JMS, Vol. 47, No. 4, 2011
GEOMECHANICS
DETERMINATION OF THE STRESS-STRAIN STATE AND DAMAGES
IN. A. ROCK MASS BY THE DISPLACEMENT MEASUREMENTS
ON ITS SURFACE. PART I: ANALYTICAL SOLUTIONS
A. I. Chanyshev and D. A. Vologin*
The article offers two approaches to stress-strain state problem solution: the first is the analytical solution for the elastic deformation of a medium, the second is the numerical solution for the elastic and inelastic deformation. The analytical solution is based on the Kolosov–Muskhelishvili formulas, the numerical solution is analogous to the Euler solution of a regular first-order differential equation. The both methods are compared, and calculation of breaches in half-plane is exemplified.
Displacements, stresses, breaches, hard sports
REFERENCES
1. Gritsko, G.I., Vlasenko, B.V., and Shemyakin, E.I., Eksperimental’no-analiticheskii metod opredeleniya napryazhenii v massive gornykh porod (Experimental and Analytical Approach to Rock Mass Stress Determination), Novosibirsk: Nauka, 1976.
2. Gritsko, G.I., Vlasenko, B.V., and Musalimov, V.M., Experimental-Analytical Method of Determining the Stresses in a Coal Seam, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1971, no. 1 [J. Min. Sci., 1971, vol. 7, no. 1, pp. 1–7].
3. Gritsko, G.I., Vlasenko, B.V., Posokhov, G.E. et al., Prognozirovanie i raschet proyavlenii gornogo davleniya (Forecasting and Calculating Ground Pressure Events), Novosibirsk: IGD AN SSSR, 1980.
4. Nazarov, K.A. and Nazarova, L.A., Geodetic Measurement Data Interpretation Method for Rock Mass Stress-Strain State Reconstruction, Dokl. RAN, 2004, vol. 395, no. 5.
5. Nazarov, L.A. and Nazarova, L.A., Method to Determine Parameters of a Nucleating Earthquake Focus by the Data on the Daylight Surface Displacements, Dokl. RAN, 2009, vol. 427, no. 4.
6. Nazarov, L.A., Nazarova, L.A., and Kozlova, M.P., The Inverse Problem Solution Approach to Modeling Focuses of Dynamic Events Based on Geodetic Data, Fiz. Mezomekh., 2008, no. 1.
7. Shvab, A.A., Essentially Overspecified Problem of the Elasticity Theory, Sib. Zh. Industr. Matem., 2001, vol. 4, no. 1.
8. Shvab, A.A., Inverse Overspecified Problem for a Nonuniform Elastic Medium, Sib. Zh. Industr. Matem., 2004, vol. 7, no. 4.
9. Shvab, A.A., Ill-Posed Static Problems in the Elastic Theory, Izv. AN SSSR. Mekh. Tverd. Tela, 1989, no. 6.
10. Shvab, A.A., Tomography Problem in the Potential Static Fields, Sib. Zh. Industr. Matem., 1999, vol. 2,
no. 1.
11. Shvab, A.A., Nonclassical Elasto-Plastic Problem, Izv. AN SSSR. Mekh. Tverd. Tela, 1988, no. 1.
12. Chanyshev, A.I. and Abdulin, I.M., Characteristics and the Relations on Them at the Stage of Post-Limit Deformation in Rocks, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2008, no. 5, pp. 27–41 [J. Min. Sci., 2008, vol. 44, no. 5, pp. 451–463].
13. Bulychev, N. S. Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1989.
SINKHOLE FORMATION MECHANISM
A. A. Baryakh and A. K. Fedoseev
A mathematical model of a growing cavern is used to describe possible scenarios of sinkholes in the karstic areas. The authors present formation criteria for ground surface sinkholes and underground caverns, and estimate their sizes.
Karst, rock mass, stress-strain state, collapse, cavern, sinkhole
REFERENCES
1. Maksimovich, G.A., Osnovy karstovedeniya. vol. 1: Voprosy morfologii karsta, speleologii i gidrogeologii karsta (Foundations of the Science on Karst, vol. 1: Karst Morphology, Caveology and Karst Hydrogeology), Perm: Perm kn. izd., 1963.
2. Construction Standards and Regulations, SNiP 2.02.01–83*, Osnovaniya zdanii i sooruzhenii (Foundations of Buildings and Structures), Moscow, 2000.
3. Construction Standards and Regulations, SNiP 2.01.15–90, Inzhenernaya zashchita zdanii i sooruzhenii ot opasnykh geologicheskikh protsessov (Engineering Protection of Buildings and Structures from Geological Hazards. Designing Framework), Moscow, 1990.
4. Construction Regulations, SP 11–105–97, Inzhenerho-geologicheskie izyskaniya dlya stroitel’stva (Geological Engineering Survey for Construction), Moscow, 2000.
5. Al’bov, S.V., Explanation of Sinkholes and Subsidences Based on Strata Pressure Theory (in Terms of Karst Found on the Left Bank in the Lower Reach of the Oka River ), Karstovedenie, 1948, no. 4.
6. Tharp, T.M., Cover-Collapse Sinkhole Formation and Soil Plasticity, Beck, B.F., Ed., Sinkholes and the Engineering and Environmental Impacts of Karst, Geotechnical Special Pub., ASCE, 2003, no. 122.
7. Augarde, S.E., Lyamin, A.V., and Sloan, S.W., Prediction of Undrained Sinkhole Collapse, J. Geotech. Geoenviron. Eng., 2003, vol. 129, no. 3.
8. Eui-Seob Park, Sung-Oong Choi, and Hee-Soon Shin, Simulation of the Ground Subsidence Mechanism Using a PFC2D, Proc. Alaska Rocks 2005: The 40th U. S. Symp. Rock Mechanics (USRMS), Anchorage, American Rock Mechanics Association, 2005.
9. Caudron, M., Emeriault, F., Kastner, R., and Al Heib, M., Collapses of Underground Cavities and Soil-Structure Interactions: Experimental and Numerical Models, Darve, F., Doghri, L., El Fatmi, R., Hassis, H., and Zenzri, H., Eds., Advances in Geomaterials and Structures, Proc. the 1st Euro-Mediterranean Symp. Advances in Geomaterials and Structures, Tunisia: LGC-ENIT, 2006.
10. Cundall, P.A. and Strack, O. D. L., A Discrete Numerical Model for Granular Assemblies, Geotechnique, 1979, vol. 29.
11. Baryakh, A.A., Stazhevskii, S.B., Timofeev, E.A., and Khan, G.N., Strain State of a Rock Mass Above Karst Cavities, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2008, no. 6, pp. 3–12 [J. Min. Sci., 2008, vol. 44,
no. 6, pp. 531–538].
12. Baryakh, A.A., Rusin, E.P., Stazhevskii, S.B., Fedoseev, A.K., and Khan, G.N., Stress-Strain State of Karst Areas, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2009, no. 6, pp. 3–11 [J. Min. Sci., 2009, vol. 45, no. 6,
pp. 517–524].
13. Baraykh, A.A., Stazhevskii, S.B., Khan, G.N., Karst Genesis and Man-Made Environment, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2010, no. 3, pp. 12–22 [J. Min. Sci., 2010, vol. 46, no. 3, pp. 225–233].
14. Hatzor, Y.H., Wainshtein, I., and Bakun, M.D., Stability of Shallow Karstic Caverns in Blocky Rock Masses, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, no. 8.
15. Baryakh, A.A., Geomechanical Approach to Karst Hazard Assessment, Proc. Sci. Meeting of the Mining Institute, Ural Branch, Russ. Acad. Sci. on Geo-Resource Development Strategy and Techniques,
Perm, 2005.
16. Dergachev, M.S., Chervinskaya, O.P., Chernyak, E.R., Krasnoshtein, A.E., Baryakh, A.A., and Sanfirov, I.A., Metodicheskie rekomendatsii po provedeniyu inzhenerno-geologicheskikh izyskaniii na karstoopasnykh territoriyakh (na primere Permskogo kraya) (Guidelines on Geological-Engineering Survey in Karst-Hazardous Areas (in Terms of Perm Region), Moscow: GI UrO RAN, OAO “PNI-IS,” 2009.
17. Baryakh, A., Sanfirov, I., Hronusov, V., Yaroslavtsev, A., and Devyatkov, S., Geological and Geomechanical Estimation of Karst Danger for City Area, Studia Geotechnica et Mechanica, 2009, vol. 31, no. 1.
18. Devyatkov, S.Yu., Karst Deformation Ranking, Proc. Sci. Meeting of the Mining Institute, Ural Branch, Russ. Acad. Sci. on Geo-Resource Development Strategy and Techniques, Perm, 2006.
19. Dorofeev, E.P., Relationship of Sizes of Sinkholes and Caverns in Sulfates, Vopr. Karstoved., (Karst Science Issues), 1970, no. 2.
20. Kuznetsov, G.N., Mekhanicheskie svoistva gornykh porod (Mechanical Properties of Rocks), Moscow: Ugletekhizdat, 1947.
21. Zienkiewicz, O.C., Finite Element Method in Engineering Science, McGraw Hill, 1971.
22. Fadeev, A. B. Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.
23. Krasnoshtein, A.E., Baryakh, A.A., and Sanfirov, I.A., Engineering Accidents in Mining: Flooding of the Berezniki Potash Mine-1, Vestn. Permsk. Nauch. Tsentr., 2009, no. 2.
ORIGINATION AND DEVELOPMENT MECHANICS OF THE EARTH’S
MORPHOSTRUCTURES. PART I: ETIOLOGY AND EVOLUTION
OF THE PATOMSKY CRATER
S. B. Stazhevskii
The author suggests a dilatancy-explosion model to explain the nature of the shape- and structure-peculiar crater revealed in the avolcanic Patomsky highlands in the East Siberia. The model rests upon laboratory experiments and estimates of the present author and other researchers, as well as the known facts from volcanology. It is substantiated that origination of the discussed crater is associated with hydrogen degassing and dilatancy-induced channel formation in the Earth’s interior for fluids to elevate up to the ground surface. The mechanisms of the channel formation, fluid flow and fluid mixing with air have been analyzed, which allowed a conclusion that these processes led to explosion of the air and gas mixture, and initiation of a ring structure. The ring structure mechanism is described, the pressure in the channel by the moment of the explosion is estimated, the crater-damaged area healing is described, and the healing after-effects are discussed. The article ends with generalizations on the topic.
Patomsky ring structure, rock mass, dilatancy, pipe formation, fluid pressure, self-locking effect, explosive degassing
REFERENCES
1. Kolpakov, V.V., Mysterious Crater in the Patomsky Highlands, Priroda, 1951, nos. 1 and 2.
2. Antipin, V.S. and Fedorov, A.M., Origination of the Patomsky Crater (East Siberia) by Geological and Geochemical Evidence, Dokl. RAN, 2008, vol. 423.
3. Antipin, V.S., Voronin, V.I., and Fedorov, A.M., The Patomsky Crater in the East Siberia, Priroda, 2008, no. 9.
4. Rosko, K.H., The Influence of Strains in Soil Mechanics, Geotechnique, 1970, vol. 20.
5. The Patomsky Crater—The Third Expedition, URL: http://planet-x.net.ua/earth /earth_Zagmesta_patomsky3. html (07.02.2011).
6. Antipin, V.S., The Patomsky Crater as a Unique Geological Body in the East Siberia, Nauka Sibiri, 2010,
no. 43.
7. Antipin, V.S. and Fedorov, A.M., The Patomsky Crater in the East Siberia—A Modern Volcano, in Proc. 4th All-Russian Symposium on Volcanology and Paleovolcanology, IViS DVO RAN, Petropavlovsk-Kamchatski, 2009.
8. Simonov, I.V. and Bivin, Yu.K., Modeling the Unique Patomsky Crater Formation, Preprint of Inst. for Problems in Mechanics, Russ. Acad. Sci., Moscow, 2006, no. 803.
9. Stazhevskii, S.B., First Mode of Flow of Loose Materials in Bunkers, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1983, no. 3 [J. Min. Sci., 1983, vol. 19, no. 3, pp. 177–182].
10. Mashukov, V.I., Stazhevskii, S.B., and Shemyakin, E.I., Floating-Up of Cavities in a Rock Mass, Dokl. RAN, 1997, vol. 356, no. 6.
11. Stazhevskii, S.B., Kol’tsevye struktury v evolyutsii nebesnykh tel Solnechnoi sistemy (Ring Structures in Evolution of Celestial Bodies of the Planetary System), Novosibirsk: SO RAN, 1998.
12. Stazhevskii, S.B., Contribution of Ring Structures to the Lithosphere Stress-Strain State and Metallogeny, Fiz. Mezomekh., 2005, no. 1.
13. Stazhevskii, S.B., Ring Structures of the Earth: Origination Mechanics, and Contribution to the Seismicity, Metallogeny and Geoecology, in Problemy mekhaniki deformiruemykh tverdykh tel i gornykh porod (Problems of the Deformable Solid and Rock Mechanics), Ivlev, D.D. and Morozov, N.F., Eds., Moscow: Fizmatlit, 2006.
14. Shemyakin, E.I., Revuzhenko, A.F., and Stazhevskii, S.B., Some Models of Deformation in Rocks and Soils, Vzryv. Delo, 1976, no. 76/33.
15. Revuzhenko, A.F., Stazhevskii, S.B., and Shemyakin, E.I., Structural-Dilatancy Strength of Rocks, Dokl. AN SSSR, 1989, vol. 305, no. 5.
16. Sadovsky, M.A., Geofizika i fizika vzryva. Izbrannye trudy (Geophysics and Physics of Explosion. Selectals), Moscow: Nauka, 2004.
17. Gol’din S.V., Dilatancy, Re-Arrangement, and Earthquakes, Fiz. Zemli, 2004, no. 10.
18. Stazhevskii, S.B., Selecting the Shape and Bracing for Excavations, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1986, no. 5 [J. Min. Sci., 1986, vol. 22, no. 5, pp. 350–355].
19. Stazhevsky, S.B., Kolymbas, D., and Herle, I., Sand-Anchors, Theory and Application, in: Proc. Int. Symp. on Anchors in Theory and Practice, Widmann, Ed., Rotterdam: Balkema, 1995.
20. Rusin, E.P., Smolyanitskii, B.N., and Stazhevskii, S.B., Soil Anchors—The Methods and Machines for Their Installation, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2007, no. 6 [J. Min. Sci., 2007, vol. 43, no. 6, pp. 640–645].
21. Rast, H., Vulkane und Vulkanism, BSB. B. G. Teubner Verlagsgesellschaft, Leipzig, 1982.
22. Aiby, J.A., Zemletryaseniya (Earthquakes), Moscow: Nedra, 1982.
23. Vernadskii, V.I., Khimicheskoe stroenie biosfery Zemli i ee okruzheniya (Chemical Structure of the Terrestrial Biosphere), Moscow: Nauka, 1965.
24. Kropotkin, P.N., New Data on Hydrocarbon Degassing in the Crust, in Extended Abstracts of the 2nd All-Union Meeting on Degassing of the Earth and Geotectonics, Moscow: Nauka, 1985.
25. Larin, V.N., Gipoteza iznachal’no gidridnoi Zemli (novaya global’naya kontseptsiya) (Hypothesis on the Initially Hydride Earth: A New Global Concept), Moscow: Nedra, 1980.
26. Letnikov, F.A., Deep Degassing in Geological History of the Earth, in Extended Abstracts of the 2nd All-Union Meeting on Degassing of the Earth and Geotectonics, Moscow: Nauka, 1985.
27. Marakushev, V.I., Proiskhozhdenie Zemli i priroda ee endogennoi aktivnosti (Origination of the Earth and Its Endogenous Activity Mechanism), Moscow: Nedra, 1999.
28. Ozima, M., Geohistory: Global Evolution of the Earth, N.Y., Tokyo: Springer, 1987.
29. Glinka, N.L., Obshchaya khimiya (General Chemistry), Leningrad: Khimiya, 1979.
30. Tret’yakov, Yu.D., Martynenko, L.I., Grigor’ev, A.N., and Tsivadze, A.Yu., Inorganic Chemistry, Khimiya elementov (Chemistry of Elements), Moscow: MGU, 2007.
31. Ivankin, P.F., Morfostruktury i petrogenezis glubinnykh razlomov (Morphostructures and Petrogenesis of Deep Faults), Moscow: Nedra, 1991.
32. Bobryakov, A.P., Revuzhenko, A.F., and Shemyakin, E.I., Tidal Deformation of Planets, Experimental Modeling Experience, Geotektonika, 1991, no. 6.
33. Chelidze, T.L., Metody teorii protekaniya v mekhanike geomaterialov (Flow Theory Techniques in the Mechanics of Geomaterials), Moscow, 1987.
34. Vartanyan, G.S., Fluids of the Earth, in Planeta Zemlya. Entsiklopedicheskii spravochnik (The Earth. Encyclopaedic Guidance), vol. 1, Krasny, L.I., Petrov, O.V., and Blyuman, B.A., Eds., Saint-Petersburg: VSEGEI, 2004.
35. Tsirel’, S.V., On Loosening of Granular and Broken Rocks, Gorn. Inform.-Analit. Byull., 1997, no. 1.
36. Revuzhenko, A.F. and Stazhevskii, S.B., The inclusion of dilatancy into the basic reference formulas of the mechanics of granular media, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1986, no. 4 [J. Min. Sci., 1986,
vol. 22, no. 4, pp. 232–235].
37. Goodman, R.E., Methods of Geological Engineering in Discontinuous Rock, St. Paul: West Publish. Co, 1976.
38. Gutenberg, B., Physics of the Earth’s Interior, Academic Press, 1959.
39. Atlas mekhanicheskikh svoistv gornykh porod (Atlas of Mechanical Properties of Rocks), Leningrad: VNIMI, 1968.
40. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1994.
41. Portnov, A.V., Ghost-Comets Fell in the Taiga Rather than Extraterrestrials, Komsomol. Pravda, 1998, June 30.
42. Kasahara, K., Earthquake Mechanics, Cambridge University Press, 1981.
43. Stazhevskii S. B., Contribution of Ring Structures to Stress-Strain State of the Pacific-Type Peripheries and the Nature of Tsunamis, Fiz. Mezomekh., 2007, vol. 10, no. 1.
DEFORMATION FORERUNNERS OF EARTHQUAKES
TRIGGERED OFF BY DEVELOPMENT OF HYDROCARBON ACCUMULATIONS
A. Yu. Kashnikov, S. G. Ashikhmin, V. G. Bukin, S. V. Grishko,
I. V. Getmanov*, S. L. Odintsov*, and A. V. Gorbatikov**
The geodetic observations over the Astrakhan Gas Condensate Field make good grounds to predicate that a mining-induced seismic event is preceded by uplifting of the land surface and followed with intensive subsidence of the ground due to unloading of rocks from effective stresses. The uplifts of the earth surface may be assumed a deformation forerunner of an earthquake and utilized in forecasting the place and time of seismic events at oil and gas fields.
Oil and gas field, mining-induced seismic events, deformation forerunner, magnitude, geodynamic monitoring loop
REFERENCES
1. Kostrov, B.V., Mekhanika ochaga tektonicheskogo zemletryaseniya (Mechanics of the Tectonic Earthquake Focus), Moscow: Nauka, 1975.
2. Lin’kov, A.M., Numerical Modeling of Seismic and Aseismic Events in Geomechanics, Fiz.-Tekh. Probl. Razrab. Plezn. Iskop., 2005, no. 1, pp. 19–33 [J. Min. Sci., 2005, vol. 41, no. 1, pp 14–26].
3. Nikonov, A.A., Zemletryaseniya. Proshloe, sovremennost’, prognoz (Earthquakes. The Past, Here and Now, Forecasting), Moscow: Znanie, 1984.
4. Mekhanika gornykh porod primenitel’no k problemam razvedki i dobychi nefti (Rock Mechanics in the Context of Oil Prospecting and Recovery), Moscow: Mir “El’f-Akiten,” 1994.
5. Roest, J. P. A. and Kuilman, W., Geomechanical Analysis of Small Earthquakes at the Eleveld Gas Reservoir, Eurock’94.
6. Grasso, J.R., Plotnikova, L.M., Nutaev, L.M., and Bossu, R., The Three M-7 Gazli Earthquakes, Uzbekistan, Central Asia: The Largest Seismic Energy Releases by Human Activity, Proc. 21st Gen. Ass. Int. Union Geodesy & Geophys./A363, 1995.
7. Simpson, D. and Leith, W., The 1976 and 1984 Gazli Earthquakes, USSR. Were They Induced? Bull. Seismological Soc. Am., 1985, vol. 75, no. 5.
8. Kashnikov, Yu.A. and Ashikhmin, S.G., Mekhanika gornykh porod pri razrabotke mestorozhdeniy uglevodorodnogo syr’ya (Rocks Mechanics and Hydrocarbon Accumulation Development), Moscow: Nedra, 2007.
9. Kashnikov, Yu.A, Ashikhmin, S.G., Odintsov, S.L., and Postnov, A.V., Geodynamic Processes Induced by Mining at AGCF, Gaz. Prom., 2002, no. 1.
10. Rice, J., The Mechanics of Earthquake Rupture, in Physics of the Earth’s Interior, Amsterdam, North-Holland, 1980.
11. Kashnikov, Yu.A. and Ashikhmin, S.G., Influence of Oil Recovery on the Change in the Stress-Strain State of Rock Mass. Part III: Technogenic Activization of Fault Structures, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2000, no. 3, pp. 54–63 [J. Min. Sci., 2000, vol. 36, no. 3, pp. 244–252].
ROCK SALT DEFORMATION UNDER SUSTAINED LOADING
V. A. Asanov, I. L. Pan’kov, and V. V. Anikin
The results of field research of rock salt deformation under sustained uniaxial compression show that the viscoelastic Maxwell medium adequately characterizes time-dependent behavior of deformation parameters. The paper presents the accelerated test procedure and defines the long-term strengths for various types of rock salts from the Upper Kama Potash Deposit.
Rock salt, sylvinite, carnallite, uniaxial compression, creep, relaxation, long-term strength
REFERENCES
1. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob’ektov v usloviyakh Verkhnekamskogo mestorozhdeniya kaliinykh solei (Guidelines of Mine Flooding Protection and Surface Entities Safety Control in the Territory of the Upper Kama Potash Deposit), Saint Petersburg, 2008.
2. Metodicheskoe rukovodstvo po vedeniyu gornykh rabot na rudnikakh Verkhnekamskogo kaliinogo mestorozhdeniya (Mining Guideline for Upper Kama Potash Deposit), Moscow: Nedra, 1992.
3. Baryakh, A.A., Konstantinova, S.A., and Asanov, V.A., Deformirovanie solyanykh porod (Salt Rock Deformation), Ekaterinburg: UB RAS, 1996.
4. Greenwald, H. and Howarth, H., Tech. Publ. 575, Washington: Bureau of mines, 1937.
5. Hofer, K.-H. and Knoll, P., Untersuchungen zum Mechanismus der Krichenverformung von Garnolit und praktische Anwendunngen, 10 Landertreff Int. Buros Gebirgsmech, Leipzig, 1968; Berlin, 1970.
6. Kartashov, Yu. M., Uskorennye metody opredeleniya reologicheskikh svoistv gornykh porod (Accelerated Methods for Determination of Rock Rheological Properties), Moscow: Nedra, 1973.
7. Oksenburg, E. S. and Shafarenko, E. M., Creep and Long-Term Strength of Rock Salt, Osnov. Fundam. Mekh. Grunt., 1974, no. 6.
8. Vyalov, S.S., USSR Inventor’s Certificate no. 161133, Byull. Izobret., 1964, no. 6.
9. Bublik, F.P. and Ivanov, G.A., The Long-Term Strength and Creep of Nonuniform Pillars, VNIMI Transactions, 1970, vol. 78.
10. Pushkarev, V.I. and Afanas’ev, B.G., A Rapid Method of Determining the Long-Term Strengths of Weak Rocks, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1973, no. 5 [J. Min. Sci., 1973, vol. 9, no. 5, pp. 558–560].
11. Kartashov, Yu.M. and Titov, B.V., Determination of Long-Term Strength of Saliferous Rocks, VNIIgalurgii Transactions, 1975, vol. 77.
12. Asanov, V.A. and Pan’kov, I.L., Study of Salt Rock Deformation under Long-Term Loading, Inform.-Analit. Byull.,. 2010, no. 1.
13. Kartashov, Yu.M., Matveev, B.V., Makheev, G.V., and Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Rock Strength and Deformability), Moscow: Nedra, 1979.
EFFECTS OF THE ROCK MASS PARAMETERS ON THE DRAGLINE EXCAVATION PERFORMANCE
N. Demirel
This paper investigates impacts of rock mass properties on dragline performance. Performances of two draglines operated in different rock formations in Tuncbilek Coal mines were analyzed using modified geological strengths index (GSI). Results showed that draglines’ performance change with the rock mass properties. Based on the available data, an empirical relationship was generated to estimate dragline production capacity. The estimated excavation amount by the proposed model was found to be consistent with the excavation amount obtained from the field data.
Dragline, excavation performance, rock mass properties, Geological Strength Index (GSI)
REFERENCES
1. Deere, D.U. and Miller, R.P., Engineering Classifications and Index Properties of Intact Rock, Technical Report no. AFWL-TR 65–116, University of Illinois, 1966.
2. Aufmuth, R.E., A Systematic Determination of Engineering Criteria for Rock, Bull. Assoc. Eng. Geol., 1973, vol. 11, pp. 235–245.
3. Kidybinski, A., Bursting Liability Indices of Coal, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1984,
vol. 21, pp. 39–42.
4. Shorey, P.R., Barat, D., Das, M.N., Mukherjee, K.P., and Singh, B., Schmidt Hammer Rebound Data for Estimation of Large Scale In-Situ Coal Strength, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1984,
vol. 21, pp. 39–42.
5. Haramy, K.Y. and De Marco, M.J., Use of Schmidt Hammer for Rock and Coal Testing, Proc. 26th US Symp. Rock Mechanics, Balkema, 1985.
6. Ghose, A.K. and Chakraborti, S., Empirical Strength Indices of Indian Coals, Proc. 27th US Symp. Rock Mechanics, Balkema, 1986.
7. Sachapazis, C.I., Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks, Bull. Int. Assoc. Eng. Geol., 1990, vol. 42, pp. 75–83.
8. Xu, G., Grasso, P., and Mahtab, A., Use of Schmidt Hammer for Estimating Mechanical Properties of Weak Rock, Proc. 6th Int. IAEG Congress, Balkema, 1990.
9. Inoue, M. and Omi, M., Study on the Strength of Rocks by the Schmidt Test Hammer, Rock Mech. Japan, 1970, vol. 1.
10. Carter, P.G. and Sneddon, M., Comparison of the Schmidt Hammer, Point Load and Unconfined Compression Test in Carboniferous Strata, Proc. Conf. Rock Engineering, 1977.
11. Cargill, J.S. and Shakoor, A., Evaluation of Empirical Methods for Measuring the Uniaxial Strength of Rock, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1990, vol. 27, pp. 495–503.
12. Katz, O., Reches, Z., and Roegiers, J.C., Evaluation of Mechanical Rock Properties Using a Schmidt Hammer, Int. J. Rock Mech. Min. Sci., 2000, vol. 37.
13. Day, M.J. and Goudie, A.S., Field Assessment of Rock Hardness Using the Schmidt Test Hammer, Br. Geomorphol. Res. Group Tech. Bull., 1977, vol. 18, pp. 19–29.
14. Matthews, J.A. and Shakesby, R.A., The Status of the Little Ice Age in Southern Norway: Relative-Age Dating of Neoglacial Moraines with Schmidt Hammer and Lichenometry, Boreas, 1984, vol. 13.
15. Young, R.P. and Fowell, R.J., Assessing Rock Discontinuities, Tunnels Tunnelling, 1978, pp. 45–48.
16. Kahraman, R., Rotary and Percussive Drilling Prediction Using Regression Analysis, Int. J. Rock Mech. Min. Sci., 1999, vol. 36, pp. 981–989.
17. Kahraman, R., Balc?, C., Yaz?c?, S., and Bilgin, N., Prediction of the Penetration Rate of Rotary Blast Hole Drills Using a New Drillability Index, Int. J. Rock Mech. Min. Sci., 2000, vol. 37, pp. 729–743.
18. Kahraman, S., Bilgin, N., and Feridunoglu, C., Dominant Rock Properties Affecting the Penetration Rate of Percussive Drills, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, pp. 711–723.
19. Tarkoy, P.J. and Hendron, A.J., Rock Hardness Index Properties and Geotechnical Parameters for Predicting Tunnel Boring Machine Performance, National Science Foundation Report, 1975, no. NSF-RAT-75–030.
20. Duncan, N., Engineering Geology and Rock Mechanics, vol. 1. London: Leonard Hill, 1969.
21. Janach, W. and Merminod, A., Rock Abrasivity Test with a Modified Schmidt Hammer, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1982, vol. 19, pp. 43–45.
22. Karpuz, C., A Classification System for Excavation of Surface Coal Measures, Mining Science and Technology, 1990, vol. 11, pp. 157–163.
23. Singh, R., Singh, A.K., and Mandal, P.K., Cuttability of Coal Seams with Igneous Intrusions, Eng. Geo., 2002, vol. 67, pp. 127–137.
24. Goktan, R.M. and Gunes, N.A., Comparative Study of Schmidt Hammer Testing Procedures with Reference to Rock Cutting Machine Performance Prediction, Int. J. Rock Mech. Min. Sci., 2005, vol. 42, pp. 466–472.
25. Aksoy, C.O., Performance Prediction of Impact Hammers by Block Punch Index for Weak Rock Masses, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, no. 8.
26. Anon, Golden Automatic Buckets, Page Engineering Company, Chicago, USA, 1990.
27. Anon, P&H Optima Plus Buckets and Dippers, P&H Mining Equipment, Milwaukee, USA, 2000.
28. Steidle, E., Role of Draglines and Shovels in Modern Mining, 1976, Groundhog 77, (1), Ohio, USA.
29. Blouin, S., Hemami, A., and Lipsett, M., Review of Resistive Force Models for Earthmoving Process, J. Aerospace Eng., 2001, vol. 14, no. 3, pp. 102–110.
30. Osman, M.S., The Mechanics of Soil Cutting Blades, J. Agricult. Eng. Research, 1964, vol. 9, no. 4,
pp. 313–328.
31. Ozdogan, M., Pasamehmetoglu, A.G., Karpuz, C., Hindistan, M.A., and Bozdag, T., Performance Monitoring on the Excavability of Dragline—A Case Study, Mine Planning and Equipment Selection, Singhal et al., Eds., Rotterdam: Balkema, 1995.
32. Saperstein, L.W. and Franklin, R.N., An Investigation into the Forces on Bodies Dragged Through Sand, Journal of Terramechanics, 1971, vol. 8, no. 2, pp. 29–37.
33. Wilson, J. and Franklin, R.N., Further Measurements of Drag on Bodies Moving Through Sand, Journal of Terramechanics, 1971, vol. 8, no. 2, pp. 39–48.
34. Makanga, J.T., Salokhe, V.M., and Gee-Clough, D., Effect of Tine Rake Angle and Aspect Ratio on Soil Failure Patterns in Dry Loam Soil, Journal of Terramechanics, 1996, vol. 33, no. 5, pp. 233–252.
35. Makanga, J.T., Salokhe, V.M., and Gee-Clough, D., Effect of Tine Rake Angle and Aspect Ratio on Soil Failure Patterns in Dry Loam Soil, Journal of Terramechanics, 1997, vol. 34, no. 4, pp. 235–250.
36. Takahashi, H., Hasegawa, M., and Nakano, E., Analysis of the Resistive Forces Acting on the Bucket of a Load-Haul-Dump Machine and a Wheel Loader in the Scooping Task, Advanced Robotics, VSP and Robotics Society of Japan, 1999, vol. 13, no. 2, pp. 97–114.
37. Tan, C., Zweiri, Y.H., Althoefer, K., and Seneviratne, L.D., On-Line Soil Property Estimation for Autonomous Excavator Vehicles, Proc. ICRA ’03. IEEE Int. Conf. Robotics and Automation, 2003, vol. 1, pp. 121–126.
38. Coulomb, C.A., Essai Sur Une Application des Regles des Maximis et Minimis a Quelques Problemes de Statique Relatifs a l’Architecture, Mem. Acad. Roy. Prees. Diverse Savants, 1776, vol. 7.
39. Chen, W.F. and Liu, X.L., Limit Analysis in Soil Mechanics, Amsterdam: Elsevier, 1990.
40. Aksoy, C.O., Minimizing the Economic Unit Cost of Dragline-Truck-Shovel Operation at Yatagan-Eskihisar Open Pit Mine, Turkey, CIM Bulletin, 2005, vol. 98, no. 1088, pp. 1–4.
41. Demirel, N., Dynamic Dragline Modeling and Boom Stress Analysis for Efficient Excavation, PhD Dissertation, Missouri University of Science and Technology, 2006.
42. Pasamehmetoglu, A.G., Karpuz, C., and Ceylanoglu, A., Elektrikli Ekskavatorun Kaz?labilirlige Yonelik Performance Olcumleri, Cumhuriyet Universitesi 1.Ulusal Jeoloji ve Madencilik Symp., 1988, no. 1, 13.
43. Ozdogan, M., Dragline Yerkazarlarda Kepce Saplan?s Mekanizmas? ve Kuvveti, Madencilik Dergisi, 2003, vol. 42, no. 1, pp. 17–26.
44. Erdem, B., Celebi, N., and Pasamehmetoglu, A.G., An Expert System for Stripping Method and Dragline Selection, Mine Planning and Equipment Selection, Hennies, Ayres da Silva & Chaves, Eds., Rotterdam: Balkema, 1996.
45. Sonmez, H. and Ulusay, R., A Discussion on the Hoek-Brown Failure Criterion and Suggested Modifications to the Criterion Verified by Slope Stability Case Studies, Yerbilimleri, 2002, vol. 26,
pp. 77–79.
46. Hoek, E, Kaiser, K., and Bawden, W.F., Support of Underground Excavations in Hard Rock, Rotterdam: Balkema, 1995.
47. Hoek, E. and Brown, E.T., Practical Estimates of Rock Mass Strength, Int. J. Rock Mech. and Min. Sci., 1998, vol. 34, no. 8, pp. 1165–1186.
48. Hoek, E., Marinos, P., and Benissi, M., Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses: The Case of Athens Schist Formation, Bull. Engineering Geology and Environment, 1998, vol. 57.
ROCK FAILURE
PARTICULAR ISSUES ASSOCIATED WITH FLUID FRACTURING
OF ROCKS BY PLASTIC MATERIALS
N. G. Kyu
Details and characteristics of fracturing a brittle medium by plastic materials are impossible to reproduce without using plastic materials, since plastic material substances show concurrently the properties of a fluid and a solid. Using these characteristics, new engineering solutions in the field of mining have been developed, and some of them are discussed in this article.
Plastic materials, fracturing, generation of a fracture, extraction of natural stones and crystalline material
REFERENCES
1. Kyu, N.G. and Tsygankov, D.A., Method for Directional Failure of Rocks by Plastic Substances, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2003, no. 6, pp. 57–63 [J. Min. Sci., 2003, vol. 39, no. 6, pp. 573–578].
2. Chernov, O.I. and Kyu, N.G., Oriented Rupture of Solids by Highly Viscous Fluid, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1996, no. 5. pp. 28–34 [J. Min. Sci., 1996, vol. 32, no. 5, pp. 362–367].
3. Alekseenko, O.P., Calculation of Characteristics of the Hard-to-Cave Roof Fracturing with a Plastic Material Fluid, in Vzaimodeistvie mekhanizirovannykh krepei s bokovymi porodami (Interaction between Powered Supports and Wall Rocks), Novosibirsk: IGD SO AN SSSR, 1987.
4. Kyu, N.G., Novik, A.V., and Freidin, A.M., RF Patent 2182968, MKI E21S 37/12, Otkrytiya. Izobreteniya, 2002, no. 15.
5. Kyu, N.G., Freidin, A.M., and Chernov, O.I., Production of Stone Blocks Using Fluid-Fracturing, Gorny Zh., 2001, no. 3.
6. Kyu, N.G., RF Patent 2330159, MKI E21S 37/06, Otkrytiya. Izobreteniya, 2008, no. 21.
7. Kyu, N.G. and Chernov, O.I., RF Patent 2131032, Otkrytiya. Izobreteniya, 1999, no. 15.
8. Kyu, N.G., RF Patent 2307934, MKI E21S 37/12, Otkrytiya. Izobreteniya, 2007, no. 28.
9. Oparin, V.N. and Leont’ev, A.V., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Contemporary Geodynamics in the Top Lithosphere: Sources, Parameters, Impact), Novosibirsk: IGD SO RAN, 2008.
10. Kyu, N.G., RF Patent 2379508, MKI E21S 37/00, E21V43?26, Otkrytiya. Izobreteniya, 2010, no. 11.
11. Kyu, N.G. and Oparin, V.N., RF Patent 2292456, MKI E21S 39/00, Otkrytiya. Izobreteniya, 2007, no. 3.
REDUCTION IN BLASTING-INDUCED SEISMICITY
IMPACT IN OPEN PIT MINES
S. V. Muchnik
Short-delay blasting excites the Rayleigh waves over the surface of open pit walls. The author shows that interference of these waves generates an extended neutral seismicity zone behind the first positive half-wave in the distribution diagram of the transverse component of the velocity vector. The neutral seismicity zone ends with the low amplitude interference vibrations with a velocity comparable with the air sonic velocity.
Open pit mine, shattering of rocks, seismicity, Rayleigh waves, interference
REFERENCES
1. Baranov, E.G., Korotkozamedlennoe vzryvanie (Short-Delay Blasting), Frunze: Ilim, 1971.
2. Andreev, V.V., Neklyudov, A.G., Ignatenko, A.G. et al., Electronic Priming Technology and Application In Building Stones Open Pit Mines, Proc. Conf. on the Fundamental Problems in the Formation of Human-Induced Geo-Environment, Novosibirsk: IGD SO RAN, 2007.
3. Muchnik, S.V., Pre-Stressing of an Open Pit Bench during Large-Scale Blasting, Fiz.-Tekh. Probl. Rzrab. Polezn. Iskop., 2010, no. 6, pp. 69–76 [J. Min. Sci., 2010, vol. 46, no. 6, pp. 650–655].
4. Mogi, G., Hoshino, T., and Kou, S-Q., Reduction of Blast Vibration by Means of Sequentially Optimized Delay Blasting, Proc. 7th World Conf. Explosives and Blasting Techniques, Munich, Germany, 2000.
5. Muchnik, S.V., Higher Effect of the Surface Waves during Massive Blasting with Nonelectric Initiation at Open Pits, Fiz.-Tekh. Probl. Rzrab. Polezn. Iskop., 2009, no. 5, pp. 56–65 [J. Min. Sci., 2009, vol. 45, no. 5, pp. 459–467].
6. Andreev, V.V., Sher, E.N., and Grishin, A.N., Seismic Vibrations due to New Blasting Devices: Pyrotechnic and Electronic, Proc. Conf. on the Fundamental Problems in the Formation of Human-Induced Geo-Environment, Novosibirsk: IGD SO RAN, 2009.
MINERAL MINING TECHNOLOGY
CHARACTERISTICS OF METHANE RELEASE
IN HIGHLY PRODUCTIVE COAL MINES
K. N. Trubetskoy, A. D. Ruban, and V. S. Zaburdyaev
The article discusses the research of methane release intensity versus average daily output in coal mines featuring different geological and mining conditions in Vorkuta and Kuznetsk Coal Basins. The authors describe degassing of producing and superimposed methane-bearing coal beds in highly productive longwalls, at the stages of coal face output of 26 thousand tonnes per day and in the first months of operation.
Coal bed, mine, working site, longwall, methane content of coal bed, coal production, methane release
REFERENCES
1. Ruban, A.D., Artem’ev, V.B., Zaburdyaev, V.S. et al., Problemy obespecheniya vysokoi proizvoditel’nosti ochistnykh zaboev v metanoobil’nykh shakhtakh (Issues of the Enhanced Production Face Capacity Maintenance in High Methane Content Mines), Moscow: URAN IPKON RAN, 2009.
2. Accident Risk and Fire Protection at Coal Mining Industry Enterprises, FGUP TsSh VGSCh Inform. Byull., 2010, no. 12.
3. Composite authors, Metodicheskie rekomendatsii o poryadke degazatsii ugol’nykh shakht (RD-15–09–2006) (Recommended Practice for Coal Mine Degassing RD-15–09–2006), Series 05, Issue 14, Moscow: OAO “Nauch.-Tekh. Tsentr Bezop. Prom.,” 2007.
4. Trubetskoy, K.N., Ruban, A.D., and Zaburdyaev, V.S., Justification Methodology of Gas Removal Methods and Their Parameters in Underground Coal Mines, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2011, no. 1,
pp. 3–11 [J. Min. Sci., 2011, vol. 47, no. 1, pp. 1–9].
5. Ruban, A.D. and Zaburdyaev, V.S., Assessment of Degassing Effectiveness during Coal Bed Cutting, Ugol, 2010, no. 1.
6. Rukovodstvo po proektirovaniyu ventilyatsii ugol’nykh shakht (Coal Mine Ventilation Design Manual), Makeevka Donbass, 1989.
7. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’nye prikladnye metody resheniya problem metana ugol’nykh plastov (Fundamental and Applied Techniques for Methane Problem Solving in Coal Beds), Moscow: Akad. gorn. nauk, 2000.
8. Sergeev, I.V., Zaburdyaev, V.S., Airuni, A.T. et al., Upravlenie gazovydeleniem v ugol’nykh shakhtakh pri vedenii ochistnykh rabot (Gas Emission Control during Coal-Face Work), Moscow: Nedra, 1992.
STRATEGY OF TECHNOLOGICAL INNOVATION
IN LODE ORE EXTRACTION
K. N. Trubetskoy, Yu. P. Galchenko, and G. V. Sabyanin
The short- and long-term economic advancement emphasizes importance of mineral reserves and demands updated geotechnologies for deposits of any geological kind. The article describes the theoretical and practical search for a new geotechnological strategy in the field of mining nonferrous, rare-earth, noble and radioactive metal lode ores, as well as discusses commercial performance of innovative and safe engineering solutions in different mining-geological conditions.
Lode deposits, geology, mining conditions, methodology, innovation, geotechnology, blasting, selective extraction, safety, efficiency
REFERENCES
1. Trubetskoy, K.N. and Glembotskaya, T.V., The Country Wealth Generating Industry. To the 30th Anniversary of Mining Management in Russia, Vestn. RAN, 2000, vol. 70, no. 8.
2. Galchenko, Yu. P. and Sabyanin, G.V., Geological Evaluation of Orebody Characteristics toward Selective Extraction of Lode Ores, Zolot. Prom., 2006, no. 6(18).
3. Rafienko, D.I., Nazarchik, A.F., Galchenko, Yu.P., and Mamsurov, L.A., Sovershenstvovanie razrabotki zhil’nykh mestorozhdenii (Improvement in Lode Ore Extraction), Moscow: Nauka, 1988.
4. Galchenko, Yu.P. and Sabyanin, G.V., Development Trends and Prospects in Lode Ore Mining Technologies, Zolot. Prom., 2009, no. 5(35).
5. Trubetskoy, K.N. and Galchenko, Yu.P., Meaning of a Notion “Blasting Scale” in Underground Mining, Gorny Zh., 2009, no. 5.
6. Viktorov, S.D., Galchenko, Yu.P., Zakalinskii, V.M., and Rubtsov, S.K., Razrushenie gornykh porod sblizhennymi zaryadami (Rock Destruction by Contiguous Charges), Moscow: Nauchtekhlitizdat, 2006.
7. Viktorov, S.D., Galchenko, Yu.P., and Sabyanin, G.V., RF Patent 2319011, Byull. Izobret., 2008, no. 8.
8. Trubetskoy, K.N., Galchenko, Yu.P, and Sabyanin, G.V., RF Patent 2418167 E21S41/22, Byull. Izobret., 2011, no. 13.
DETERMINATION OF QUALITY OF. A. QUARTZITE DEPOSIT,
MODEL OF PRE-BLENDING, AND THE DEVELOPING SOFTWARE—BOSS
N. E. Ulger, U. Ozer*, and U. G. Akkaya*
In this study, quality of quartzite ore body located at Istanbul Yalikoy Region is determined by geostatistical methods. After analysis of 303 production blocks, reserve of ore is calculated as
3 560 400 tonnes. Then 82 borehole data were compared with this study results, using geostatistical methods. For the study, a blending model was developed to provide the specific ore to the glass industry. The model and geostatistical study results for a quartzite deposit were evaluated by newly developed software based on GIS and pre-blending model.
Glass industry, quartzite, kriging, geostatistical methods, blending formula, blending software
REFERENCES
1. Armstrong, M and Carignon, J, Geostatistique Lineare, Applicationau Domaine Miner, Presses de I’Ecole Nationale Superieure des Mines de Paris, Paris, 1997.
2. Burrough, P.A., GIS and Geostatistics for Environmental Modeling, in Spatial Data Quality, in Shi, W., Fisher, P.F., Goodchild, M.F., Eds., Taylor&Francis, pp.18–35, 2002.
3. Sertel, E., Demirel, H., and Kaya, S., Predictive Mapping of Air Pollutants: A GIS Framework, Proc. 5th Int. Symp. Spatial Data Quality, Enschede, The Netherlands, 2007.
4. Sertel, E., Demirel, H., and Kaya, S., Mekansal Analiz icin Jeo-istatistik Yaklas?m, Proc. 4th Symp. Turkish National Fotogrametry and Remote Sensing, Turkey, 2007.
5. Okay A. and Tuysuz, O., Istranca Masifinin Tektonigi, European Geology Institute 90, pp. 217- 233, 2001.
6. Pamir, N.H. and Baykal, F., Istranca Masifinin Jeolojik Yap?s?, Bulletin of Turkish Geology Congress, 1947, vol. 1, no. 1.
7. Usumezsoy, S., Magmatik ve Metamorfik Jeoloji ve Istranca bolgesindeki Mineralizasyon, Istanbul Earth Sciences Review, 1982, vol. 3. pp. 277–294.
MINE AERODYNAMICS
APPLICATION OF. A. HYBRID METHOD OF MACHINE LEARNING
FOR DESCRITPION AND ON-LINE ESTIMATION OF METHANE
HAZARD IN MINE WORKINGS
M. Sikora, Z. Krzystanek, B. Bojko, and K. Spiechowicz
The paper presents application of a hybrid method of methane hazard prediction in exploited mine workings in coal mines. For prediction, the authors used so-called local linear models, the number of which is defined in an adaptive way, and the model of time series prediction ARIMA. The prediction task consists in generating the maximum predicted methane concentration value in a certain time horizon. This forecast is then used to define a methane hazard level by means of a fuzzy system of the Mamdami type. Another important issue covered by the paper is processing of row measurement data to an acceptable form using analytical method and adaptation of the model to changing environmental conditions. The experimental part of the paper presents results of data analysis completed for two longwalls.
Longwall, methane prediction models, hybrid method, rules-based classification systems, tree of local linear models
REFERENCES
1. Bojko, B., The Analysis of Acquired Measurements of Methane Concentration in Mine Galeries—Selected Examples, Proc. of the 3rd School of Mine Ventilation, Zakopane, 2004 (in Polish).
2. Bojko, B., Dynamics of Methane Content in Mine Workings, Extended Abstract of PhD Dissertation, Polish Academy of Sciences, Strata Mechanics Institute, Cracow, 2004 (in Polish).
3. Nakayama, S., Uchino, K., and Inoue, M., Simulation of Methane Gas Distribution at a Heading Face, Journal of the Mining and Materials Processing Institute of Japan, 1998, vol. 114, no. 4.
4. Ushakov, K.Z., Gas Dynamics of Shafts, Moscow: Nauka, 1984.
5. Krause, E. and Lukowicz, K., Dynamic Prediction of Absolute Methane Emissions to Extraction Panels, Proc. of the 29th Int. Conf. of Safety in Mines Research Institutes, 2001, Szczyrk, Poland, vol. 1 (in Polish).
6. Kurnosow, W.G. and Krasik, J.L., Methane Hazard and Its Monitoring, Proc. of the 7th Int. Mine Ventilation Congress, 2001, Cracow, Poland.
7. Dixon, W.D., A Statistical Analysis of Monitored Data for Methane Prediction, Extended Abstract of PhD Dissertation, University of Nottingham, Dept. of Mining Engineering, 1992.
8. Firganek, B., Stochastic Model of Methane Emission in Longwall Faces, Proc. of the 29th Int. Conf. of Safety in Mines Research Institutes, 2001, Szczyrk, Poland, vol. 1 (in Polish).
9. Wasilewski, S., Analysis of the Measurement Signals of Ventilation Processes, Mining Automation Bulletin, 1986, no. 31 (in Polish).
10. Sikora, M. and Sikora, B., Application of Machine Learning for Prediction of Methane Concentration in a Coal-Mine, Archives of Mining Sciences, 2006, vol. 51, issue 4.
11. Sikora, M., Krzystanek, Z., Bojko, B., and Spiechowicz, K., Hybrid Adaptative System of Gas Concentration Prediction in Hard-Coal Mines, Proc. of the 19th Int. Conf. on Systems Engineering, IEEE Computer Society (CPS), 2008, Las Vegas, Nevada, USA.
12. Krzystanek, Z., Dylong, A., and Wojtas, P., Monitoring of Environmental Parameters in Coal Mine—The SMP-NT System, Mechanizacja i Automatyzacja Gornictwa, 2004, no. 9.
13. Gralewski, K. and Krzystanek, Z., New Features of the SMP/NT System for Environmental Hazard Monitoring in Coal Mines, Mechanizacja i Automatyzacja Gornictwa, 2004, no. 9.
14. Box, G. E. P. and Jenkins, G.M., Time Series Analysis: Forecasting and Control, New Jersey: Prentice Hall, 3th edition, 2004.
15. Czogala, E. and Leski, J. Fuzzy and Neuro-Fuzzy Intelligent Systems, Studies in Fuzziness and Soft Computing, 2000, vol. 47, Springer-Verlag Company.
16. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J., Classification and Regression Trees, Wadsworth, Belmont CA, 1994.
17. Quinlan, J.R., Learning with Continuous Classes, Proc. Int. Conf. on Artificial Intelligence (AI`92), Singapore, World Scientific, 1992.
18. Quinlan, J.R., Combining Instance-Based Learning and Model-Based Learning, Proc of the 10th Int. Conf. on Machine Learning (ML-93), 1993.
19. Knuth, D.E., The Art of Computer Programming, vol. 3, Sorting and Searching, Addison-Wesley, 1998.
20. Quinlan, J.R., C4.5 Programs for Machine Learning, Morgan Kaufman Publishers, San Mateo, California, 1992.
21. Witten, I.H and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufman, 2005.
22. Grychowski, T., Hazard Assessment Based on Fuzzy Logic, Archives of Mining Sciences, 2008, vol. 53, no. 4
23. Yager, R.R. and Filev, D.P., Essential of Fuzzy Modelling and Control, John Wiley & Sons, Inc, 2004.
24. Statistica 8.0 (www.statsoft.com).
25. Matlab 2009 (www.mathworks.com).
26. Oh, S.K., Pedrycz, W., and Park, H.S., Rules Based Multi-FNN Identification with the Aid of Evolutionary Fuzzy Granulation, Knowledge-Based Systems, vol. 17, 2004.
MINERAL DRESSING
NANOSECOND ELECTROMAGNETIC PULSE EFFECT ON PHASE COMPOSITION
OF PYRITE AND ARSENOPYRITE SURFACES, THEIR SORPTION
AND FLOTATION PROPERTIES
V. A. Chanturia, I. Zh. Bunin, M. V. Ryazantseva,
I. V. Filippova*, and E. V. Koporulina
The X-ray photoelectronic spectroscopy data give the grounds for statement that the powerful nanosecond electromagnetic pulse pretreatment improves sorption activity of pyrite surface and lowers sorption of a collector at arsenopyrite surface. The research results are verified by test data on the powerful nanosecond electromagnetic pulse effect on the structure and chemical properties of pyrite and arsenopyrite surface, as well as their electrochemical and flotation properties.
Pyrite, arsenopyrite, powerful nanosecond electromagnetic pulses, xanthogenate sorption, flotation
REFERENCES
1. Chanturia,V. A., Trubetskoi, K. N., Viktorov, S. D., and Bunin, I. Zh., Nanochastitsy v protsesse razrushenia b vskrytia geomaterialov (Nanoparticles in Processes for Disintegration and Opening of Geomaterials), Moscow: IPKON RAN, 2006.
2. Chanturia,V. A., Filippova, I. V., Filippov, L. O., Ryazantseva, M. V., and Bunin, I. Zh., Effect of Powerful Nanosecond Electromagnetic Pulses of Surface and Flotation Properties of Carbonate-Bearing Pyrite and Arsenopyrite , Journal of Mining Science, 2008, no. 5.
3. Chanturia,V. A., Bunin, I. Zh., Lunin, V. D., et al., Use of Powerful Electromagnetic Pulses in Processes of Disintegration and Opening of Rebellious Gold-Containing Raw Materials, Journal of Mining Science, 2001, no. 4.
4. Ryazantseva, M. V. and Bogachev, V. I., Influence of Nanosecond Electromagnetic Pulses on Electrophysical; Properties of Pyrite and Arsenopyrite, , Journal of Mining Science, 2009, No. 5.
5. Bunin, I. Zh., Ivanova, T. A., and Lunin, V. D., Influence of Powerful Effects on Solution of Gold-Bearing Minerals, Gorn. Inform.-Analit. Byull., 2002, no. 8.
6. Chanturia,V. A, Bunin, I. Zh., and Ivanova, T. A., Influence of Powerful Electromagnetic Pulses on Solution and Physico-Chemical Properties of Sulfide Mineral Surface, Materialoved., 2005, no. 11.
7. Bunin, I. Zh., Theoretical Fundamentals of Influence of Nanosecond Electromagnetic Pulses on Disintegration and Opening of Finely Dispersed Mineral Complexes and Recovery of Noble Metals from Ores: Extended Abstracts of Dissertation of Dr. Tech. Sci., Moscow: RGGRU, 2009.
8. Kartio, I., Laajalehto, K., Suoninen, E., Karthe, S., and Szargan, R., Application of electron spectroscopy to characterization of mineral surfaces in flotation studies, Surface and Interface Analysis, 1992, no. 18.
9. Buckley, A. N., A survey of the Application of X-ray Photoelectron Spectrosïîcopy to Flotation Research // Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, no. 93.
10. Tauson, V. L., Nemerov, V. N., Razvozzhaeva, E. A., Spiridonov, A. M., Lipko, S. V., and Budyak, A. Å., Paragenetic Relations between Pyrite, Carbon, and Gold at the Sukhoi Log deposit and Typomorfism of Pyrite Surface, Dokl. RAN, 2009, vol. 426, no. 4.
11. Donato, Ph., Mustin, C., Benoit, R., and Erre, R., Spatial distribution of iron and sulphur species on the surface of pyrite, Applied Surface Science, 1993, no. 68.
12. Brion, D., XPS Study of the Alteration of FeS2 CuFeS2 and ZnS Surfaces in Air and in Water, Application of Surface Science, 1980, no. 5.
13. Nesbitt, H. W., Scaini, M., Hochst, H., Bancroft, G. M., Schaufuss, A. G., and Szargan., R., Synchrotron XPS Evidence for Fe2+-S and Fe3+-S Surface Species on Pyrite Fracture-Surfaces, and their 3D Electronic States, Am. Miner, 2000, no. 85.
14. Nesbitt, W., Muir, I. J., and Pratt, A. R., Resonant XPS Study of the Pyrite Valence Band with Implications for Molecular Orbital Contributions, Geochimica et Cosmochimica Acta, 1995, no. 59.
15. Descostes, M., Mercier, F., Beaucaire, C., Zuddas, P., and Trocellier, P., Nature and Distribution of Chemical Species on Oxidized Pyrite Surface: Complementarity of XPS and Nuclear Microprobe Analysis, Nuclear Instruments and Methods in Physics Research, 2001, no. B 181.
16. Ryazantseva, M. V., Mechanism for Nanosecond Electromagnetic Pulse Effect on Structural-Chemical and Flotation Properties of Pyrite and Arsenopyrite, Extended Abstracts of Dissertation of Cand. Tech Sci., Moscow: IPKON RAN, 2009.
17. Chanturia,V. A., Bunin, I. Zh., Ryazantseva, M. V., and Filippov, L. O., Theory and Application of Powerful Nanosecond Pulses to Process Mineral Complexes, Mineral Processing and Extractive Metallurgy Review, 2011, vol. 32, no. 2.
TURPENTINE-BASED FLOTATION AGENTS
IN COPPER-NICKEL ORE FLOTATION
S. A. Kondrat’ev, V. I. Rostovtsev, O. I. Yarovaya*, and
N. F. Salakhutdinov*
The authors present experimental data on synthesis of new flotation agents, based on the renewable vegetal resource, and their applicability to floating copper-nickel ores. It is verified experimentally that the new flotation agents efficiently improve extraction of copper minerals.
Copper-nickel ore, turpentine-based collecting agents, flotation
REFERENCES
1. Baki Yarar, Ullmann’s Encyclopedia of Industrial Chemistry, Wienheim: Wiley-VCH, 2005.
2. Belen’kii, L.I., Poluchenie i svoistva organicheskikh soedinenii sery (Production and Properties of Organic Sulfur Compounds), Moscow: Khimiya, 1998.
COMPREHENSIVE UTILIZATION OF SILICA RAW MATERIAL
OF THE UPPER AND MID-AMUR RIVER BASIN
V. S. Rimkevich, L. P. Dem’yanova, and A. P. Sorokin
The analysis of physical-chemical processing of silica-containing raw material has revealed optimal conditions for production of amorphous silica, ammonium hexafluorosilicate, mullite-siliceous refractory, and other commercial products. Using ammonium hydrodifluoride, the authors have developed efficient technologies for complex extraction of valuable components from silica-containing raw material.
Silica-containing raw material, efficient technologies, ammonium hydrodifluoride, complex extraction, amorphous silica, mullite-siliceous refractory, valuable components
REFERENCES
1. Melkonyan, R.G. and Druchek, S.V., Production of Silicate Products from Local Silica-Bearing Rocks, Gorny Zh., 2007, no. 10.
2. Dem’yanova, L.P., Fluoride Process for Treatment of Silica Raw Materials from the Amur River Basin and Production of Highly Siliceous Products, Extended Abstracts of Cand. Tech. Sci. Dissertation, Tomsk, 2009.
3. Eremin, N.I., Nemetallicheskie poleznye iskopaemye (Non-Metallic Minerals), Moscow: MGU, 1991.
4. Eremin, N.I. and Dergachev, A.L., Ekonomika mineral’nogo syr’ya (Economy of Mineral Raw Materials), Moscow: KDU, 2007.
5. Vasil’ev, I.A., Kapanin, V.P., Kovtonyuk, G.P. et al., Mineral’no-syr’evaya baza Amurskoi Oblasti na rubezhe vekov (Mineral Reserves of the Amur Region at the Turn of the Century), Blagoveshchensk:
Zeya, 2000.
6. Apenshev, V.S., Otsenka prognoznykh resursov Amurskoi Oblasti kaolinovogo, polevoshpat-kvartsevogo syr’ya i ogneupornykh glin (Evaluation of Potential Kaolin, Feldspar-Quartz, and Refractory Clay Reserves in the Amur Region), Research Report, Svobodny, 1993.
7. Sorokin, A.P., Rimkevich, V.S., Savchenko, I.F., Parkhotsik, V.V., and Artemenko, V.V., Perspectives for the Use of Non-Metallic Raw Materials Produced in the Upper and Mid-Amur River Basin, Gorny Zh., 2007, no. 11.
8. Rakov, E.G, Khimiya i tekhnologia neorganicheskikh ftoridov (Chemistry and Technology for Inorganic Fluorides), Moscow: MKhTI, 1990.
9. Zemnukhova, L.A., Sergienko, V.I., Kagan, V.S., and Fedorishcheva, V.A., RF Patent 2061656, Byull. Izobret., 1996, no. 31.
10. Marakushev, A.A., Zubenko, I.A., Malovitskii, Yu.N., Rimkevich, V.S., and Dem’yanova, L.P., Experimental Investigation into Immiscibility of Halide-Silicate Melts and Silicium Production by Electrolysis of ((NH4)2SiF6 Water Solution, Byull. MOIP, Geology, 2005, vol. 80, issue 5.
11. Rimkevich, V.S., Malovitskii, Yu.N., and Dem’yanova, L.P., RF Patent 2286947, Byull. Izobret., 2006,
no. 31.
12. Bakalkin, L.P. et al., Heat-Insulating Glassfiber Refractory Materials and Products, Ogneupory, 1984, no. 1.
ALTERATION IN AMORPHICITY OF QUARTZ STRUCTURES
DURING GRINDING OF FERROUS QUARTZITES
E. A. Ermolovich
The author discusses evaluation of coherent-scattering regions in quartz in the structure of ferrous quartzites during commercial and laboratory grinding of wet magnetic separation refuses and the correlation equation that confirms the activity versus dispersion behavior of the analyzed refuses.
Wet magnetic separation refuses, crystal grains of quartz, consolidating backfill
REFERENCES
1. Krylova, G.I., Issues of Reliable Identification of Forms and Contents of Additive Elements in Natural Quartz, in Proc. 2nd Russian Seminar on Technological Mineralogy, Petrozavodsk: Publ. House of Kola Scientific Center of RAS, 2007.
2. Iler, R., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, John&Sons, 1979.
3. Maksanova, L.A. and Ayurova, O.Zh., Polimernye soedineniya i ikh primeneniya: Uchebnoe posobie (Polymeric Compounds and Their Applications: Educational Book), Ulan-Ude: VSGTU, 2004.
4. Kabanov, V.A. (Ed.), Entsiklopediya polimerov (The Encyclopedia of Polymers), Moscow: Sov. Entsiklopediya, 1977.
5. Khimicheskaya entsiklopediya (The Chemical Encyclopedia), vol. 2, Moscow: Sov. Entsiklopediya, 1990.
6. Rusakov, A.A., Rentgenografiya metallov. Uchebnik dlya vuzov (X-ray Analysis of Metals. College Text Book), Moscow: Atomizdat, 1977.
7. Zevin, L.S. and Kheiker, D.M., Rentgenovskie metody issledovaniya stroitel’nykh materialov (X-ray Analysis of Building Materials), Moscow: Stroiizdat, 1965.
8. Avksent’ev, Yu.I., Zolina, Z.K., Zubenko, C.V. et al., Fizika tverdogo tela: struktura tverdogo tela i magnitnye yavleniya. Spetspraktikum (Physics of Solid: Structure of a Solid and the Magnetic Phenomena. Special Practical Course), Katsnel’son, A.A. and Krinchik, G.S., Eds., Moscow: MGU, 1976.
9. Mirkin, L.I., Rentgenostrukturnyi kontrol’ mashinostroitel’nykh materialov. Spravochnik (X-ray Diffraction Surveillance of Engineering Materials. Reference Guide), Moscow: MGU, 1982.
10. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: Nauka-Fizmatlit, 2007.
11. Gusev, A.I. and Kurlov, A.S., Rating of Nanocrystal Materials by Particle (Grain) Sizes, Metallofiz. Noveish. Tekhnol. 2008, vol. 30, no. 5.
12. Savitzky, A. and Golay, M. J. E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analyt. Chem., 1964, vol. 36, nî. 8.
13. Sonneveld, E.J. and Visser, J.W., Automatic Collection of Powder Data from Photographs, J. Appl. Cryst., 1975, vol. 8.
14. Hall, W.H., X-ray Line Broadening in Metals, Proc. Phys. Soc. London, 1949. Sect. A., vol. 62, part 11,
nî. 359A.
15. Williamson, G.K. and Hall, W.H., X-ray Line Broadening from Filed Aluminium and Wolfram, Act. Metal., 1953, vol. 1, nî. 1.
16. Panova, T.V., Blinov, V.I., and Kovivchak, V.S., Determination of Internal Stresses in Metals in Uchebno-metodicheskie ukazaniya k vypolneniyu laboratornoi raboty po kursu “Rentgenostrukturnyi analiz” (Guidance on Execution of the Laboratory Work on “X-ray Diffraction Analysis” Course), Omsk, 2004.
17. Plyasova, L.M., Molina, I.Yu., Cherepanova, S.V. et al., Dispersed Electrolytical Residuums of Submicroscopic Platinum and Palladium on Polycrystal Base Surfaces: X-Diffractometry and Microscopy, Elektrokhim., 2002, vol. 38, no. 10.
18. Khodakov, G.S., Tonkoe izmel’chenie stroitel’nykh materialov (Fine Grinding of Building Materials), Moscow: Stroiizdat, 1972.
19. Khodakov, G.S., Fizika izmel’cheniya (Physics of Grinding), Moscow: Nauka, 1972.
20. Molchanov, V.I. and Yusupov, T.S., Fizicheskie i khimicheskie svoistva tonkodispergirovannykh materialov (Physical and Chemical Properties of Fine Dispersed Minerals), Moscow: Nedra, 1981.
21. Molchanov, V.I., Selezneva, O.G., and Zhirnov, E.N., Aktivatsiya mineralov pri izmel’chenii (Activation of Minerals during Grinding), Moscow: Nedra, 1988.
22. Kochegarov, G.G., Physicochemical Effect of a Medium on the Substructure and Mechanical Properties of Dispersed Materials, Kondens. Sredy i Mezhfaz. Gran., 2008, vol. 10, no. 4.
23. Kitaigorodskii, A.I., Rentgenostrukturnyi analiz melkokristallicheskikh i amorfnykh tel (X-ray Diffraction Analysis of Fine Crystal and Amorphous Bodies), Moscow-Leningrad: Gostekhizdat, 1952.
24. Storozhakova, N.A., Regularities in Modification of Poly-?-Caproamide by Polyfluorinated Compounds, Peculiarities of Properties and Application, Extended Abstract of Dr. Chem. Sci. Dissertation,
Volgograd, 2007.
25. Tkacova, K., Mechanical Activation of Minerals, Development in Mineral Processing, Amsterdam: Elsevier, 1989, vol. 11.
26. Koch, C. B. Jiang, J.Z., and Morup, S., Mechanical Milling of Fe3O4/SiO2: Formation of an Amorphous Fe(II)-Si-O-Containing Phase, Nanostructured Materials, 1999, vol. 12, nos. 1–4.
27. Vaimakis, T.C., Skordilis, C.S., and Pomonis, P.J., Alternation of Geometrical and Fractal Dimensions of Phosphate Ore Particles during Grinding, Journal of Colloid and Interface Science, 1995, vol. 172, no. 2.
28. Korchevskii, V.V., Development and Application of the Acoustic-Emission and X-ray Diffraction Approaches to the Analysis of Plastic Deformation of Polycrystals, Extended Abstract of Dr. Phys.-Math. Sci. Dissertation, Khabarovsk, 2007.
29. Kovba, L.M. and Trunov, V. K. Retgenofazovyi analiz (X-ray Phase Analysis), Moscow, MGU, 1976.
30. Malykhin, D.G., Kovtun, G.P., Stukalov, A.I., Chernyaeva, T.P., and Gritsina, V.M., The Modified Approximation Method for the Analysis of Zirconium Alloys, VANT, 2003, vol. 3, no. 83.
31. Ermolovich, E.A., Influence of Flocculants on Properties of Slurry Backfill Made of Washery Refuses and the Strength of Rocks, Gorn. Inform.-Analit. Byull., 2010, no. 3.
MINING ECOLOGY
QUALITATIVE ASSESSMENT OF VEGETATION
IN DISTURBED MINING-AND-METALLURGICAL AREAS
BY THE REMOTE AND SURFACE MONITORING
G. V. Kalabin
The ability of natural systems to self-regeneration under reduced technogeneous impact generated by operating mining–and metallurgical integrated works on the environment is investigated in the article. The studies are within the interdisciplinary approach to the analysis of “ecological response” to the reduced anthropogenic stress by integrated remote and surface monitoring, embracing interpretation of aerospace photographs and evaluation of the biomass evolution dynamics in combination with soil sampling and chemical analysis of specimens.
Mineral resources, anthropogenic stress, environment assessment, aerospace images, vegetation index, self-regeneration
REFERENCES
1. Udachin, V., Williamson, B.G., and Purvis, O.W., Assessment of Environmental Impacts of Active Smelter Operation and Abandoned Mines in Karabash, Ural Mountains of Russia, Report of TACIS.
2. Kalabin, G.V., Ekodinamika tekhnogennykh provintsii severa (Ecodynamics of Northern Technogeneous Provinces), Apatity: KNTs RAN, 2000.
3. Kalabin, G.V., Ekologicheskii atlas, Murmanskaya oblast’ (Environmental Atlas, The Murmansk Region, Moscow: MGU, 1999.
4. Pozdnyakov, V.Ya. Stranitsy istorii kombinata “Severonikel” (Brief History of Severonickel Integrated Works), Moscow: Ruda Metally, 1999.
5. Kalabin, G.V., Evdokimova, G.A., and Gorny, V. I., Assessment of Vegetation Evolution Dynamics in the Territory Disturbed by Severonickel MC Operation under the Decline in the Environment Load, Gorny Zh., 2010, no. 2.
6. Moiseenko, T.I., Gashkina, N.A., Sharov, A.N. et al., Anthropogenic Evolution of the Arctic Ecosystem at the Imandra Lake: Tendencies to Restoration after the Long-Term Contamination Period, Vodnye Resursy, 2009, vol. 36, no. 1.
7. Kalabin, G.V., Methodological Approaches to Assessment of Recultivation of the Disturbed Mining Territories, Gorny Zh., 2009, no. 10.
8. Evdokimova, G.A., Ekologomikrobiologicheskie osnovy okhrany pochv Krainego Severa (Ecologo-Microbiological Fundamentals of Soil Conservation in the Far North), Apatity: KNTs RAN, 1995.
9. Evdokimova, G.A., Kalabin, G.V., and Mozgova, N.P., Heavy Metal Concentration and Soil Toxicity in the Atmospheric Emission Zones near the Severonickel Combine, Pochvovedenie, 2011, no. 2.
10. Novoselov, V.N., Karabash, Stranitsy Istorii (Karabash. Pages of History), Chelyabinsk, Kniga, 2005.
11. Karabash. Karabashskii Gorodskoi Okrug: Kratkaya Encyclodedia (Karabash. Karabash Municipal District: Brief Encyclopaedia), Chelyabinsk: Kamenny poyas, 2006.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|