Rambler's Top100
Èíñòèòóò ãîðíîãî äåëà ÑÎ ÐÀÍ
 Çíàê «Øàõòåðñêàÿ ñëàâà» Ëàáîðàòîðèÿ ìåõàíèêè äåôîðìèðóåìîãî òâåðäîãî òåëà è ñûïó÷èõ ñðåä Êîëüöåâûå ïíåâìîóäàðíûå ìàøèíû äëÿ çàáèâàíèÿ â ãðóíò ñòåðæíåé Ëàáîðàòîðèÿ ìåõàíèçàöèè ãîðíûõ ðàáîò
ÈÃÄ » Èçäàòåëüñêàÿ äåÿòåëüíîñòü » Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû… » Íîìåðà æóðíàëà » Íîìåðà æóðíàëà çà 2012 ãîä » JMS, Vol. 48, No. 3, 2012

JMS, Vol. 48, No. 3, 2012


GEOMECHANICS AND SEISMICITY OF THE ANTEY DEPOSIT ROCK MASS
I. Yu. Rasskazov, B. G. Saksin, V. A. Petrov, and B. A. Prosekinc

The authors overview geotectonics and geomechanics of the Antey uranium ore deposit area, analyze the character and sources of rock pressure manifestations and their change as mining is advanced, and substantiate the need of integrated geodynamic analysis and seismic monitoring.

Stress-strain state, rock pressure manifestations, geological structure, uranium ore, mathematical modeling, mined-out void, mining system, pillars

REFERENCES
1. Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., “Modeling Formation of Orogenic Belts in the Central and North-Eastern Asia,” Tikhookean. Geolog., 2003, vol. 22, no. 6.
2. Malyshev, Yu.F., Podgorny, V.Ya., Shevchenko, B.F., Romanovsky, N.P., et al., “Deep Structure of the Marginal Areas of the Amur Lithosphere Platform,” Tikhookean. Geolog., 2007, no. 2.
3. Shevchenko, B.F., Saksin, B.G., and Rasskazov, I.Yu., “Deep Structure and Morphostructures of the Amur Continental Tectonic Platform,” All-Russia Conf. Proc.: The 7th Kosygin’s Reading on Tectonics, Magmatism and Geodynamics of the Eastern Asia, Khabarovsk: Kosygin’s ITiG DVO RAN, 2011.
4. Ishchukova, L.P., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (The Streltsovsky Uranium Ore Deposits in Transbaikalia), Irkutsk: Glazovskaya, 2007.
5. Laverov, N.P., Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Khammer, Y., Burmistrov, A.A., and Shchukin, S.I., “The Antey Uranium Orebody: The Natural Analog of a Spent Fuel Storage and the Underground Laboratory in Granites,” Geolog. Rud. Mestor., 2008, vol. 50, no. 5.
6. Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Shchukin, S.I., and Khammer, Y., “Natural and Induced Changes in Stress-Strain State in Granite-Enclosed Uranium Deposit,” Fiz. Zemli, 2009, no. 11.
7. Polyakov, A.N., “Forecasting Rockburst-Hazardous Geotechnical Situation in Deep Mining,” Fiz. Zemli, 1993, no. 4.
8. Kolmakov, V.D., “Geomechanical Substantiation of the Extraction Technology for Steep Rockburst-Hazardous Hydrothermal-Genetic Ores,” Extended Abstracts of PhD Dissertation, Novosibirsk, 1983.
9. Safety Rules for Rockburst-Hazardous Metal and Nonmetal Mines and Underground Construction (RD-06–329–99), Moscow: GP NTTs Bezop., Prom. Gosgortekhnadzor Ros., 2000.
10. Saksin, B.G., Rasskazov, I.Yu., and Prosekin, B.A., “Geomechanical Self-Organization of Natural and Technical Systems in Rockburst-Hazardous Ore Mining on the East of Russia,” Gorn. Inform.-Analit. Byull., 2001, no. 9.
11. Timofeev, V.Yu., Kazansky, A.Yu., Ardyukov, D.G., et al., “Rotation Parameters of the Siberian Domain and Its Eastern Periphery in Different Geological Ages,” Tikhookean. Geolog., 2011, no. 4.
12. Rasskazov, I.Yu., Potapchuk, G.M., Miroshnikov, V.I., and Rasskazova, M.I., “Estimation of Stress-Strain State in the Structural Components of the Top-Down System of Mining with Backfilling,” Gorn. Inform.-Analit. Byull., 2008, no. 7.
13. Zapryagaev, A.P., Isaev, A.V., and Genkin, V.A., “Rockburst-Hazard Forecasting by Core Discing,” Bezop. Truda Prom., 1982, no. 7.
14. Shabarov, A.N., Rasskazov, I.Yu., Filinkov, A.A., et al., Ukazaniya po bezopasnomy vedeniyu gornykh rabot na mestorozhdenii Antei, opasnom po gornym udaram (Mining Safety Guidelines for the Rockburst-Hazardous Antey Deposit), Saint Petersburg: SPbGGI, 2008.
15. Bortinkov, N.S., Petrov, V.A., Veselovsky, A.V., Ponomarev, A.V., San’kov, V.A., and Rasskazov, I.Yu., “Seismic-Geodynamic Monitoring Systems for Heightened Ecological and Industrial Impact Objects: Problems and Prospects,” Minobrnauki Conf. Proc. on Rational Nature Management, Saint-Petersburg: SPPGU, 2011.


THE THEORETICAL AND EXPERIMENTAL ANALYSIS OF JOINTED RESERVOIR PERMEABILITY
S. G. Ashikhmin, Yu. A. Kashnikov, and S. Yu. Yakimov

The paper presents the theoretical an experimental analysis of the regularities in the change of the permeability of fractures under the normal stress effect in the oil and gas reservoirs. The applicability of the permeability variation law based on the fracture model by Barton and Bandis has been exemplified in terms of the Yurubcheno-Tokhoma oil and gas condensate field.

Oil and gas field, jointed reservoirs, permeability, formation pressure, effective stress

REFERENCES
1. Barton N. and Bandis S., “Effects of Block Size on the Shear Behavior of Jointed Rock,” Proc. 23rd U. S. Symp. on Rock Mech., Issues in Rock Mech., Berkeley, California, 1982.
2. Barton, N.R., Bandis, S.N., and Bakhtar, K., “Strength, Deformation and Conductivity Coupling of Rock Fractures,” Int. J. Rock Mech., 1985, no. 36.
3. Bandis, S.H., Lumsden, A.C., and Barton, N.R., “Fundamentals of Rock Fracture Deformation,” Int. J. Rock Mech., 1983, no. 6.
4. Wittke, W., Rock Mechanics, Theory and Applications with Case Histories, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokio, Hongkong, Barcelona, 1990.
5. Erban, P.-J., Raumliche Finite-Element-Berechnungen an Idealisierten Diskontinua unter Berucksichtigung des Scher- und Dilationsverhaltens von Trennflachen, Veroffentlichungen des Institutes fuer Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH Aachen, Heft 14, 1986.
6. Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Rock Strength and Deformability), Moscow: Nedra, 1988.
7. Baklashov, I.V., Deformirovanie i razrushenie porodnykh massivov (Rock Mass Deformation and Failure), Moscow: Nedra, 1988.
8. Vikrotin, V.D., Vliyanie osobennostei karbonatnykh kollektorov na effektivnost’ razrabotki neftyanykh zalezhei (Effect of Properties of Carbonate Formations on Oil-Field Development), Moscow: Nedra, 1988.
9. Lebedinets, L.P., Izuchenie i razrabotka neftyanykh mestorozhdenii s treshchinovatymi kollektorami (Analysis and Development of Oil Fields with Jointed Reservoirs), Moscow: Nauka, 1997.
10. Shchelkachev, V.N. and Lapuk, B.B., Podzemnaya gidravlika (Underground Hydraulics), Moscow: Dinamika, 2001.
11. Kashnikov, Yu.A. and Ashikhmin, S.G., Mekhanika gornykh porod pri razrabotke mestorozhdenii uglevodorodnogo topliva (Rock Mechanics in Hydrocarbon Deposit Development), Moscow: “Nedra-Biznestsentr,” 2007.


TYPES OF OREBODIES ON THE BASIS OF THE OCCURRENCE DEPTH AND STRESS STATE. PART II: OREBODY TECTONOTYPES AND GEOMEDIUM MODELS
S. A. Neverov

The author has accomplished systematization of ore fields by their geomechanical conditions based on the analysis of their tectonic structures. It is established that natural stress fields in the same type geological and tectonic structures are similar in mining regions worldwide. The author has distinguished four geomedium models differentiating the change of the rock stress state with increase in the rock occurrence depth.

Tectonic structures, rock mass, stress state, depth, geomedium model

REFERENCES
1. Otrazhenie sovremennykh polei napryazhenii i svoistv porod v sostoyanii skal’nykh massivov (Representation of the Contemporary Stresses and Properties of Rocks in the Hard Rock Mass State), Apatity: KFAN SSSR, 1977.
2. Sadovsky, M.A. (Ed.), Priroda i metodologiya opredeleniya tektonicheskikh napryazhenii v verkhnei chasti zemnoi kory (Stress Nature and Determination Procedure in the Outer Crust of Earth), Apatity: KFAN SSSR, 1982.
3. Kozyrev, A.A. and Savchenko, S.N., “Differentiating Tectonic Stresses in the Outer Crust of Earth with Accounting for Natural and Induced Influence,” in All-Russia Conf. Proc. Tectonophysics and Urgent Issues in the Sciences on Earth, Apatity, 2008.
4. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfe, D., and Muller, B., World Stress Map, 2nd Edition, WSM Database Release 2008, Helmholtz Centre Potsdam—GFZ German Research Centre for Geosciences, 2009.
5. Markov, G.A., Tektonicheskie napryazheniya i gornoe davlenie v rudnikakh Khibinskogo massiva (Tectonic Stresses and Rock Pressure in the Khibiny Massive Mines), Leningrad: Nedra, 1977.
6. Neverov, S.A., “Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part I: Modern Concept of the Stress State versus Depth,” Journal of Mining Science, 2012, vol. 48, no. 2, pp. 249 — 259.
7. Petukhov, I.M. and Batugina, I.M., Geodinamika nedr (Subsoil Geodynamics), Moscow: Nedra Communications Ltd, 1999.
8. Koronovsky, N.V., “Stress State of the Earth Crust,” Soros. Obrazovat. Zh., 1997, no. 1.
9. Gzovsky, M.V., Osnovy tektonofiziki (Basics of Tectonophysics), Moscow: Nauka, 1975.
10. Kropotkin, P.N., Rezul’taty izmerenii napryazhennogo sostoyaniya gornykh porod v Skandinavii, Zapadnoi Evrope, Islandii, Afrike i Severnoi Amerike (Stress Stress Measurements in Rock Masses in Scandinavia, West Europe, Iceland, Africa and North America), Moscow: Nauka, 1973.
11. Markov, G.A. and Savchenko, S.N., Napryazhennoe sostyanie porod i gornoe davlenie v strukturakh goristogo rel’efa (Stress State and Rock Pressure in the Mountainous Relief Structures), Leningrad: Nauka, 1984.
12. Aitmatov, I.T., Geomekhanika rudnykh mestorozhdenii Srednei Azii (Geomechanics in Central Asia Ore Fields), Frunze: Ilim, 1987.
13. Khain, V.E., Tektonika kontinentov i okeanov (Continental and Ocean Tectonics), Moscow: Nauch. Mir, 2001.
14. Zubkov, A.V., Zoteev, O.V., Smirnov, O.Yu., et al., “Stress-Strain State Formation Regularities in the Ural Earth’s Crust with Time,” Litosfera, 2010, no. 1.
15. Amie, M., “Constraining the Far-Field In Situ Stress State near a Deep South African Gold Mine,” International Journal of Rock Mechanics and Mining Sciences, 2009, vol. 46, no. 3.
16. Schweitzer, J.K. and Johnson, R.A., “Geotechnical Classification of Deep and Ultra-Deep Witwatersrand Mining Areas, South Africa,” Mineralium Deposita Journal, 1997, no. 126.
17. Gorbatsevich, F.F. and Savchenko, S.N., “Modern Stresses on the North of the Baltic Shield by Research Data on Pechenega Geoblock and the Kola Ultradeep Well Profile,” Geofiz. Zh., 2009, vol. 31, no. 6.
18. Gorbatsevich, F.F. and Il’chenko, V.L., “Estimation of Rock Deformation Parameters and Stresses in the Kola Ultradeep Well Profile (SG-3),” Ross. Geofiz. Zh., 1999, nos. 13 and 14.
19. Brudy, M., Zoback, M.D., Fuchs, Ê., Rummel, F., and Baumgaertner, J., “Estimation of the Complete Stress Tensor to 8 km Depth in the KTB Scientific Drill Holes: Implications for Crustal Strength,” J. Geophys. Res., 1997, vol. 102, no. B8.
20. Haymson, “Tectonic Stresses in the Alpine-Mediterranean Region,” Rock Mechanics, 1980, no. 9.
21. Arjang, B., “Database on Canadian In Situ Ground Stresses,” CANMET Mining and Mineral Sciences Laboratories, Division Report MMSL, 2001.
22. Brady, B. and Brown, E., Rock Mechanics for Underground Mining, 3rd Edition, Kluwer Academic Publishers, 2004.
23. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., Leont’ev, A.V., Nazarov, L.A., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics in the Upper Lithosphere Rock Masses: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.


NANO- AND MICRO-RANGE MECHANICAL CHARACTERISTICS OF SYLVITE GRAIN
V. N. Aptukov, S. A. Konstantinova, V. Yu. Mitin, and A. P. Skachkov

The paper discusses the indentation testing of sylvite grain using scanning probing microscope Dimension ICON and facility NanotTest-600. The authors present the approximated processing procedure for experimental curves and compare the obtained values of hardness and elastic modulus at different scale levels.

Sylvite, elastic modulus, hardness, micro- and nano-range

REFERENCES
1. Proskuraykov, N.M., Permyakov, R.S., and Chernikov, A.K., Fiziko-mekhanicheskie svoistva solyanykh porod (Physico-Mechanical Properties of Salt Rocks), Leningrad: Nedra, 1973.
2. Trubetskoy, K.N., Viktorov, S.D., Galchenko, Yu.P., and Odintsev, V.N., “Technogeneous Mineral Nanoparticles as the Problem of the Subsoil Development,” Vestn. RAN, 2006, vol. 76, no. 4.
3. Aptukov, V.N., Konstantinova, S.A., and Skachkov, A.P., “Micromechanical Characteristics of Carnallite, Sylvinite and Salt Rocks at Upper Kama Deposit,” Journal of Mining Science, 2010, vol. 46, no. 4.
4. http://www.bruker-axs.com/dimension-icon_atomic_force_microscope.
5. Golovin, Yu.I., “Nanoindentation as a Means for Complex Estimating Physico-Mechanical Properties of Submicro-Volume Materials (Review),” Zavod. Lab. Diagnost. Mater., 2009, vol. 75, no. 1.
6. Andrievsky, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructure Materials), Moscow: Akademiya, 2005.
7. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nantechnologies), Moscow: Fizmatlit, 2005.
8. Panich, N. and Yong, S., “Improved Method to Determine Hardness and Elastic Module Using Nano-Indentation,” KMITL Sci. J., 2005, vol. 5, nî. 2.
9. Sun, Y., Zheng, S., Bell, T., and Smith, J., “Indenter Tip Radius and Load Frame Compliance Calibration Using Nanoindentation Load Curves,” Philosophical Magazine Letter, 1999, nî. 79.
10. Oliver, W.C. and Pharr, G.M., “An Improved Technique for Determining Hardness and Elastic Module Using Load and Displacement Sensing Indentation Experiments,” J. Materials Research, 1992, nî. 7.
11. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Nauka, 1973.
12. Aptukov, V.N., “Expansion of a Spherical Hole in an Elastic-Plastic Medium under Finite Deformations. Report I: Effect of Mechanical Characteristics, Free Surface, Cleavage,” Porbl. Prochn., 1991, no. 12.


COAL BED METHANE DRAINAGE WITH LONG DIRECTIONAL BOREHOLES
A. D. Ruban, V. S. Zaburdyaev, and A. V. Kharchenko

It has been stated that high-output coal mine degassing must take into account the lower limit of coal bed methane content in order to determine the need of preliminary methane drainage through degassing boreholes and the duration of the methane emission rate reduction.

Mine, coal bed, borehole, methane content, methane emission, degassing

REFERENCES
1. Ruban, A.D., Zaburdyaev, V.S., Artem’ev, V.B., Podobrazhin, S.N., et al., Metodicheskie rekomendatsii o poryadke degazatsii ugol’nykh shakht (RD-15–09–2006). Seriya 05. Vypusk 14 (Coal Mine Degassing Guidelines. RD-15–09–2006. Series 05. Edition 14), Moscow: OAO “Nauch.-Tekhnich. Tsentr Bezop. Prom.,” 2007.
2. Zaburdyaev, V.S., Ruban, A.D., Zaburdyaev, G.S., et al., Metodicheskie osnovy proektirovaniya degazatsii na deistvuyushchikh i likvidiruemykh shakhtakh (Guiding Principles of Planning Degassing in Mines under Operation and Closure), Moscow: NNTs GP. A. A. SkochinskyIGD, 2002.
3. Ruban, A.D., Zaburdyaev, V.S., Artem’ev, V.B., and Loginov, A.K., “High-Output Breakage Face Operation in Methane-Bearing Coal Beds,” Ugol’, 2009, no. 10.
4. Zaidenvarg, V.E., Ruban, A.D., Zaburdyaev, V.S., and Zakharov, V.N., “Methane Recovery Forecasting in Mine Fields of the Tom’ Usinsk and Mras Districts in Kuzbass,” Ugol’, 2001, no. 10.
5. Zaburdyaev, V.S., “Foreign Experience of Coal Methane Recovery and Its Prospects in the Kuznetsk Bain,” Ugol’, 2003, no. 2.
6. Ruban, A.D., Zaburdyaev, V.S., and Zakharov, V.N., “Coal Methane: Reserves, Recovery Issues, Usage Methods,” Nauka Tekhnika Gaz. Promysh., 2009, no. 3.
7. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Coal Mine Ventilation Planning Guidelines), Makeevka Donbass, 1989.
8. Ruban, A.D., Artem’ev, V.B., Zaburdyaev, V.S., et al., Problemy obespecheniya vysokoi proizvoditel’nosti ochistnykh zaboev v metanoobil’nykh shakhtakh (Problems of the Sustained High Output at Breakage Faces in High Methane Coal Mines), Moscow: URAN IPKON RAN, 2009.


ESTIMATING REMAINING LIFE OF UNDERGROUND TUNNEL CONCRETE LINING BY CONVERGENCE MEASUREMENTS
P. V. Deev, A. S. Sammal’, and V. D. Baryshnikov

The authors propose a procedure for estimating stresses, load bearing capacity and remaining life of lining in long-term operated underground tunnels using the analytical calculations based on solving the plane elastic problem on stress-strain state of a non-circular variable-thickness ring restraining a hole in a linearly deformed medium, and by the in situ measurement data.

Inverse analysis, stress state, convergence, analytical solution

REFERENCES
1. Sammal’, A.S., Fotieva, N.N., and Petrenko, A.K., “Calculation of multi-layer variable-thickness tunnel linings under static and seismic impacts,” Izv. TulGU, Ser. Geomekh., Mekh. Podzem. Sooruzh., 2004, no. 2.
2. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of the Mathematical Theory of Elasticity), Moscow: Nauka, 1966.
3. Bulychev, N.S., “Calculation of Tunnel Linings in Weak Soils,” in Inter. Conf. Proc. Problems of Underground Construction in the 21st Century, Tula: TulGU, 2002.
4. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsii bez predvaritel’nogo napryazheniya armatury (k SP 52–101–2003 (Manual on Structural Engineering of Concrete and Reinforced Concrete Structures with Pre-Stressing-Free Reinforcement), Moscow: Assotsiatsiya Zhelezobeton, 2005.
5. Amusin, B.Z. and Linkov, A.M., “Method of Variable Moduli in Solving a Class of Problems of Linear Hereditary Creep,” Izv. AN SSSR, Mekh. Tverd. Tela, 1974, no. 6.


THE ROCKBURSTS IN THE UPPER SILESIAN COAL BASIN IN POLAND
M. Bukowska

Coal mining realised in Upper Silesian Coal Basin is the main course of occurrence of bumps and rock-bumps. Geodynamical phenomena described as the rock-bumps occur in the area of GZW from the end of the 19th century. The mechanism of the rock-bumps phenomenon, due to the complexity, didn’t allow elaborating the completely effective method of its forecasting. However, increasing amount and the scale of rock-bumps, due to the development of mining, have extorted the scientific circles to perform works devoted to the elaborating newer and newer and better and better methods of the assessment of liability to rock-bumps, likewise methods of rock-bumps hazard assessment.

Coal, bumps, rockburst hazard, Upper Silesian Coal Basin

REFERENCES
1. Wawersik, W.R. and Fairhurst, C., “A Study of Brittle Rock Fracture in Laboratory Compression Experiments,” Int. J. Rock Mech. Min. Sci., 1970, vol. 7, no. 6, pp. 561 — 575.
2. Bieniawski, Z.T., “Time-Dependent Behavior of Fractured Rock,” Rock Mechanics, 1970, vol. 2, no. 3, pp. 123 — 137.
3. Wawersik, W.R. and Brace, W.F., “Post-Failure Behavior of Granite and Diabase,” Rock Mech., 1970, no. 3.
4. Peng, S.S., “Time-Dependent Aspects of Rock Behavior as Measured by Servo-Controlled Hydraulic Testing Machine,” Int. J. Rock Mech. Min. Sci., 1973, No. 3.
5. Paterson, M.S., Experimental Rock Deformation—The Brittle Field, Springer, Berlin, 1978.
6. Blanton, T.L., “ Effect of Strain Rates from 10–2 to 10 sec-1 in Triaxial Compression Tests on Three Rocks,” Int. J. Rock Mech. Min. Sci. & Geomech., Abstr., 1981, vol. 18, no. 1, pp. 47 — 62.
7. Okubo, S. and Nishimatsu,Y., “Uniaxial Compression Testing Using a Linear Combination of Stress and Strain as the Control Variable,” Int. J. Rock Mech. Min. Sci. and Geomech., 1985, vol. 22, no. 5, pp. 323 — 330.
8. Olsson, W.A., “The Compressive Strength of Tuff as a Function of Strain rate from 10–6 to 10 3 s,” Int. J. Rock Mech. Min. Sci. Geomech., Abstr., 1991, vol. 28, no. 1, pp. 115 — 118.
9. Lajtai, E.Z., Duncan, E. J. S., and Carter, B.J., “The Effect of Strain Rate on Rock Strength,” Rock Mech. Rock Eng., 1991, vol. 24, no. 2, pp. 99 — 109.
10. Li, H.B., Zhao, J., and Li, T.J., “Triaxial Compression Tests on a Granite at Different Strain Rates and Confining Pressures,” Int. J. Rock Mech. Min. Sci., 1999, vol. 36, no. 8, pp. 1057 — 1063.
11. Bukowska, M., “The Influence of Strain Rate on Indices of Rock Bump Susceptibility,” Archives of Mining Sciences, 2002, vol. 45, no. 1, pp. 23 — 45.
12. Bukowska, M., “Geomechanical Properties of Rocks from the Rockburst Hazard Point of View,” Archives of Mining Sciences, 2002, vol. 47, no. 2, pp. 111 — 138.
13. Bukowska, M., “Mechanical Properties of Carboniferous Rocks in the Upper Silesian Coal Basin under Uniaxial and Triaxial Compression Tests,” Journal of Mining Science, 2005, vol. 41, no. 2, pp. 130 — 134.
14. Bukowska, M., “The Probability of Rockburst Occurrence in the Upper Silesian Coal Basin Area Dependent on Natural Mining Conditions,” Journal of Mining Science, 2006, vol. 42, no. 6, pp. 570 — 577.
15. Bieniawski, Z. T., “Mechanism of Brittle Fracture of Rock. Parts I and II,” Int. J. Rock Mech. Min. Sci., 1967, vol. 4, pp. 395 — 430.
16. Dubiński, J. and Konopko, W., Rockbursts — Asessment, Prediction, Combating, Katowice: Central Mining Institute, 2000.
17. Walaszczyk, J., Drzewiecki, J., and Mutke, G., “The model of Devastating the Roof Rock of the Rock Mass as a Source of Intense Dynamic Phenomenon,” Biblioteka Szkoły Eksploatacji Podziemnej. Seria z Lampka Górnicza, 2002, no. 10.
18. Biliński, A., “Bumps in the Light of Distressed Rock Mass Mechanics,” Kwartalnik AGH, Górnictwo, 1985, vol. 9, no.. 2, pp. 105 — 132.
19. Zuberek, W., “Geofizyczne modele wstrzasów indukowanych na powierzchni uskoku eksploatacja górnicza,” Prace Nauk. Uniwersytetu Ślaskiego, Geologia, 1993, vol. 12/13, pp. 231 — 253.
20. Konopko, W., “The possibility of Predicting of the Rockburst Hazard State,” in Górnictwo 2000. Politechnika Ślaska, 1999, pp. 149 — 157.
21. Petukhov, I.M., Teorija Zaszczytnych Plastow, Moskwa: Niedra, 1976.
22. Filcek, “Geomechanical Criteria of Rockburst Hazard,” Kwartalnik AGH, Seria: Górnictwo, 1980, no. 2.
23. Zorychta, A., “The Modification of Geomechanical Properties of Coal as a Method of Reducing the Bump Hazard,” in Bezpieczenstwo Pracy i Ochrona Srodowiska w Górnictwie, WUG 9(61)/1999, Katowice.
24. Drescher, A. and Lietz, J., “The Dynamic Skip Modeling the Bump of Rock Pillar,” Archives of Mining Sciences, 1981, vol. 26, no. 2, pp. 384 — 403.
25. Zdanowski, A. and Żakowa, H. (Eds.), “The Carboniferous System in Poland,” in Prace PIG CXLVIII, Warszawa, 1995, pp. 124 — 134.
26. Kotas, A. “The Outline of Geological Structure of Upper Silesian Coal Basin,” in Przewodnik LIV Zjazdu PTG, Wydawnictwa Geologiczne, Warszawa, 1982.
27. Jureczka, J. and Kotas, A., “The Carboniferous System in Poland,” in Prace PIG CXLVIII, 1995, pp. 168 — 171.
28. Bukowska, M., “The Exploitation Depth and Bump Hazard in the Mines of the Upper Silesian Coal Basin,” in Deep Mining Challenges, International Mining Forum 2009, CRC Press Taylor and Francis Group/Balkema, 2009, pp. 23 — 32.
29. Bukowski, P., “Determining of Water Hazard Zones for Mining Exploitation in the Vicinity of Reservoirs in the Abandoned Mines,” Mineral Resources Management, 2009, vol. 25, no. 3, pp. 203 — 215.
30. Bukowski, P., “Determining of Safety Pillars in the Vicinity of Water Reservoirs in Mine Workings within Abandoned Mines in the Upper Silesian Coal Basin (USCB),” Journal of Mining Science, 2012, vol. 46, no. 3, pp. 298 — 310.


GROWTH OF HYDROFRACTURES IN AN OIL AND GAS STRATUM UNDER IMPULSE LOADING
P. A. Martynyuk and A. V. Panov

It is analyzed how hydofractures grow from the circular hole boundary in the conditions of plane strain, as well as how amount of hydrofractures, their initial length, working fluid pressure and external compression parameters affect the fractured zone form, opening of the cracks and their volume. Depending on the basic parameters, development conditions are determined for two or more cracks.

System of created fractures, compression field, failure zone, crack opening

REFERENCES
1. Basheev, G.V., Martynyuk, P.A., and Sher, E.N., “Effect of the External Stress Direction and Value of the Paths of a Star-Like System of Cracks,” Prikl. Mekh. Tekh. Fiz., 1994, no. 5.
2. Martynyuk, P.A. and Sher, E.N., “Effect of Biaxial Rock Pressure Field Parameters on the Form of the Breakage Zone after Chord Charge Blasting in a Brittle Medium,” Prikl. Mekh. Tekh. Fiz., 1997, no. 3.
3. Martynyuk, P.A. and Sher, E.N., “Effect of Free Surface on the Shape of a Zone Broken in Blasting of a Chord Charge in a Rock Mass, Journal of Mining Sciences, 1998, vol. 34, no. 5, pp. 438 — 447.
4. Martynyuk, P.A., “Feature of Hydraulic Fracture growth in the Compression Field, Journal of Mining Science, 2008, vol. 44, no. 6, pp. 544 — 553.
5. Zubkov, V.V., Koshelev, V.F., and Linkov, A.M., “Numerical Modeling of Hydraulic Fracture Initiation and Growth,” Journal of Mining Science, 2007, vol. 43, no. 1, pp. 40 — 56.
6. Savruk, M.P., Dvumernye zadachi uprugosti dlya tel s treshchinami (2D Elastic Problems for Bodies with Cracks), Kiev: Naukova Dumka, 1981.
7. Panasyuk, V.V., Predel’noe ravnovesie khrupkikh tel s treshchinami (Limit Equilibrium in Brittle Bodies with Cracks), Kiev: Naukova Dumka, 1968.
8. Sher, E.N., “Example of Calculating the Propagation of Radial Cracks Formed upon Blasting in Brittle Medium in Quasistatic Approximation,” Journal of Mining Science, 1982, vol. 18, no. 2, pp. 123 — 125.
9. Ouchterlony, F., Fracture Mechanics Applied to Rock Blasting, Rept/Swedish Detonic Res Found, DS 1973: 29, Stockholm, 1973.


TEMPERATURE FIELDS IN SURROUNDING GROUND OF SHALLOW TUBE STATIONS
A. M. Krasyuk, I. V. Lugin, and A. Yu. P’yankova

The analysis keeps on temperature fields in ground surrounding shallow tube stations in the conditions of sharp continental climate in Siberia. The dependence between the surrounding ground temperatures at the interface of the ground and the upper covering of the shallow tube station and the station depth has been found.

Shallow tube, tube station, ground, temperature, heat exchange

REFERENCES
1. Krasyuk, A.M. and Lugin, I.V., “Heat Transfer in Shallow Tube Tunnels,” Journal of Mining Science, 2008, vol. 44, no. 6, pp. 622 — 627.
2. Kulikov, Yu.G. and Dubnov, Yu.D., Metodicheskie ukazaniya po ispytaniyu vechnomerzlykh glinistykh gruntov v polevykh usloviyakh (In-Field Ever-Frozen Soil Test Guidelines), Moscow: Glavtransproekt, 1965.
3. SNiP 23–01–99: Stroitel’naya klimatologiya—Vzamen SNiP 2.01.01–82 (Construction Standards and Regulations 23–01–99: Construction Climatology—Replacement for Construction Standards and Regulations 2.01.01–82), Moscow: Gosstroi Rossii, 1999.
4. Tsodikov, V.Ya., Ventilyatsiya i teplosnabzhenie metropolitenov (Tube Ventilation and Heating), Moscow: Nedra, 1975.
5. Lugin, I.V. and P’yankova, A.Yu. “Heat Loss Change in Ground Surrounding Oktyabrskaya Tube Station in Novosibirsk City for 24 Years of Operation,” in Proc. 3rd Int. Sci.-Tech. Conf. Theoretical Principles of heating and Ventilating, Moscow: MGSU, 2009. Ó, 2009.
6. Segerlind, L.J., Applied Finite Element Analysis, John Wiley and Sons, 1976.
7. SNiP 32–02–203:Metrololiteny. Vvedeno 2004–01–01 (Construction Standards and Regulations 32–02–203: Tubes—Brought into Use 2004–01–1), Moscow: Gosstroi Rossii, 2004.


FRACTAL ANALYSIS OF GEODYNAMIC EVENT MIGRATION PATHS IN THE KUZBASS AREA
V. N. Oparin, V. P. Potapov, O. L. Giniyatullina, and I. E. Kharlampenkov

The article describes practical application of theory of fractals in analyzing paths of migration of seismic energy release centers in some regions in Siberia. The obtained fractal dimensions of natural and induced seismic events in the Kemerovo Region have been compared, and the distinction between the natural and induced seismic events has been found.

Migration of seismic events, geoinformation system, web-service mapping, theory of fractals, fractal dimensions, Hurts exponent, natural and induced seismic activity

REFERENCES
1. Oparin, V.N., Potapov, V.P., Popov, S.E., Zamaraev, R.Yu., and Kharlampenkov, I.E., “Development of Distributed GIS-Capacities to Monitor Migration of Seismic Events,” Journal of Mining Science, 2010, vol. 46, no. 6, pp. 666 — 671.
2. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., Leont’ev, A.V., Nazarov, L.A., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Contemporary Geodynamics in the Top Lithosphere: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
3. Mandelbrot, B.B., The Fractal Geometry of Nature, W. H. Freeman, 1982.
4. Feder, J., Fractals (Physics of Solids and Liquids), Springer, 1988.
5. Boshokin, S.V. and Parshin, D.A., Fraktaly i mul’tifraktaly (Fractals and Multifractals), Izhevsk: NITsa “Reg. Khaotich. Dinamika,” 2001.
6. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., “On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime,” 2004, vol. 40, no. 4, pp. 321 — 338.


EXPERIMENTAL SUBSTANTIATION OF BROKEN SOIL TRANSPORTATION IN HORIZONTAL BOREHOLE DRILLING
B. B. Danilov and B. N. Smolyanitsky

The authors experimentally confirm the efficiency of the pneumatic transportation of broken soil through a horizontal rotary pipeline in the horizontal hole-making in soil under the integrated effect of a drilling machine.

Failure, compaction, rocks, pipeline, air flow

REFERENCES
1. Danilov, B.B., “Ways of Improvement of the Technologies and Equipment for Trenchless Communications Laying,” Journal of Mining Science, 2007, vol. 43, no. 2, pp. 171 — 176.
2. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (Fundamentals of Trenchless Technologies), Moscow: Press Byuro, 2005, issue 1.
3. Danilov, B.B. and Smolyanitsky, B.N., “Evaluation of Relative Density of Hole Walls Made by an Integrated Process in Soil,” Izv. vuzov, Stroit., 2004, no. 1.
4. Danilov, B.B. and Smolyanitsky, B.N., RF Patent 2344241, Byull. Izobret., 2009, no. 2.
5. Danilov, B.B. and Smolyanitsky, B.N., “Downhole Exploration Air Hammers with Central Slurry Transporting Channel,” Gorn. Mash. Avtomatik., 2002, no. 5.
6. Danilov, B.B., “Increase in the Efficiency of the Trenchless Underground Construction Methods by Using the Compressed Air Transfer,” Journal of Mining Science, 2007, vol. 43, no. 5.
7. RF State Standard 5180–84. Pochvy. Metody laboratornogo opredeleniya fizicheskikh kharakteristik (Soils. Laboratory Evaluation of Physical Characteristics), Moscow: Izd. standartov, 1993.


ANALYSIS OF THE DYNAMICS OF TWO-WAY HYDROPERCUSSION SYSTEMS. PART I: BASIC PROPERTIES
L. V. Gorodilov

The article describes mathematical model of a two-way hydropercusssion system with and without delay in the run of its striking element; determines the main similarity criteria, including the delay pressures, and presents the numerical calculation results and their analysis for the wide range of the input parameters.

Percussion system, self-vibrations, limit cycle, similarity criteria, characteristics

REFERENCES
1. Gorodilov, L.V., “Numerical Study into Dynamics of Self-Oscillatory Hydropercussion Systems. Part I: Double-Acting Systems,” Journal of Mining Science, 2007, vol. 43, no. 6, pp. 625 — 639.
2. Gorodilov, L.V., “Development of Principles of the Theory on Hydropercussion Systems for Mining and Construction Machines,” Extended Abstracts Dr. Eng., Novosibirsk, 2010.
3. Goldobin, V.A., Gorodilov, L.V., and Mattis, A.R., RF patent no. 2182967, Byull. Izobret., 2002, no. 15.
4. Gorodilov, L.V. and Fadeev, P.Ya., “Analysis and Classification of High-Performance Designs of Self-Vibration Hydropercussion Systems,” in Proc. Int. Conf. Fundamental Problems in the Formation of the Industrial Geo-Environment, Novosibirsk: IGD SO RAN, 2007.
5. Yantsen, I.A., “Asymmetry of Operation Cycles in Pulse Systems,” in Mekhanizatisya i avtomatizatsiya proizvodstvennykh protsessov gornodobyvayushchei promyshlennosti: sb. st. (Mechanization and Automation of Mining Industry Processes: Collected Works), Karaganda: KPTI, 1973.
6. Neroznikov, Yu.I. and Kyzyrov, K.B., “Optimization of Hydro-Volume Percussion Systems in Drilling Machines,” in Mekhanizatisya i avtomatizatsiya proizvodstvennykh protsessov gornodobyvayushchei promyshlennosti: sb. st. (Mechanization and Automation of Mining Industry Processes: Collected Works), Karaganda: KPTI, 1973.
7. Lazutkin, A.G., Shchepetkin, G.V., and Mushtakov, N.A., “Determination of Optimal Elastic Connection Parameters in a Percussion Unit of a Drilling Machine,” in Mekhanizatisya i avtomatizatsiya proizvodstvennykh protsessov gornodobyvayushchei promyshlennosti: sb. st. (Mechanization and Automation of Mining Industry Processes: Collected Works), Karaganda: KPTI, 1973.
8. Alimov, O.D. and Basov, S.A., Gidravlicheskie vibroudarnye sistemy (Hydraulic Vibration-Percussion Systems), Moscow: Nauka, 1990.


MECHATRONIC SYSTEM “SYNCHRONOUS GENERATOR THREE-PHASE BRIDGE RECTIFIER” FOR SELF-CONTAINED POWER FACILITIES
B. F. Simonov, S. A. Kharitonov, and V. V. Mashinsky

The processes in the system composed of a continuous magnet synchronous generator and a three-phase bridge back emf rectifier are under analysis in this article. Such systems are usable in self-contained facilities to charge accumulation cells in mines and open pits. The authors determine possible regimes of the systems under varying rate speeds of synchronous generator shaft and altered commutation delay angles of the controlled rectifier, derive analytical expressions for determining parameters of the analyzed system, and find generated power limit.

Synchronous generator, varied rate speed, rectifier, operation regime characteristics

REFERENCES
1. Levin, A.V., Alekseev, I.I., Kharitonov, S.A., and Kovalev, L.K., Elektricheskii samolet: ot idei do realizatsii (Electrical Plane: From an Idea toward the Actualization), Moscow: Mashinostroenie, 2010.
2. Treshchev, I.I., Elekromekhanicheskie protsessy v mashinakh peremennogo toka (Electromechanical Processes in AC Machines), Leningrad: Energiya, 1980.
3. Kharitonov, S.A., Elekromagnitnye protsessy v sistemakh generirovaniya elektricheskoi energii dlya avtonomnykh ob’ektov (Electromagnetic Processes in the Power Generation Circuits for Self-Contained Objects), Novosibirsk: NGTU, 2011.


ANALYSIS OF LOADS ON THE TWO VARIABLE FREQUENCY DRIVES OF THE CUTTER-LOADER TRAVEL MECHANISMS
V. P. Kondrakhin and N. I. Stadnik

The experimentally discovered occurrence of the out-of-phase load fluctuation in the two variable frequency drives of travel mechanisms of rigid traction cutter-loaders has been explained, the load fluctuation impact of the performance and life of the machine have been estimated, and the load fluctuation reduction recommendations have been made.

Cutter-loader, travel mechanism, variable frequency drive, fluctuations, load, performance, life

REFERENCES
1. Kondrakhin, V.P., Stadnik, N.I., and Sergeev, A.V., “Mechatronics in Coal Extraction Machine Engineering,” Gorn. Oborud. Elekromekh., 2007, no. 4.
2. Kondrakhin, V.P., Kosarev, V.V., Stadnik, N.I., and Sergeev, A.V., “Comprehensive Experimental Analysis of the Cuter-Loader UKD300 Travel Mechanism,” Gorn. Oborud. Elekromekh., 2007, no. 3.
3. Strelkov, S.P., Vvedenie v teoriyu kolebanii (Introduction to the Theory of Oscillations), Moscow: Nauka, 1964.
4. Gorbatov, P.A., Lysenko, N.M., Vorob’ev, E.A., et al., “Determination of Axial Stiffness Coefficients in a Traction Element in Terms of EIKOTREK Rack,” Naukovi Pratsi DonNTU, 2008, issue 142.
5. Kondrakhin, V.P., Kosarev, V.V., and Stadnik, N.I., Elektricheskie mekhanizmy peremeshcheniya ochistnykh kombainov (Electrical Travel Mechanisms of Cutter-Loaders), Donetsk: Tekhnopark DonNTU UNITEKH, 2010.
6. Blazhkin, A.T., Besekersky, V.A., Fabrikant, E.A., et al., Obshchaya elektrotekhnika: ucheb. posobie dlya neelektrotekhn. spets. vuzov (General Electrical Engineering: Nonelectrical Engineering College Tutorial), Leningrad: Energoatomizdat, 1986.
7. Andreev, V.P. and Sabinin, Yu.A., Osnovy elektroprivoda (Principles of an Electric Drive), Moscow Leningrad: Gos. Energ. Izd., 1963.
8. Gulyaev, V.G., Kondrakhin, V.P., Kosarev, V.V., and Stadnik, N.I., “Concept of Probabilistic Forecasting and Rise of the Cutter-Loader Transmission Life,” Gorn. Oborud. Elekromekh., 2009, no. 6.
9. Kondrakhin, V.P., Kosarev, V.V., and Stadnik, N.I., “Influence of the Uneven Load Division between the Drives of a Travel Mechanism on the Performance of a Cutter-Loader,” Gorn. Oborud. Elekromekh., 2010, no. 10.
10. Kogaev, V.P., Raschety na prochnost’ pri napryazheniyakh, peremennykh vo vremeni (Calculations of Strength under Time-Dependent Stresses), Moscow: Mashinostroenie, 1993.


LAG MODELING AND DESIGN CAPACITY OPTIMIZATION AT OPERATING DIAMOND PLACER MINES “SOLUR” AND “VOSTOCHNY,” REPUBLIC OF SAKHA (YAKUTIA)
A. A. Ordin, A. M. Nikol’sky, and Yu. G. Golubev

The paper deals with the lag modeling of a dynamic problem on mine design capacity optimization. The authors have implemented the new method in evaluating optimal capacity of the new-projected diamond placer-mines “Solur” and “Vostochny,” Republic of Sakha (Yakutia).

Lag modeling, optimization, dynamics, design capacity, mine, placer

REFERENCES
1. Kaputin, Yu.E., Informatsionnye tekhnologii i ekonomicheskaya otsenka gornykh proektov (Information Technologies and Economic Evaluation of Mining Projects), Saint-Petersburg: Nedra, 2008.
2. Oparin, V.N. and Ordin, A.A., “Hubbert’s Theory and the Ultimate Coal Production in Terms of the Kuznetsk Coal Basin,” Journal of Mining Science, 2011, vol. 47, no. 2, pp. 254 — 266.
3. Zvyagin, P.Z., Vybor moshchnosti i srokov sluzhby shakht (Selection of Mine Capacity and Operation Life) Moscow: Gosgortekhizdat, 1962.
4. Malkin, A.S., “Calculation of the Design Capacity of a Mine,” Ugol’, 1985, no. 2.
5. Ordin, A.A., Dinamicheskie modeli optimizatsii proektnoi moshchnosti rudnika (Dynamic Models for Optimization of the Mine Design Capacity), Novosibirsk: IGD SO RAN, 1991.
6. Ordin, A.A. and Klishin, V.I., Optimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Optimization of Technological Parameters at Mines by Using Lag Models), Novosibirsk: Nauka, 2009.
7. Ordin, A.A., “Evaluation of Critical Coal Production in Kuzbass by Lag Modeling,” Proc. 13th Int. Sci.-Tech. Conf. Energy Preparedness of Russia: New Approaches to Coal Industry Development, Kemerovo, 2011.
8. Lopatnikov, L.I., Ekonomiko-matematicheskii slovar’ (Economy and Mathematics Dictionary), Moscow: Nauka, 1987.
9. Kosov, V.V., Lifshits, V.N., Shakhnazarov, A.G., et al., Metodicheskie rekomendatsii po otsenke effektivnosti investitsionnykh proektov (Guidelines on Evaluation of the Investment Project Efficiency), Moscow: Ekonomika, 2000.
10. Petrov, K.N., Kak razrabotat’ biznes-plan. Prakticheskoe posobie s primerami i shablonami (Guidelines on Business Plan Development with Examples and Templates), Moscow, 2008.
11. Kolganov, V.F., “Geological and Economic Feasibility Assessment of Poor Mineral Deposits,” Proc. Int. Sci.-Tech. Conf. Problems and Ways of Cost-Effective Development of Diamond-Bearing Deposits, Mirny: Yakutniproalmaz, 2011.


INTERVAL HYDRAULIC FRACTURING TO WEAKEN DIRT BANDS IN COAL
Yu. M. Lekontsev, P. V. Sazhin, and S. Yu. Ushakov

The paper reports laboratory and mine testing of interval hydraulic fracturing in weakening a dirt band in Abramovsky coal seam, Romanovsky Mine. The authors illustrate effectiveness of the proposed approach in raising coal production from the like seams.

Dirt band, interval hydraulic fracturing, water saturation capability, infiltration rate, hydraulic fragmentation, rock jointing

REFERENCES
1. Klishin, V.I., Adaptatsiya mekhanizirovannykh krepei k usloviyam dinamicheskogo nagruzheniya (Adaptation of the Powered Supports to the Dynamic Load Conditions), Novosibirsk: Nauka, 2002.
2. Sazhin, P.V. and Lekontsev, Yu.M., “Application of the Directional Hydraulic Fracturing at Berezovskaya Mine,” Journal of Mining Science, 2008, vol. 44, no. 3, pp. 253 — 258.
3. Klishin, V.I. and Lekontsev, Yu.M., “Means for Blast-Free Rock Failure by Applying Tension Effect,” Proc. Int. Conf. Problems and Perspectives of Mining Science Advance, Novosibirsk: Mashinovedenie, 2006.
4. Lekontsev, Yu.M., Sazhin, P.V., and Ushakov, S.Yu., “Weakening of a Dirt Band in a Coal Seam by the Interval Hydrofracturing at the Romanovsky Mine,” Ugol’, 2012, no. 1.


A FUZZY METHOD FOR SELECTING UNDERGROUND COAL MINING METHOD CONSIDERING MECHANIZATION CRITERIA
M. K. Özfirat

One of the crucial decisions affecting productivity of the mine is the mining method selection. Longwall mining is quite common in underground coal mining, and it allows the use of mechanization. As application of mechanization increases, production also increases and the number of workers decreases. Thus, the organization of work is easier, and the number of accidents decreases in the mine. Field conditions and equipment properties should be evaluated in detail before applying mechanization. In this study, underground mechanization factors are grouped under four main headings. These headings are production, geology, rock mechanics and work safety factors. And then, sub-criteria are determined under main headings. Main and sub-criteria are evaluated with fuzzy analytic hierarchy process (FAHP) method for Amasra coal mine. According to the fuzzy evaluations of decision criteria, underground mechanization methods are evaluated whether they can be applied in Amasra coal mine.

Excavation mechanization, coal, longwall, fuzzy AHP, method selection

REFERENCES
1. Peng, S.S. and Chiang, H.S., Longwall Mining, John Wiley& Sons Inc., 1984.
2. Hustrulid, W.A. and Bullock, R.L., Underground Mining Methods, SME, Colorado, 2001.
3. Kose, H. and Tatar, C., “Underground mining methods,” in DEU Publications, Izmir, 2003.
4. Simsir, F. and Ozfirat, M.K., “Determination of the Most Effective Longwall Equipment Combination in Longwall Top Coal Caving (LTCC) Method by Simulation Modelling,” Int. J. Rock Mech. and Mining Sci., 2008, no. 45.
5. TTK (Turkish Hard Coal Administration), Activity Report, 2010.
6. Tatar, C. and Ozfirat, M.K., “Underground Mining Machines and Mechanization,” in DEU Publications, 2011.
7. Pomeroy, C.D., “The Breakage of Coal by Wedge Action,” Colliery Guardian, 1963.
8. Evans, E. and Pomeroy, C.D., The Strength, Fracture and Workability of Coal, Pergamon Press, 1966.
9. Bilgin, N., Phillips, H.R., and Yavuz, N., “The Cuttability Classification of Coal Seams and an Example to a Mechanical Plough Application in ELI Darkale Coal Mine,” Proc. 8th Coal Congr. Turkey, Zonguldak, 1992.
10. Saaty, T.L., The Analytic Hierarchy Process, McGraw Hill, NY, 1980.
11. Mikhailov, L. and Tsvetinov, P., “Evaluation of Services Using a Fuzzy Analytic Hierarchy Process,” Applied Soft Computing, 2004, no. 5.
12. OPL Studio 3.7 Language Manual, ILOG. S. A., France, 2003.
13. Bicer, N., Oney, O., and Baltas, A., “The Opening of Kilimli Ventilation Shaft and Restructing of Karadon Ventilation System,” Proc. 22nd World Mining Congr. & Expo, Istanbul, 2011.


ANALYSIS OF DRAGLINE CYCLE TIME COMPONENTS
B. Erdem and F. Korkmaz

This paper focuses on the breakdown of dragline cycle time. A 15-year old dragline deployed for casting the interburden and extracting the coal seam immediately beneath is monitored for a period of 45 days. The following operational modes are sampled: key-cutting, main-cutting, chopping and coal extraction. Data are handled regarding the parameters which have influence on particular stages of a cycle. It has been revealed that bucket loading is influenced by dimensions and geometry of the excavation face, material diggability, spatial position of ground penetration point and operator preference. Dumping phase appears to be affected by bucket fill factor and operator preference. Loaded and empty swing times are positively correlated with associated swing angles. Angular velocity of draglines is low at swing angles of up to 60 degrees. Loaded swing phases appear to be operator-dependent. Bucket repositioning phase is affected by geometry of the excavation area and the position of bucket penetration point. It is independent from the operator preferences.

Dragline, cycle time, drag-dependency, hoist-dependency, swing-dependency

REFERENCES
1. Parlak, T., Applied Surface Coal Mining (in Turkish), General Directorate of Turkish Coal Enterprises, Bursa, 1993.
2. Szymanski, J.K., Borysuk, W., and Williams, C., “Statistical Analysis Model of Collected Dragline Time Cycle Data,” Division Report CRL 89–12(TR) CANMET, Ottawa, Canada, 1989.
3. Rai, P., Trivedi, R., and Nath, R., “Cycle Time and Idle Time Analysis of Draglines for Increased Productivity—A Case Study,” Indian Journal of Engineering and Material Sciences, 2000, vol. 7.
4. Corke, P.I., Hainsworth, D., Winstanley, G.J., Li, Y., and Gurgenci, H., “Automated Control of a Dragline Using Machine Vision,” in EEC’94 Proc. Electrical Engineering Congr., Institute of Engineers Australia, Sydney, 1994.
5. Erdem B. and Duzgun, H. S. B., “Dragline Cycle Time Analysis,” J. Scientific and Industrial Research, 2005, vol. 64, no. 1.
6. Marion, The Fundamentals of the Dragline, Marion Division of Indresco Inc., Marion, USA, 1993.


MECHANISM AND EFFICIENCY OF WATER-BASED REMOVAL OF GREASE FROM DIAMONDS DURING GREASE SEPARATION
V. A. Chanturia, V. I. Bogachev, E. A. Trofimova, and G. P. Dvoichenkova

The article reports the results of applying the new developed water-based emulsion method of grease removal from diamond-containing concentrate of grease separation. The described method raises the diamond luminescence emission intensity and diamond extraction during X-ray luminescence separation.

Diamonds, luminescent properties, grease removal

REFERENCES
1. Chanturia, V., Zuev, V., Trofimova, E., Dikov, Y., and Bogachev, V., and Dvoichenkova, G., “Surface Properties of Diamonds in Kimberlites Processing,” Proc. 21st Int. Mineral Processing Congress, Rome, 2000.
2. Chanturia, V.A., Trofimova, E.A., Dvoichenkova, G.P., Bogachev, V.I., et al., “Theory and Practical Application of Electrochemical Water-Based Preparation to Intensify Processing of Diamond-Bearing Kimberlites,” Gorny Zh., 2005, no. 4.
3. Chanturia, V.A., Trofimova, E.A., and Bogachev, V.I., “The Formation and Modification of Natural Diamond Surface Properties,” Proc. 12th Balkan Mineral Processing Congress, Greek, 2007.
4. Khar’kov, A.D., Zinchuk, N.N., and Kryuchkov, A.I., Kimberlitovye mestorozhdeniya almazov mira (Diamond Deposits in Kimberlites World Wide), Moscow: Nedra, 1998.
5. Chanturia, V.A., Trofimova, E.A., Bogachev, V.I., and Dvoichenkova, G.P., “Mineral and Organic Nano-Impurities on Natural Diamonds: Formation Conditions and Removal Methods,” Gorny Zh., 2010, no. 7.
6. Chanturia, V.A., Dvoichenkova, G.P., Trofimova, E.A., Bogachev, V.I., et al., “Recent Intensification Techniques for Processing and Perfection of Diamond-Bearing Stock – 5 mm in Size,” Gorny Zh., 2011, no. 1.
7. Tarashchan, A.N., Lyuminestsenstiya mineralov (Mineral Luminescence), Kiev: Naukova Dumka, 1978.


POOR SCHEELITE ORES FROM PRIMORYE DEPOSITS: MINERALOGY AND PROCESSING CHARACTERISTICS AND DRESSING FLOWSHEETS
L. A. Samatova, E. D. Shepeta, and V. I. Gvozdev

The paper covers the studies of the mineral composition of poor tangsten ores from the Primorsky Kray deposits: Lermontov, Vostok-2, and Skrytoe, and perspective dressing of these ores. Based on the research evidence, the authors worked out the recommendations to process these poor ores as a blend with higher grade ores. The X-ray radiometric separation is proposed to treat Skrytoe deposit ore to higher the tungsten trioxide concentration in the primary feed, thus improving the scheelite recovery in the ore-dressing stages.

Scheelite deposits, ore types, mineral composition, grinding, flotation class, agent mode, selective flotation

REFERENCES
1. Gvozdev, V.I., “Eastern Skarn Scheelite-Sulfide Deposits in Russia,” in Rudnye mestorozhdeniya kontinental’nykh okrain (Periphery Continental Mineral Deposits), Vladivostok: Dal’nauka, issue 1, 2000.
2. Gvozdev, V.I., Rudno-magmaticheskie sistemy skarnovykh sheelit-sul’fidnykh mestorozhdenii Vostoka Rossii (The Ore-Magma Systems of Eastern Skarn Scheelite-Sulfide Deposits in Russia), Vladivostok: Dal’nauka, 2010.
3. Khanchuk, A.I., “The Geological Structure and the Evolution of the Continental Framing of the North West Area of the Pacific Ocean,” Extended Abstracts of Dr. Geology Mineralogy Theses, Moscow, 1993.
4. Khanchuk, A.I., “Paleogeodynamic Analysis of the Far-Eastern Mineral Deposit Formation in Russia,” in Rudnye mestorozhdeniya kontinental’nykh okrain (Periphery Continental Mineral Deposits), Vladivostok: Dal’nauka, 2000.
5. Samatova, L.I., Gvozdev, V.I., Kienko, L.A., et al., “Mineral Processing Peculiarities and Prospective Beneficiation of Skrytoe Scheelite Ore, Primorye,” Tikhookean. Geolog., 2011, no. 6.
6. Samatova, L.I., Voronova, O.V., Kienko, L.A, et al., “Mineral Processing Peculiarities of the Primorye Tungsten Ores,” Gorn. Inform.-Analit. Byull., 2009, no. 4.
7. Samatova, L.I., Kienko, L.A., Voronova, O.V., and Plyusnina, L.N., “Ways to Improve the Comprehensive Utilization of raw Tungsten-Bearing Ores,” Izv. vuzov, Gorny Zh., 2009, no. 8.
8. Samatova, L.I., Kienko, L.A, and Voronova, O.V., “Flotation Recovery of Apatite from Poor Scheelite Ores,” in Scientific Fundamentals and Modern Processes for Comprehensive Processing of Rebellious Mineral Materials, Plaksin’s Readings 2010, Kazan, 2010.
9. Barsky, L.A., Kononov, O.V., and Ratmirova, L.I., Selektivnaya flotatsiya kal’tsiisoderzhashchikh mineralov (Selective Flotation of Calcium-Bearing Minerals), Moscow: Nedra, 1979.
10. Maksimov, I.I., “Development of the Process for Beneficiation of the Ore from Skrytoe Deposit,” R&D Report, ZAO Mekhanobrinzhiniring, Saint Petersburg, and OOO “Rados,” Krasnoyarsk, 2009.


ELECTRICAL DISCHARGE TREATMENT OF URANIUM-LEACHING SOLUTIONS
N. A. Yavorovsky, Ya. I. Kornev, G. E. Osokin, G. L. Lobanova, and V. G. Litvinenko

The authors set forth the new method for the use of the pulse electrical barrier discharge to activate sulfate solutions in the underground uranium leaching. The electrical discharge efficiency in improving the uranium recovery ratio from ores is verified.

Electrical discharge, leaching, uranium, reagentless processes

REFERENCES
1. Mamilov, V.A., Petrov, R.P., and Shushaniya, G.R., Dobycha urana metodom podzemnogo vyshchelachivaniya (Uranium Production by Underground Leaching), Moscow: Atomizdat, 1980.
2. Malik, M.A., Gaffar, A., and Malik, S.A., “Water Purification by Electrical Discharges,” Plasma Sources Science & Technology, 2001, no. 10.
3. Yavorovsky, N.A., Sokolov, V.D., Skolubovich, Yu.L., and Li, I.S., “Electrodischarge Water Purification,” Vodosnabzh. Sanit. Tekhnika, 2000, no. 1.
4. Kornev, J., Yavorovsky, N., Preis, S., Khaskelberg, M., Isaev, U., and Chen, B.N., “Generation of Active Oxidant Species by Pulsed Dielectric Barrier Discharge in Water-Air Mixtures,” Ozone: Sci. Eng., 2006, vol. 28, no. 4.
5. Samoilovich, V.G., Gibalov, V.I., and Kozlov, K.V., Fizicheskaya khimiya bar’ernogo razryada (Physical Chemistry of Barrier Discharge), Moscow: MGU, 1989.
6. Ono, R. and Oda, T. “Dynamics and Density Estimation of Hydroxyl Radicals in a Pulsed Corona Discharge,” J. Phys. D: Appl. Phys., 2002, no. 35.
7. Namihira, T., Sakai, S., Matsuda, M., et al., “Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma,” Plasma Science and Technology, 2007, vol. 9, no. 6.
8. Bakhurov, V.G., Vecherkin, S.G., and Lutsenko, I.K., Podzemnoe vyshchelachivanie uranovykh rud (Underground Leaching of Uranium Ores), Moscow: Atomizdat, 1969.
9. Filippov, A.P., and Nesterov, Yu.V., Redoks protsessy i intensifikatsiya vyshchelachivaniya metallov (Redox Processes and Intensification of Metal Leaching), Moscow: Ruda Metally, 2009.


THE LENA BASIN BROWN COAL BRIQUETTING
L. A. Nikolaeva and O. N. Burenina

The authors exemplify improvement of properties of a binder by adding an activated filler—brown coal and bottom ooze—as a modifying agent for flux oil in the brown coal briquetting flowsheet. The optimized compositions and activation regimes of fillers ensure improved performance of the briquettes due to increase in mutual effect at the coal and binder interface.

Brown coal briquettes, mechanical activation, oil residue, bottom ooze, modification

REFERENCES
1. Nikolaeva, L.A. and Burenina, O.N., “A Binding Composition Manufacturing in Order to Improve Properties of Briquettes,” Vestn. MANEB, 2010, vol. 15, no. 4.
2. Burenina, O.N., Latyshev, V.G., and Nikolaeva, L.A., “Sound Utilization of the Kangalassky Coal Pit Mine Wastes,” Vestn. MANEB, 2008, vol. 13, no. 3.
3. Avvakumov, E.G. and Gusev, A.A., Mekhanicheskie metody aktivatsii v pererabotke prirodnogo i tekhnogennogo syr’ya (Mechanical Activation Techniques in Processing of Natural Materials and Mining Wastes), Novosibirsk: GEO, 2009.
4. Boldyrev, V.V., “Mechanochemistry and Mechanical Activation of Solid Substances,” Usp. Khim., 2006, vol. 76, no. 3.
5. Khrenkova, T.M., Mekhanokhimicheskaya aktivatsiya uglei (Mechano-Chemical Activation of Coal), Moscow: Nedra, 1993.
6. Nikolaeva, L.A., Latyshev, V.G., and Burenina, O.N., “Fueling Briquettes Made of Yakutia Brown Coal,” Khim, Tverd Topl., 2009, no. 2.


THE SOUND SUBSOIL MANAGEMENT IN SURFACE COAL MINING IN TERMS OF THE KANSK-ACHINSK COAL BASIN
V. N. Oparin, V. I. Cheskidov, A. S. Bobyl’sky, and A. V. Reznik

Considering characteristics of geological and mining conditions at the Kansk-Achinsk brown coal basin, the authors prove the necessity for non-standard geotechnology application. A new pre-drainage-free geotechnology application has been described for watered flat coal strata, which ensures complete utilization of mineral reserves and mined-out areas as well as improves environmental safety. It is recommended to selectively extract hard dirt inclusions, if present, by hydraulic mining scheme. The article discusses feasible after-mining utilization of the disturbed lands.

Subsoil management, open pit mining, brown coal basin, resource potential, ecology

REFERENCES
1. Kontseptsiya perekhoda Rossiiskoi Federatsii k ustoichivomy razvitiyu (Russian Federation Concept of the Sustained Development Switch), under RF President executive order no. 440 as of Apr 1, 1996.
2. Ekologicheskaya doktrina Rossiiskoi Fedeatsii (Environmental Policy of Russian Federation), under RF Government Decree no. 1225-r as of Aug 8, 2002.

3. “Principal Trends in the State Policy for Coal Industry Development and Its Production Competitiveness Rise in the World and Domestic Markets: The RF State Council Report,” Ugol’, 2002, no. 10. 4. Energeticheskaya strategiya Rossii na period to 2020 (Russia’s Energy Strategy over the Period to 2020), Moscow, 2003.
5. Energeticheskaya strategiya Rossii na period to 2030 (Russia’s Energy Strategy over the Period to 2030), Moscow, 2009.
6. Cheskidov, V.I. “Performance Potential of the Coal Strip Mining in the East of Russia,” Journal of Mining Science, 2007, vol. 43, no. 4, pp. 429 — 435.
7. Razrabotka tekhnologii primeneniya kompleksov mashin nepreryvnogo deistviya na razreze “Uryupsky-1.” Otchet po teme 1101/04000–052 (Development of the Continuous Machine Complexes Application Technology for Uryupsky-1 Pit Mine. Report on Topic 1101/040000–052), Kiev: UkrNIIproekt, 1978.
8. Tekhniko-ekonomicheskoe obosnovanie stroitel’stva razreza “Uryupsky” PO “Krasnoyarskugol” (Uryupsky Pit Mine Construction Feasibility Study, Krasnoyarskugol Industrial Association), Novosibirsk: Sibgiproshakht, 1985.
9. Peresmotr tekhnicheskogo proekta razreza “Berezovsky-1” PO “Krasnoyarskugol” (1 ochered’ stroitel’stva. Drenazh i vodootliv (Berezovsky-1 Pit Mine Engineering Design Revision. Construction Stage I. Drainage and Water Removing), vol. IIIA, Book 2, Novosibirsk: Sibgiproshakht, 1986.
10. Cheskidov, V.I., Labutin, V.A., Mattis, A.R., Bobyl’sky, A.S., and Reznik, A.V., RF patent no. 111193, Byull. Izobret., 2011, no. 34.
11. Nurok, G.A. and Yaltanets, I.M., Tekhnologiya gidrovskryshnykh rabot na kar’erakh (Hydraulic Overburden Removal Technology for Open Pit Mines), Moscow: TSNIEIugol, 1975.
12. Metodicheskie rekomendatsii po otsenke ekspluatatsionnykh zapasov podzemnykh drenazhnykh vod mestorozhdenii tverdykh poleznykh iskopaemykh (Guidelines for Estimating Usable Underground Drain Water Resources at Hard Mineral Deposits), Moscow: VSEGINGEO, 1992.
13. Sheloganov, V.I., Kononenko, E.A., Ermoshkin, V.V., and Romanov, A.A., “Type Design Practice for Water Supply and Hydraulic Transportation Scheme Using Hydromonitoring-Suction Dredge Complexes at Pit Mines,” Gorn. Infom.-Analit. Byull., 2009, no. 11.
14. Metodika rascheta vodokhozyaistvennykh balansov vodnykh ob’ektov (Water Bodies’ Water Budget Design Procedure), Order no. 314, 2007. Available at: www.complexdoc.ru.
15. Ukazaniya po raschetu ispareniya s poverkhnosti vodoemov (Water Reservoir Surface Evaporation Estimate Instructions), Leningrad: Gidrometeoizdat, 1989.
16. Gal’perin, A.M., Zaitsev, V.S., Kharitonenko, G.N., Norvatov, Yu.A., Geologiya: uchebnik dlya vuzov (Geology: College Textbook), Moscow: Mir gornoi knigi, 2009.
17. Yaltanets, I.M., Proektirovanie otkrytykh gidromekhanizirovannykh i drazhnykh razrabotok mestorozhdenii: ucheb. posobie (Hydraulic and Dredging Open Mineral Mining Engineering: Educational Aid), Moscow: MGU, 2003.
18. Podzemny neboskreb v starom kar’ere (Underground Skyscraper in an Old Pit Mine). Available at: http://www.novate.ru/blogs/131010/15762.
19. Eko-otel’ v kar’ere, prigorod Shankhaya, Kitai (Ecohotel in a Pit Mine, Shangkhai Suburb, China). Available at: http://urbanismo.ru/eko-otel-v-karere-prigorod-shanxaya-kitaj-proekt.
20. Ekogorod 2020 ot Arkhitekturnogo byuro AB Ellis (Ellis Architecture Design Bureau’s Eco-City 2020). Available at: http://www.el-ab.ru/comp/comp1.php.
21. Bely kolodets—sportkompleks v otrabotannom kar’ere (Bely Kolodets—Sports Center in a Worked-Out Open Pit). Available at: http://sportkompleksbk.ru.
22. “Russian Coal Industry Results over 2011,” Ugol’, 2012, no. 3.
23. Ugol’ kak spasenie ot energeticheskogo kollapsa (Coal as a Salvation from Energy Collapse). Available at: http://pda.top.rbc.ru/economics/09/11/2011/624117.shtml.


Âåðñèÿ äëÿ ïå÷àòè  Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
Rambler's Top100   Ðåéòèíã@Mail.ru
Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà
Ñèáèðñêîãî îòäåëåíèÿ Ðîññèéñêîé àêàäåìèè íàóê
Àäðåñ: 630091, Ðîññèÿ, Íîâîñèáèðñê, Êðàñíûé ïðîñïåêò, 54
Òåëåôîí: +7 (383) 205–30–30, äîá. 100 (ïðèåìíàÿ)
Ôàêñ: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Èíñòèòóò ãîðíîãî äåëà èì. Í.À. ×èíàêàëà ÑÎ ÐÀÍ, 2004–2024. Èíôîðìàöèÿ î ñàéòå