, T.A., Khabarova, I.A., and Ryazantseva, M.V., Effect of Ozone on Physical-Chemical properties of surface of pyrrhotite under the Nanosecond Electromagnetic Pulse Treatment, Journal of Mining Science, 2007, vol. 43, no. 1.
3. Chanturia, V.A., Filippova, I.V., Filippov, L.O., Ryazantseva, M.V., and Bunin, I.Zh., Influence of Powerful Nanosecond Electromagnetic Pulses on Surface and Flotation Properties of Carbonate-Bearing Pyrite and Arsenopyrite, Journal of Mining Science, 2008, vol. 44, no. 5.
4. Ivanova, T.A., Bunin, I.Zh., and Khabarova, I.A., Specific Features of Sulfide Mineral Oxydation under the Nanosecond Electromagnetic Pulse Effect, Izv RAN, Physics Series, 2008, vol. 72, no. 10.
5. Ryazantseva, M.V. and Bogachev, V.I., Influence of Nanosecond Electromagnetic Pulses on Electrophysical Properties of Pyrite and Arsenopyrite, Journal of Mining Science, 2009, vol. 45, no. 5.
6. Ryazantseva, M.V., Mechanism for the Nanosecond Electromagnetic Pulse Effect on Structural-Chemical and Flotation Properties of Pyrite and Arsenopyrite, PhD Dissertation (Eng.), Moscow: URAN IPKON RAN, 2009.
7. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., Filippova, I.V., and Koporulina, E.V., Nanosecond Electromagnetic Pulse Effect on Phase Composition of Pyrite and Arsenopyrite Surfaces, Journal of Mining Science, 2011, vol. 47, no. 4.
8. Khabarova, I.A., Electromagnetic Pulse Enhancement of the Contrast between Physico-Chemical and Flotation Properties of Pyrrhotite and Pentlandite, PhD Dissertation (Eng.), Moscow: URAN IPKON RAN, 2011.
9. Chanturiya V. A., Bunin I. Zh., Ryazantseva M. V., and Filippov L. O. Theory and Application of High-Power Nanosecond Pulses to Processing of Mineral Complexes, Mineral Processing and Extractive Metallurgy Review, 2011, vol. 32, no 2.
10. Shafeev, R.Sh., Chanturia, V.A., and Yakushin, V.P., Vliyanie ioniziruyushchikh izlechenii na protsess flotatsii (Influence of Ionizing Radiation on Flotation) Moscow: Nauka, 1973.
11. Bunin, I.Zh., Theoretical Fundamentals of Nanosecond Electromagnetic Pulse Effect on Disintegration and Exposure of Finely-Dispersed Mineral Complexes and Recovery of Noble Metals from Ores, Doctorate (Eng.) Dissertation, Moscow, RGGRU, 2009.
12. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sulfidov (Electrochemistry of Sulfides), Moscow: Ruda i Metally, 2008.
13. Chanturia, V.A. and Shfeev R.Sh., Khimiya poverkhnostnykh yavlenii pri flotatsii (Chemistry of Surface Phenomena in Flotation), Moscow: Nedra, 1977.
14. Farmer V. C. The infrared spectra of minerals., London, Mineralogical society, 1974.
15. Nakomoto, N., IK-Spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii (IR-Spectra and Raman Scatering Spectra of Non-organic and Co-ordination Compounds) Moscow: Mir, 1991.
16. Van der Marel H. W., Beutelspacher H. Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, Amsterdam, Elsevier Scientific Publishing Company, 1976.
17. Akira Tsuge, Yoshinori Uwamino and Toshio Ishizuka Determination of copper (I) and copper (II) oxides on a powder surface by diffuse reflectance infrared Fourier transform spectrometry, Analytical Sciences, 1990, Vol. 6, No 6.
18. Ivanovskaya, M.I., Tolstik, A.I., Kotikov, D.A., and Pan’kov, V.V., Structural Specific Features of Zn – Mn-Ferrite, Synthesized by the Sprayed Pyrolysis, ZhFKh, 2009, vol. 83, no. 12.


TECHNOLOGICAL INNOVATIONS FOR EFFICIENT UTILIZATION OF LOW-CALORIFIC BROWN COAL IN THE WEST AMUR REGION
A. P. Sorokin, I. F. Savchenko, V. Z. Mezhakov, and T. V. Artemenko

The paper evaluates the economic merit and quality of the West Amur Region brown coal in terms of grade 1B coal that presents the two third of the regional coal reserves. However, this grade coal is high-ashy, high-moisture and low calorific capacity, and is therefore not used. The authors suggest innovative solutions for this grade coal conversion, including field curing, briquetting and high-speed thermochemical pyrolysis.

Coal potential, brown coal, region, West Amur Region, technological innovations, field curing, briquetting, thermochemical conversion of grade 1B coal

REFERENCES
1. Vasil’ev, I.A., Kapanin, V.P.,Kovtonyuk, G.P., et al., Mineral’no-syr’evaya baza Amurskoi oblasti na rubezhe vekov (Mineral Reserves of the Amur Region at the 20th Century Turn), Blagoveshchensk, 2000.
2. Sorokin, A.P., Kuz’minykh, V.M., and Rozhdestvina, V.I., “Gold in Brown Coal: Localization, Occurrence, Extraction,” DAN, 2009, vol. 424, no. 2.
3. Savchenko, I.F. and Sorokin, A.P., RF patent no. 2273811, in Byull. Izobret., 2006, no. 10.
4. Gumarov, R.Kh., “Alkali Solutions of Aid Humates as a Binding Agent in Black Coal Briquetting,” Khim. Tverd. Topl., 1971, no. 5.
5. Savchenko, I.F. and Sorokin, A.P., RF patent no. 2252948, in Byull. Izobret., 2005, no. 15.
6 . Savchenko, I.F. and Sorokin, A.P., RF patent no. 2273563, in Byull. Izobret., 2006, no. 10.


KINETICS OF SCHEELITE FLOTATION FROM CALCIUM MINERALS
E. D. Shepeta, L. A. Samatova, and S. A. Kondrat’ev

The laboratory and commercial trials of ore specimens with different content of tungstic oxide and calcite have conducted, and basic patterns in flotation have been established. Based on the results of analytical and practical studies, the actual processing plant’s operating practice and processing flow sheet have been upgraded.

Scheelite-carbonate ore, calcium minerals, chemical feed flow sheets, flotation properties, floatability, rate of extraction

REFERENCES
1. Stepanov, G.N., Mineralogiya, petrografiya i genesis skarnovykh sheelit sulfidnykh mestorozhdenii Dalnego Vostoka (Mineralogy, Petrography, and Genesis of Skarn Scheelite Sulfide Deposits in the Far East), Moscow: Nauka, 1997.
2. Gvozdev, V.I. and Orekhov, A.A., Metasomatic Rocks and Genesis of Skrytoe Scheelite Deposit, Primorie, Geolog. Rud. Mestorozh., 2004, vol. 46, no. 6.
3. Samatova, L.I., Gvozdev, V.I., Kienko, L.A., et al., Mineralogical-Processing Characteristics of Ores from Skrytoe Scheelite Deposit, and their Perspective Dressing Trends, Primorski Krai, Tikhookeanskaya Geologiya, 2011, no. 6.
4. Povarennykh, A.S., Kristallokhimicheskaya klassifikatsiya mineralnykh vidov (Crystal Chemical Classification of Mineral Species), Kiev: Vysha Shkola, 1966.
5. Sorokin, M.M., Flotatsionnye metody obogashcheniya (Flotation as a Mineral Processing Method), Moscow: Dom MISiS, 2011.
6. Lourier, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Waste Waters), Moscow: Khimiya, 1984.
7. Shepeta, E.D., Selective Desorption of Collectors from Calcium Mineral Surface and Flotation of Fine-Grain Scheelite Fraction from Tungsten Ores Mined at Vostok-2 Deposit, Cand. Sc. (Eng.) Dissertation, Moscow, 1987.
8. Barskii, L.A., Kononov, O.V., and Ratmirova, L.I., Selektivnaya flotatsiya kaliisoderzhashchikh mineralov (Selective Flotation of Potassium-Bearing Minerals), Moscow: Nedra, 1979.
9. Bogdanov, O.S., Teoriya i tekhnologiya flotatsii rud (Theory and Process for Ore Flotation), Moscow: Nedra, 1990.


EFFECT OF SULFIDE AND PETROLEUM AROMATIC CONCENTRATES ON GOLD ORE PROCESSING BY FLOTATION
S. A. Antsiferova, V. G. Samoilov, R. S. Min, and O. N. Suvorova

The authors have analyzed applicability of butyl potassium xanthate coupled with sulfide and aromatic concentrate, recovered from high sulfur diesel fraction of South Uzbekistan in two-stage extraction in the solution of zinc solution in N,N-dimethyl formamide, in flotation of gravity circuit tailings. The best performance has been reached at the ration of the said concentrates as 2/1, which results in 12.2% reduction of gold loss in the tailings, and, for another thing, the quality of the rougher sulfide flotation concentrate grows by 6 g/t.

Flotation, gold ore, apolar collecting agent

REFERENCES
1. Zelenov, V.I., Metodika issledovaniya zoloto- i serebrosoderzhashchikh rud (Gorld-Containing and Silver-Containing Ore Investigation Procedure), Moscow: Nedra, 1989.
2. Kuzina, Z.P., Min, R.S., Plyusnin, A.N., Pashkov, G.L., Poroikova, G.P., Antsiferova, A.S., et al., RF patent no. 1610647, in Byull. Izobret., 1993, no. 20.
3. Kuzina, Z.P., Min, R.S., and Samoilov, V.G., “Commercial testing of a New Collecting Agent meant for Flotation of Lead-Zinc Ore,” Tvet. Metally, 1999, no. 3.


NEW METHODS AND INSTRUMENTS IN MINING


TEST DATA ON THE ACOUSTIC TRACKING OF AIR-PERCUSSION MACHINE TRACKING IN SOIL
V. N. Oparin, E. V. Denisova, and A. I. Konurin

The paper describes the in situ testing of the developed and designed acoustic control systems to track an air percussion machine movement in soil. Based on the test data processing, the authors have related the acoustic signal due to machine motion and the machine location. It is concluded advisable to control air percussion machinery movement in soil using acoustic signal.

Air percussion machine, acoustic signal, soil, acceleration indicator, two-channel acoustic detector, multichannel acoustic monitoring system

REFERENCES
1. Oparin, V.N. and Denisova, E.V., Printsipy postroeniya radiochastotnykh system navigatsii dlya bestransheinykh tekhnologii prokladki podzemnykh kommunikatsii (Design Concept for radio Frequency Positioning Systems in Trenchless Underground Pipeline Laying), Novosibirsk: SO RAN, 2011.
2. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (teoriya i praktika) (Guide Rules of Trenchless Technologies: Theory and Practice), Moscow: Press Byuro No. 1, 2005.
3. Denisova, E.V., Neverov, A.A., Gavrilov, S.Yu., and Konurin, A.I., “Geomechanical Prove of the Experimental Tests of Acoustic Field Induced by An Air Percussion Machine Movement in Spoil,” Vestn. KuzGTU, 2011, no. 5.
4. Oparin, V.N., Denisova, E.V., Gavrilov, S.Yu., and Konurin, A.I., RF patent no. 116573, Byull. Izobret., 2012, no. 5.
5. Voznesensky, A.S., Sistemy kontrolya geomekhanicheskikh protsessov: Uchebnoe posobioe (Systems of Control over Geomechanical Processes: Educational Aid), Moscow: MGGU, 2002.
6. Rasskazov, I.Yu., Kontrol’ i upravlenie gornym davleniem na rudnikakh Dal’nevostochnogo regiona (Strata Pressure Control in Mines in the Far East), Moscow: Gornaya kniga, 2008.
7. Denisova, E.V., Konurin, A.I., and Polotnyanko, N.S., “Geomechanical Tracking of Impulse Source in Rocks,” in 2nd Russia-China Conf. Proc. Nonlinear Geomechanical-Geodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012.
8. Oparin, V.N., Denisova, E.V., Gavrilov, S.Yu., Konurin, A.I., and Polotnyanko, N.S., RF patent no. 118765, , Byull. Izobret., 2012, no. 21.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå