JMS, Vol. 47, No. 3, 2011
ROCK MECHANICS
PARAMETRIZATION PROCEDURE FOR COAL BED DEGASSING
A. D. Ruban and V. S. Zaburdyaev
A procedural backbone has been formulated for parametrization of coal bed degassing technique. It is found that the preliminary methane drainage criterion is a limit value of methane content in a coal bed to be extracted. The procedure for lower limit of methane content includes a series of calculations, which determine the required degassing efficiency, basic parameters of degassing holes, as well as the parameters of post-degassing methane content and methane emission in a coal bed.
Coal bed, methane content, stoping, methane emission, degassing, procedure, origin data, pattern of degassing holes, degassing efficiency
REFERENCES
1. Ruban, A.D., Artem’ev, V.B., Zaburdyaev, V.S., et al., Problemy obespecheniya vysokoi proizvoditel’nosti ochistnykh zaboev v metanoobil’nykh shakhtakh (Problems of Reaching High Productivity in Stopes in High Methane Underground Mines), Moscow: URAN IPKON RAN, 2009.
2. Ruban, A.D., Artem’ev, V.B., Zaburdyaev, V.S., et al., Podgotovka i razrabotka vysokogazonosnykh ugol’nykh plastov: spravochnoe posobie (Handbook on Preparation and Extraction of High-Gaseous Coal Beds), Ruban, A.D. and Shchadov, M.I., Eds., Moscow: Gornaya Kniga, 2010.
3. Gazonosnost’ ugol’nykh basseinov i mestorozhdenii SSSR (Gas Content of Coal Fields and Deposits in USSR), Moscow: Nedra, 1980, vol. 3.
4. Sergeev, I.V., Zaburdyaev, V.S., Ruban, A.D., et al., Problemy razrabotki ugol’nykh plastov, izvlecheniya i ispol’zovaniya shakhtnogo metana v Pechorskom basseine (Aspects of Coal Mining and the Mine Methane Extraction and Utilization in the Pechora Basin), Moscow: NNTs GP—A. A. Skochinsky’s Institute of Mining, 2002.
5. Ruban, A.D., Zaburdyaev, V.S., Zaburdyaev, G.S., et al., Metan v shakhtakh i rudnikakh Rossii: prognoz, izvlecheniye i ispol’zovaniye (Methane in Mines of Russia: Forecast, Extraction and Utilization), Moscow: IPKON RAN, 2006.
6. Metodicheskiye recomendatsii o poryadke degazatsii ugol’nykh shakht (RD-15–09–2006). Seriya 05. Vypusk 14/Koll.avt. (Underground Coal Mine Degassing Guidelines (RD-05–09–2006). Series 5. Issue 14/Composite Authors), Moscow: OAO “Nauch.-Tekh. Tsentr po Besop. v Promushl.,” 2007.
7. Ruban, A.D., Zaburdyaev, G.S., and Zaburdyaev, V.S., Geotekhnologicheskiye problemy razrabotki opasnykh po gazu i pyli ugol’nykh plastov (Geotechnological Problems of Gas- and Dust-Hazardous Coal Beds), Moscow: Nauka, 2007.
8. Zaburdyaev, V.S., Ruban, A.D., Zaburdyaev, G.S., et al., Metodicheskiye osnovy proyektirovaniya degazatsii na deistvuyushchikh i likvidiruemykh shakhtakh (Procedural Basics on Degassing Planning in Operating and Abandoned Mines), Moscow: NNTs GP—A. A. Skochinsky’s Institute of Mining, 2002.
ABNORMALITY DETECTION IN. A. ROCK MASS DENSITY PROFILE
BASED ON THE TWO-DIMENSION SEISMIC MEASUREMENTS
L. S. Zagorskii, V. L. Shkuratnik, and N. A. Pustovoitova
The article provides the theoretical justification and the estimation, using computer and physical modeling, for the detectability of abnormalities in density of rock masses based on the two-dimension seismic data and using direct and inverse 2D problems solutions for SH-waves.
Seismic method, direct and inverse problems, rock mass structuring, body waves, density profile, two-dimensional measurements
REFERENCES
1. Zagorskii, L.S., Shkuratnik, V.L., and Pustovoitova, N.A., Increase in the Information Content of the Resonance Acoustic Method for Determination of the Rock Mass Properties, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2004, no. 4, p. 35 [J. Min. Sci., vol. 40, no. 4, p. 350].
2. Pustovoitova, N.A. and Shkuratnik, V.L., The Modified Resonance Acoustic Method in the Site Survey during Metropolitan Railway Construction, Gorn. Inform.-Analit. Byull., 2008, no. 6.
3. Kabanikhin, S.I., Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii (Finite-Difference Methods in Calculation of the Hyperbolic Equation Coefficients), Novosibirsk: Nauka, 1988.
4. Zagorskii, L.S., Spektral’nye metody opredeleniya stroeniya gornogo massiva (Spectral Methods of Rock Mass Structure Determination), Acad. Strakhov, V.N., Ed., Moscow: “Graal” Publisher, 2001.
5. Nazarov, L.A., Determination of Properties of Structured Rock Mass by the Acoustic Method, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1999, no. 3, p. 36 [J. Min. Sci., vol. 35, no. 3, p. 240].
6. Gelfand, I.M. and Levitan, B.M., Differential Equation Determination by Its Spectral Function, Izv. AN SSSR, Ser. Mat., 1951, vol. 15, no. 4.
7. Belishev, M.I. and Blagoveshchenskii, A.S., Multidimensional Analogs of the Gelfand – Levitan Type Equations in the Inverse Problem of the Wave Equation, in Uslovno-korrektnye zadachi matematicheskoi fiziki i analiza (Conditionally Well-Posed Problems in Mathematical Physics and Analysis), Novosibirsk: Nauka, 1992.
8. Kabanikhin, S.I., Linear Regularization of Multidimensional Inverse Problems for Hyperbolic Equations, Dokl. AN SSSR, 1989, vol. 309, no. 4.
9. Kabanikhin, S.I. and Bakanov, G.B., Discrete Analog of the Gelfand – Levitan Method in the Two-Dimensional Problem for Hyperbolic Equation, Sib. Mat. Zh., 1999, vol. 40, no. 2.
10. Zagorskii, L.S., Reconstruction of Vertical Seismic Profile by the Spectral Matrix of the Sturm – Liouville Equation, DAN, 1998, vol. 358, no. 5.
11. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction into the Theory of Finite-Difference Schemes), Moscow: Nauka, 1971.
12. Shkuratnik, V.L., Zagorskii, L.S., and Pustovoitova, N.A., Windows Program State Registration Certificate no. 2011610577 (unpublished).
13. Lependin, L.F., Akustika: uchebnoe posobie dlya vuzov (Acoustics: Higher Education Guidance), Moscow: Vyssh. shkola, 1978.
ILL-POSED PROBLEMS IN GEOMECHANICS
V. E. Mirenkov
Any inverse problem requires that its ill-posedness be overcome through regularization or derivation of precise equations. On the basis of singular integral equations, connecting boundary values of stresses and displacements, the author proposes convergence method and its numerical algorithm in terms of a piecewise-homogeneous domain (pillar) where elastic properties, boundary surfaces and the contact conditions are determined under the overdetermined boundary conditions at the available contour of the domain.
Equations, method, boundary, contact, displacements, stress, pillar, rock block, inverse problem, direct problem
REFERENCES
1. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods to Solve Ill-Posed Problems), Moscow: Nauka, 1979.
2. Lavrent’ev, M.M., Nekorrektnye zadachi matematicheskoi fiziki i analiza (Ill-Posed Problems in Mathematical Physics and Analysis), Moscow: Nauka, 1981.
3. Kolmogorov, A.N., Teoriya informatsii i teoriya algoritmov (General Theory of Communication and the Algorithm Theory), Moscow: Nauka, 1987.
4. Koptsov, A.V. and Shifrin, E.I., Identification of a Plane Crack in an Elastic Body by Using Invariant Integrals, Mekh. Tverd. Tela, 2008, no. 3.
5. Mirenkov, V.E. and Shutov, V.A., Matematicheskoe modelirovanie deformirovaniya gornykh porod okolo oslablenii (Mathematical Modeling of Strain in Rocks in the Vicinity of Weakened Zones), Novosibirsk: Nauka, 2009.
6. Krasnovskii, A.A. and Mirenkov, V.E., Identification of Weakenings in a Rock Block, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. 2010, no. 2, p. 26 [J. Min. Sci., 2010, vol. 46, no. 2, p. 113].
7. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems in Mathematical Elasticity Theory), Moscow: Nauka, 1967.
ASSESSMENT OF STRESS STATE IN ROCKS BY DEFORMATION CHARACTERISTIC
OF BOREHOLE ZONE WITH HYDROFRACTURE
P. A. Martynyuk, V. A. Pavlov, and S. V. Serdyukov
The authors propose the method of stress state assessment in permeable rocks. The method is numerically studied as the relationship between cross-section area of borehole length interval with a hydrofracture and the loading pressure on the borehole walls. The test data processing algorithm and the practical application of the method are considered.
Stress state of rocks, hydraulic fracturing method, deformation characteristic, fracture opening
REFERENCES
1. Hubbert, M.K. and Willis, D.G., Mechanism of Hydraulic Fracturing, Trans. AIME, 1957, vol. 210.
2. Haimson, B. C. and Fairhurst, C., Initiation and Extension of Hydraulic Fracture in Rocks, Soc. Petr. Engrs. J, 1967, no. , pp. 310–318.
3. Bredehoeft, J.D., Wolff, R.G., Keys, W.S., and Shuter, E., Hydraulic Fracturing to Determine the Regional In-Situ Stress Field, Piceance Basin, Colorado, Geol. Soc. Am. Bull., 1976, vol. 87, pp. 250–258.
4. Cornet, F.H. and Valette, B., In-Situ Stress Determination from Hydraulic Injection Test Data, J. Geophys. Res., 1984, vol. 89, pp. 11527–11537.
5. Serata, S., Sakuma, S., Kikuchi, S., and Mizuta, Y., Double Fracture Method of In-Situ Stress Measurement in Brittle Rock, Rock Mech. & Rock Eng., 1992, vol. 25, pp. 89–108.
6. Serata, S., Single-Fracture Method and Apparatus for Automatic Determination of Underground Stress State and Material Properties, US Patent 7513167 B1, 2009.
7. Kurlenya, M.V., Zvorygin, L.V., and Serdyukov, S.V., Control of Longitudinal Hydraulic Fracturing of Wells, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1999, no. 5, pp. 3–12 (J. Min. Sci., 1999, vol. 35, no. 5, pp. 445–454).
8. Abou-Sayed, A.S., Brechtel, C.E., and Clifton, R.J., In-Situ Stress Determination by Hydrofracturing: A Fracture Mechanics Approach, J. Geophys. Res., 1978, vol. 8, pp. 2851–2862.
9. Charsley, A.D., Martin, C.D., and McCreath, D.R., Sleeve-Fracturing Limitations for Measuring In-Situ Stress in an Anisotropic Stress Environment, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, pp. 127–136.
10. Ito, T., Sato, A., and Hayashi, K., Laboratory and Field Verification of a New Approach to Stress Measurements Using a Dilatometer Tool, Int. J. Rock Mech. Min. Sci., 2001, vol. 38, pp. 1173—1180.
11. Serdyukov, S.V., Martynyuk, P.A., and Pavlov, V.A., Modeling of Deformation of “Borehole Hydrofracture” System in Problem on Assessment of the Stress State in a Rock Mass, Doklady mezhdunarodnoi konferentsii po matematicheskim metodam v geofizike “MMG-2008”, Novosibirsk, 2008 (Proc. Int. Conf. on Math. Methods in Geophysics “MMG-2008”, http://www.sscc.ru/Conf/mmg2008/papers/SerdyukovSV.doc).
12. Pavlov, V.A., Yankaite, A.V., and Serdyukov, S.V., Development of Hydrofracturing to Assess the Stress State in Permeable Rocks, Gorn. Inform.-Analit. Byull., 2009, no. 12.
13. Doe, T.W. and Boyce, G., Orientation of Hydraulic Fractures in Salt under Hydrostatic and Non-hydrostatic Stresses, Int. J. Rock Mech. Min. Sci., 1989, vol. 26, pp. 605–611.
14. Medlin, W.L. and Masse, L., Laboratory Investigation of Fracture Initiation Pressure and Orientation, Soc. Petr. Engr. J., 1979.
15. Basheev, G.V., Martynyuk, P.A., and Sher, E.N., On Effects of the External Stress Field Direction and Magnitude on the Trajectories of Stellular Fracturing System, Prikl. Mekh. Tekh. Fiz., 1994, no. 5.
16. Savruk, M.P., Dvumernye zadachi uprugosti dlya tel s treshchinami (2D Elastic Problems on Bodies with Fractures), Kiev: Naukova Dumka, 1981.
17. Panasyuk, V.V., Savruk, M.P., and Datsyshin, A.P., Raspredelenie napryazhenii okolo treshchin v plastinakh i obolochkakh (Near-Fracture Stress Distribution in Plates and Shells), Kiev: Naukova Dumka, 1976.
18. Kuligin, E.A., Shnurman, G.A., and Naumenko-Brailovskaya, A.A., Efficiency of the Lateral Log and MLL Equipment, Geofizika, 2006, no. 1.
19. Instruktsiya po primeneniyu karotazhnykh metodov pri inzhenernykh izyskaniyakh dlya stroitel’stva
RNS 46–79 (Instruction for the Application of Log Methods under Engineering Survey RNS 46–79), Moscow: GOSSTROI RSFSR, 1979.
CLUSTER LOCATION PROCEDURE FOR TECHNOGENEOUS SEISMIC
EVENTS IN DEEP MINES
S. V. Tsirel, G. M. Taratinskii, and S. N. Mulev
The review of the current underground seismic monitoring and location methods of seismic events is followed with presentation of a new, cluster location procedure for mining-generated (technogeneous) seismic events, including isolation of areas where waves run to sensor at approximately equal velocities, cyclic calibrating blasting and then cluster location of seismic events, occurred within the isolated areas, by iterative procedure. The offered method is illustrated in terms of an ore massif in the Oktyabrsky Mine, Norilsk ore deposit. The method showed up to be able to appreciably adjust vertical coordinates of seismic events and to determine the associated tectonic structures.
Technogeneous seismicity, hypocenter, cluster location, algorithm, matrix of system of standard equations, calibrating blasting, tectonic structures
REFERENCES
1. Ukazaniya po bezopasnomu vedeniyu gornykh rabot na Talnakhskom i Oktyabr’skom mestorozhdeniyakh, sklonnykh k udaram (Safe Mining Guidelines for the Rockburst-Prone Talnakh and Oktyabrsky Deposits), Norilsk: Norilsk Nickel, 2007.
2. Mulev, S.N. and Belyaeva, L.I., Seismic Control Results in the Komsomolskaya Mine of the Vorkutaugol JSC., Gorn. Inform.-Analit. Byull., 2009, no. 6.
3. Omori, F., Horizontal Pendulum Observations of Earthquakes in Tokyo: Similarity of the Seismic Motions Originating at Neighboring Centers, Earthquake Invest. Comm., Foreign Lang., 1905, vol. 21.
4. Phillips, W.S., House, L.S., and Fehler, M.C., Detailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters, J. Geophys. Res., 1997, vol. 102.
5. Menke, W., Using Waveform Similarity to Constrain Earthquake Locations, Bull. Seismol., Soc. Am.,
1999, vol. 89.
6. Aster, R. and Rowe, C., Automatic Phase Pick Refinement and Similar Event Association in Large Seismic Datasets, in Advances in Seismic Event Location, Dordrecht: Kluwer Academic Publishers, 2000.
7. Rowe, C.A., Aster, R.C., Phillips, W.S., et al., Using Automated, High-Precision Repicking to Improve Delineations of Microseismic Structures at the Soultz Geothermal Reservoir, Pure Appl. Geophys., 2001, vol. 159.
8. Cichowicz, A., Spottiswoode, S.M., Linzer, L.M., et al., Improved Seismic Locations and Location Techniques, Pretoria: University of Pretoria, 2005.
9. Essrich F., Review of Seismicity in Sequential Grid Mining on Elandsrand, Internal Report, Reference No. 012/98, Elandsrand Mine, AngloGold West Wits Operations, 1998.
10. Spottiswoode, S.M. and Milev, A., The Use of Waveform Similarity to Define Planes of Mining-Induced Seismic Events, Tectonophysics, 1998, vol. 289.
11. Mendecki, A.J. and Sciocatti, M., Location of Seismic Events, in Seismic Monitoring in Mines, London: Chapman and Hall, 1997.
12. Dewey, J.W., Seismicity Studies with the Method of Joint Hypocenter Determination, Ph.D. Thesis, Berkeley: University of California, 1971.
13. Aref’ev, S.S., Epitsentralnye seismologicheskie issledovaniya (Epicentral Seismology Research), Moscow: Akademkniga, 2003.
14. Tsirel, S.V., Mulev, S.N., and Petrushina, V.F., Variations and Anisotropy of Seismic Wave Velocities in Deep Stressed Rock Mass, in Gornaya geomekhanika i marksheiderskoe delo (Rock Mechanics and Surveying in Mining), St. Petersburg: VNIMI, 2009.
15. Spence, W., Relative epicenter determination using P- wave arrival-time differences, Bull. Seism., Soc. Am., 1980, vol. 70.
MODELING OF ANISOTROPIC FISSURING PROCESS IN ROCKS
V. I. Miroshnikov, I. Yu. Rasskazov, and B. G. Saksin
A mathematical model is offered to describe thermofluctuation processes of plastic deformation and fissuring in a geomedium. The kinetic coefficients are functions of temperature, mean pressure and stress deviator intensity.
Rock deformation, fissured medium, plasticity
REFERENCES
1. Regel’, V.R., Slutsker, A.I., and Tomashevskii, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of Strength of Solids), Moscow: Nedra, 1974.
2. Nikolaevskii, V.N., Mekhanika poristykh i treshchinovatykh sred (Mechanics of Porous and Jointy Media), Moscow: Nedra, 1984.
3. Kartashov, Yu.M., Matveev, B.V., Mikheev, G.V., and Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Strength and Deformability of Rocks), Moscow: Nedra, 1979.
4. Turchaninov, I.A., Iofis, M.A., and Kasparyan, E.V., Osnovy mekhaniki gornykh porod (Foundations of Rock Mechanics), Leningrad: Nedra, 1989.
5. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Medium Mechanics), Moscow: Nauka, 1973, vol. 2.
6. Gandmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988.
7. Myasnikov, V.P., Motion Equations of Elastoplastic Materials Exposed to High Strains, Vestn. DVO RAN, 1996, no. 4.
8. Miroshnikov, V.I., Expansion of a Strain Tensor in Rocks into Elastic, Viscoplastic and Brittle-Fissuring Components, Gorn. Inform.-Analit. Byull., 2007, no. 9.
9. Stavrogin, A.N. and Protosenya, A.G., Plastichnost’ gornykh porod (Rock Plasticity), Moscow: Nedra, 1979.
10. Stavrogin, A.N. and Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Rock Strength and Deep Mine Workings Stability), Moscow: Nedra, 1985.
11. Erzhanov, Zh.S., Teoriya polzuchesti gornykh porod i ee prilozheniya (Rock Creep Theory and Its Applications), Alma-Ata: Nauka, 1964.
12. Rasskazov, I. Yu. and Miroshnikov, V.I., Forecasting of Rock Pressure Hazards Based on the Three-Stage Model of Rock Fracture, Gorn. Inform.-Analit. Byull., 2007, no. 4.
SOME ENERGY RELATIONS OF ROCK FRACTURE AT DIFFERENT STRUCTURAL LEVELS
C. Z. Qi, M. Y. Wang, Q. H. Qian, and J. J. Chen
There exists a complex structural hierarchy in rock mass. Intimate connection between time and spatial scales exists at each structural level. Such a connection lies in the fact that the time before the rock fracture at each structural level is proportional to the size of geoblock at that level. In the present study, the principles of constant work density, constant energy flux, and equal power are found on a basis of such connection. They can serve as a tool for the analysis of deformation and fracture of rock mass at different levels.
Structural hierarchy, fracture, principle of constant work density, principle of constant energy flux, principle of equal power
REFERENCES
1. Panin, V.E. (Ed.), Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Cambridge: Cambridge Intersci. Pub., 1998.
2. Sadovsky, M.A., Volkhovitinov, L.G., and Pisarenko, V.F., Deformation of Geophysical Medium and Seismic Process, Moscow: Nauka, 1987.
3. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1999, no. 3, p. 12 [J. Min. Sci., 1999, vol. 35, no. 3, p. 231].
4. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part II, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2000, no. 4, p. 3 [J. Min. Sci., 2000, vol. 36, no. 4, p. 305].
5. Nikolaevsky, V.N., Geomechanics and Fluid Dynamics, Moscow, Nedra, 1996.
6. Kuksenko, V.S. et al., Physical and Methodological Fundamental of Forecasting of Rock-Bursts,” J. Min. Sci., 1987, no. 1.
7. Kostjuchenko, V.N., Kocharyan, G.G., and Pavlov, D.V., Deformation Characteristics of Layers between Blocks at Different Scale Levels, Phys. Mesomech., 2002, vol. 5, no. 5.
8. Kocharyan, G.G. and Kuljukin, A.M., Study of Collapse of Underground Opening in Rock Mass with Block Structure under Dynamic Loading. Part II, J. Russ. Min. Sci., 1994, no. 5.
9. Qi Chengzhi, Wang Mingyang, Qian Qihu, and Chen Jianjie, Structural Hierarchy and Mechanical Properties of Rock Mass. Part I: Structural Hierarchy and Viscosity of Rock Mass, Phys. Mesomech., 2006, vol. 9, no. 6.
10. Qi Chengzhi Wang Mingyang, Qian Qihu, and Chen Jianjie Structural Hierarchy and Mechanical Properties of Rock Mass. Part II: Structural Hierarchy, Size Effect and Strength of Rock Mass, Phys. Mesomech., 2006, vol. 9, no. 6.
11. Regel, V.R., Slutsker, A.E., and Tomashevsky, E.E., Kinetic Nature of Strength of Solids, Moscow: Nauka, 1974.
12. Qi Chengzhi, Dynamic deformation and fracture of geomedium, in Theses of Doctor of Science, Moscow: Lomonosov Moscow State University, 2006.
11. Logachev, N.A. (Ed.), Formation of Faults in Lithosphere, Zone of Tension, Novosibirsk: Nauka, 1992.
12. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., On Ratio of Linear Sizes of Blocks to Openings of Cracks in Structural Hierarchy of Rock Mass, J. Min. Sci., 1993, nî. 2.
MINERAL MINING TECHNOLOGY
NEW APPROACHES TO DESIGNING RESOURCE-REPRODUCING TECHNOLOGIES
FOR COMPREHENSIVE EXTRACTION OF ORES
K. N. Trubetskoy, D. R. Kaplunov, M. V. Ryl’nikova, and D. N. Radchenko
With basics of the resource reproduction and comprehensive extraction of ores have been described, the authors offer mining techniques, based on standard engineering solutions, to convert low quality ores to a quality product in any geological and mining conditions. It is found to be efficient to reproduce low grade georesources with mixed physico-technical and physicochemical technologies. The implementation of the resource-reproducing techniques requires that the baseline design includes the determined conditions for low quality ore re-excavation and that the accepted engineering solutions are realized at all stages of the comprehensive exploitation of a mineral deposit.
Resource-reproducing geotechnology, ore deposit, comprehensive exploitation, mining technique, low quality ore, replenishment of mineral reserves
REFERENCES
1. Trubetskoy, K.N., Razvitie novykh napravlenii kompleksnogo ispol’zovaniya nedr (New Courses to the Comprehensive Exploitation of the Earth’s Interiors), Moscow: IPKON AN SSSR, 1990.
2. Gornye nauki. Osvoenie i sokhranenie nedr zemli (Mining Sciences. Development and Preservation of the Mineral Wealth), Trubetskoy, K.N., Ed., Moscow: Akad. Gorn. Nauk, 1997.
3. Khalezov, B.D., Vatomin, N.A., Nezhivykh, V.A., et al., Heap and Underground Leaching: Historical Background and the Foreign Experience Review, Gorn. Inform.-Analit. Byull., 2002, no. 4.
4. Kaplunov, D.R., Kalmykov, V.N., and Ryl’nikova, M.V., Kombinirovannaya geotekhnologiya (Mixed Geotechnology), Moscow: Ruda Metally Izd., 2003.
5. Ryl’nikova, M.V., Lapin, V.A., and Gorbatova, E.A, Underground Extraction of Low Quality Ores with the In Situ Pre-Enrichment, Problemy i perspektivy razvitiya. Trudy mezhdynarodnoi konferentsii. T. II: Mashinostroenie, Geotekhnologiya (International Conference Proceedings “Mining Sciences: Problems and Challenges), Novosibirsk: IGD SO RAN, 2006, vol. 2.
6. Trubetskoy, K.N., Chanturia, V.A., Kaplunov, D.R., and Ryl’nikova, M.V., Kompleksnoe osvoenie mestorozhdenii i glubokaya pererabotka mineral’nogo syr’ya (Comprehensive Extraction and High-Level Processing of Minerals), Moscow: Nauka, 2010.
EXTRACTION OF GOLD-BEARING ORE FROM UNDER THE OPEN PIT
BOTTOM AT THE MAKMAL DEPOSIT BY ROOM-AND-PILLAR METHOD
WITH BACKFILL MADE OF PRODUCTION WASTE
A. P. Tapsiev, A. M. Freidin, P. A. Filippov, A. A. Neverov, S. A. Neverov, Yu. V. Artemenko, V. A. Uskov, and Z. G. Ufatova
The article describes the experience of backfilling mined-out spaces in the north and south ore lentils of the Southern orebody of the Makmal deposit, Kyrgyz Republic, through gaps in the open pit bottom by using noncommercial dump material. The theoretical and technological aspects of safe underground extraction of safety pillar are discussed.
Geotechnology, dry backfill, mining production formations (technogeneous formations), room-and-pillar mining, transportation, stability, unloading complex, operation safety
REFERENCES
1. Freidin, A.M., Neverov, A.A., and Neverov, S.A., Geomechanical Estimate of Mining Conditions at the Makmal Gold Deposit, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2009, no. 5, pp. 75–85 (J. Min. Sci., 2009, vol. 45, no. 5, pp. 475–484).
2. Edinye pravila bezopasnosti pri razrabotke rudnykh, nerudnykh i rossypnykh mestorozhdenii poleznykh iskopaemykh podzemnym sposobom (Unified Safety Regulations for Underground Metallic, Nonmetallic and Placer Mineral Mining), Bishkek: Sham, 2000.
3. Edinye pravila bezopasnosti pri vzryvnykh rabotakh (Unified Safety Blasting Standards), Bishkek:
Sham, 2000.
4. Yalymov, N.G., Pogashenie pustot pri podzemnoi razrabotke rud (Backfill on Underground Ore Mining), Frunze: Ilim, 1979.
5. Freidin, A.M., Shalaurov, V.A., et al., Povyshenie effektivnosti podzemnoi razrabotki rudnykh mestorozhdenii Sibiri i Dalnego Vostoka (Improvement of Underground Ore Mining Efficiency in Siberia and the Far East), Novosibirsk: Nauka, 1992.
6. Freidin, A.M., Neverov, A.A., and Neverov, S.A., Structural Dilution of Ore in Mining-with-Caving Systems, Gorny Zh., 2009, no. 10.
7. Oparin, V.N., Tapsiev, A.P., Bogdanov, M.N., Badtiev, B.P., Kulikov, F.M., and Uskov, V.A., Sovremennoe sostoyanie, problemy i strategiya razvitiya gornogo proizvodstva na rudnikakh Noril’ska (Norilsk Underground Mining Practice: State-of-the-Art, Problems and Development Strategy), Novosibirsk: SO RAN, 2008.
8. Filippov, P.A., Re-Treatment of Dumped Products at Iron-Ore Deposits in Siberia as the Implementation of the Ecology Philosophy and Improved Efficiency of Mining Industry in the Region, Innovat., 2009, no. 3.
9. Annushenkov, A.N., Freidin, A.M., and Shalaurov, V.A., Preparation of Molten Solidifying Fill from Production Wastes, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1998, no. 1, pp. 105–110 (J. Min. Sci., 1998, vol. 34, no. 1, pp. 86–90).
10. Filippov, P.A., The Potential of Technogenic Formations in Mines of the West Siberia, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2008, no. 4, pp. 71–77 (J. Min. Sci., 2008, vol. 44, no. 4, pp. 386–390).
RADON MAPPING WITH THE SUPPORT OF GEOPHYSICAL METHODS
M. Wysocka and A. Kotyrba
The goals of presented studies were to find out whether or not radon risk can be correlated with mining-induced transformation of subsurface layers of a rock mass, to check whether results of chosen geophysical methods can support radon risk mapping. Investigations were conducted in Upper Silesian Region in Poland. The results of previous studies have shown that radon levels depend on geological structure and on the mining- induced transformations taking place in a rock mass, influencing radon migration ability. Geophysical methods such as electrical resistivity profiling (PE), electrical resistivity sounding (VES) and gravimetric survey allowed to analyze geological conditions to a depth up to 50 m. On the basis of the results of mentioned above investigations sites which are likely or not to be a radon-prone areas were distinguished. Investigations such as measurements of radon in soil gas its exhalation and concentrations in buildings were curried out.
Radon, radon mapping, geophysical methods, subsurface layers
REFERENCES
1. Wysocka, M. Zaleznosc stezen radonu od warunkow geologicznych i gorniczych w obszarze Gornoslaskiego Zaglebia Weglowego, Research Reports of Central Mining Institute, Katowice, 2002, vol. 3.
2. Pawlowska, J. and Szuwarzynski, M., Procesy sedymentacyjne i diagenetyczne w skalach zawierajacych zloza cynku i olowiu w trzebionce, in Research on the Genesis of Zinc-Lead Deposits of Upper Silesia, Poland, Warszawa: Polish Geological Survey Papers, 1979, vol. XCV.
3. Sass-Gustkiewicz, M., Gornoslaskie zloza rud Zn-Pb w swietle migracji roztworow mineralizujacych, in Scientific Bulletins of Academy of Mining and Metallurgy, Krakow Geology, 1985, vol. 31.
4. Appleton, J.D., Influence of the Type and Thickness of Superficial Deposits on Geological Radon Potential in England and Wales, in Radon Investigation in the Czech Republic and The Seventh International Workshop on the Geological Aspects of Radon Mapping, Barnet, I., Neznal, M., and Pacherova, P. (Eds.), Prague Czech Geol.Survey & RADON Corp., 2004.
5. Wysocka, M. and Chalupnik, S., Correlation of Radon Concentration Level with Mining and Geological Conditions in Upper Silesia Region, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2003, no. 2, pp. 103 108 (J. Min. Sci., 2003, vol. 39, no. 2, pp. 199 206).
6. Kemski, K, and Klingel, R., Influence of Underground Mining on the Geogenic Radon Potential, in Proceedings of Workshop on Radon in the Living Environment, Athens, Greece, 1999.
7. Wysocka, M., Kotyrba, A., Chalupnik, S., and Skowronek, J., Geophysical Methods in Radon Risk Studies, J. Environ. Radioactivity, 2005, vol. 82.
8. Kotyrba, A., Michalak, J., Kortas, L., and Braszczak, A., Wyniki badan geofizycznych podloza w wytypowanych rejonach Gornoslaskiego Zaglebia Weglowego, in PTNoZ, Sosnowiec, 2001.
9. Kotyrba, A. (red.), Ocena przydatnosci terenow do zabudowy w wyznaczonych rejonach Szopienic. Urzad Miasta Katowice, 2004.
MIXED INTEGER LINEAR PROGRAMMING FORMULATIONS FOR OPEN PIT PRODUCTION SCHEDULING
H. Askari-Nasab, Y. Pourrahimian, E. Ben-Awuah, and S. Kalantari
One of the main obstacles in using mixed integer linear programming (MILP) formulations for large-scale open pit production scheduling is the size of the problem. The objective of this work is to develop, implement, and verify deterministic MILP formulations for long-term large-scale open pit production scheduling problem. The objective of the model is to maximize the net present value, while meeting grade blending, mining and processing capacities, and the precedence of block extraction constraints. We present four MILP formulations; the first two models are modifications of available models; we also propose, test and validate two new MILP formulations. To reduce the number of binary integer variables in the formulation, we aggregate blocks into larger units referred to as mining-cuts. We compare the performances of the proposed models based on net present value generated, practical mining production constraints, size of the mathematical programming formulations, the number of integer variables required in formulation, and the computational time required for convergence. An iron ore mine case study is represented to illustrate the practicality of the models as well.
Mixed integer programming, large scale optimization, production scheduling, blending, and aggregation
REFERENCES
1. Holmstrom, K., TOMLAB /CPLEX — v11.2, Tomlab Optimization., Pullman, WA, USA, 1989–2009.
2. Ramazan, S. and Dimitrakopoulos, R, Traditional and New MIP Models for Production Scheduling with In-Situ Grade Variability,” Int. J. Surface Mining, Reclamation & Environment, 2004, vol. 18, no. 2.
3. Caccetta, L. and Hill, S.P., An Application of Branch and Cut to Open Pit mine Scheduling, J. Global Optimization, 2003, vol. 27, November.
4. Gershon, M., Heuristic Approaches for Mine Planning and Production Scheduling, Geotechnical and Geological Engineering, 1987, vol. 5, no. 1. 5, No. 1.
5. Runge Limited, XPAC Autoscheduler, Runge Limited, 1996–2009.
6. I. Gemcom Software International, Whittle strategic mine planning software, Gemcom Software International, Vancouver, B.C., 1998–2008.
7. Datamine Corporate Limited, NPV Scheduler, Datamine Corporate Limited, Beckenham, United Kingdom, 2008.
8. Lerchs, H. and Grossmann, I.F., Optimum Design of Open-Pit Mines, in The Canadian Mining and Metallurgical Bulletin, Transactions, LXVIII, 1965.
9. Askari-Nasab, H., Frimpong, S., and Awuah-Offei, K., Intelligent Optimal Production Scheduling Estimator, in Proceedings of the 32nd Application of Computers and Operation Research in the Mineral Industry, Tucson, Arizona, USA, 2005.
10. Askari-Nasab, H., Intelligent 3D Interactive Open Pit Mine Planning and Optimization, Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, pp. 167, 2006.
11. Askari-Nasab, H. and Awuah-Offei, K., Open Pit Optimisation Using Discounted Economic Block Values, Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 2009, vol. 118, no. 1.
12. Askari-Nasab, H., Frimpong, S., and Szymanksi, J., Investigating the Continuous Time Open Pit Dynamics, The Journal of the South African Institute of Mining and Metallurgy, 2008, vol. 108, no. 2.
13. Denby, B. and Schofield, D., Open-Pit Design and Scheduling by Use of Genetic Algorithms, Transactions of the IMM Section A, 1994, vol. 103, no. January – April.
14. Denby, B., Schofield, D., and Hunter, G., Genetic Algorithms for Open Pit Scheduling Extension into 3-Dimensions, Proc. 5th International Symposium on Mine Planning and Equipment Selection, Sao Paulo, Brazil, 1996.
15. Tolwinski, B. and Underwood, R., A Scheduling Algorithm for Open Pit Mines, IMA Journal of Mathematics Applied in Business & Industry, 1996, vol. 7.
16. Askari-Nasab, H., Frimpong, S., and Szymanksi, J., Modeling Open Pit Dynamics Using Discrete Simulation, International Journal of Mining, Reclamation and Environment, 2007, vol. 21, no. 1.
17. Askari-Nasab, H. and Szymanski, J., Open Pit Production Scheduling Using Reinforcement Learning, Proc. 33rd International Symposium on Computer Application in the Minerals Industry (APCOM), Santiago, Chile, 2007.
18. Sutton, R.S. and Barto, A.G., Reinforcement Learning, an Introduction, Cambridge, Massachusetts: The MIT Press, 1998.
19. Johnson, T.B., Optimum Open-Pit Mine Production Scheduling, Proc. 8th International Symposium on Computers and Operations Research, Salt Lake City, Utah, USA, 1969.
20. Gershon, M.E., Mine Scheduling Optimization with Mixed Integer Programming, Mining Engineering, 1983, vol. 35, no. 4.
21. Boland, N., Dumitrescu, I., Froyland, G., and Gleixner, A.M., LP-Based Disaggregation Approaches to Solving the Open Pit Mining Production Scheduling Problem with Block Processing Selectivity, Computers and Operations Research, 2009, vol. 36, no. 4.
22. Dagdelen, K. and Kawahata, K., Opportunities in Multi-Mine Planning through Large Scale Mixed Integer Linear Programming Optimization, Proc. 33rd International Symposium on Computer Application in the Minerals Industry (APCOM), Santiago, Chile, 2007.
23. Ramazan, S., Dagdelen, K., and Johnson, T.B., Fundamental tree algorithm in optimising production scheduling for open pit mine design, Mining Technology : IMM Transactions section A, 2005, vol. 114, no. 1.
24. Ramazan, S., Large-Scale Production Scheduling with the Fundamental Tree Algorithm Model, Case Study and Comparisons, Proc. Orebody Modelling and Strategic Mine Planning Symposium, Perth, Western Australia, 2007.
25. Horst, R. and Hoang, T., Global Optimization: Deterministic Approaches, Berlin New York: Springer, 1996.
26. IBM ILOG, ILOG CPLEX, ILOG, Inc., Sunnyvale, CA, USA, 2009.
27. Minemax Pty Ltd, MineMax Scheduler, Minemax Pty Ltd, West Perth, Western Australia, 1998 — 2009.
28. Bixby, R.E., ILOG CPLEX, ILOG, Inc., Sunnyvale, CA, USA, 1987 — 2009.
29. Stone, P., Froyland, G., Menabde, M., Law, B., Pasyar, R., and Monkhouse, P. H. L., Blasor—Blended Iron Ore Mine Planning Optimization at Yandi, Western Australia, Proc. Orebody Modelling and Strategic Mine Planning Symposium, Perth, Western Australia, 2007.
30. Whittle, G., Global Asset Optimization, Proc. Orebody Modelling and Strategic Mine Planning Symposium, Perth, Western Australia, 2007.
31. Krige, D.G., A Statistical Approach to Some Basic Mine Valuation and Allied Problems at the Witwatersrand, University of Witwatersrand, South Africa, 1951.
32. Isaaks, E.H., The Application of Monte Carlo Methods to the Analysis of Spatially Correlated Data, Extended Abstract of Ph.D. Dissertation, Stanford University, Stanford, CA, USA, 1990, p. 226.
33. Zhao, Y. and Kim, Y.C., A New Optimum Pit Limit Design Algorithm, Proc. 23rd APCOM Symposium, University of Arizona, 1992.
34. Johnson, T.B. and Barnes, R.J., Application of the Maximal Flow Algorithm to Ultimate Pit Design, in Engineering Design: Better Results through Operations Research Methods, Levary, R. R., Ed., North-Holland, New York, 1988, vol. 8.
35. Yegulalp, T.M. and Arias, J.A., A Fast Algorithm to Solve the Ultimate Pit Limit Problem, Proc. 23rd APCOM Symposium, Littleton, Colorado, 1992.
36. Askari-Nasab, H. and Awuah-Offei, K., Open Pit Optimization Using Discounted Economic Block Value, Transactions of the Institution of Mining and Metallurgy. Section A, Mining Industry, 2009, vol. 118, no. 1.
37. Kaufman, L. and Rousseeuw, P.J., Finding Groups in Data: An Introduction to Cluster Analysis, New York: Wiley, 1990.
38. ILOG Inc, ILOG CPLEX 11.0 User’s Manual September, ILOG. S. A. and ILOG, Inc., 2007.
39. MathWorks Inc., MATLAB 7.4 (R2007a) Software, MathWorks, Inc., 2007.
40. Wolsey, L.A., Integer Programming, New York: J. Wiley, 1998.
SCIENCE OF MINING MACHINES
METHOD TO REDUCE. A. PILED ROCK RESISTANCE TO PENETRATION
OF. A. LOADING-HAULING MACHINE BUCKET
V. N. Labutin and A. R. Mattis
The authors discuss possible improvement of the loading-hauling machine performance by reducing the resistance of a rock in a pile to the machine bucket penetration through the technique of pulse excitation of impact and vibration on the bucket front and back walls. A version of the offered engineering solution is analyzed in the article.
Loading-hauling machine, bucket, rock, impact device, vibrator
REFERENCES
1. Skornyakov, Yu.G., Podzemnaya dobycha rud kompleksami samokhodnykh mashin (Mobile Mining Machinery), Moscow: Nedra, 1986.
2. Gurkov, K.S., Kal’nitskii, Ya.B., Kostylev, A.D., et al., Shakhtnye vibratsionnye pogruzochnye mashiny i pitateli (Mine Vibration Loaders and Feeders), Novosibirsk: Nauka, 1969.
3. Tikhonov, N.V. and Rysev, G.S., Shakhtnye pogruzochno-transportnye mashiny (Mine Loading-Hauling Machines), Moscow: Nedra, 1976.
4. Shishaev, S.V., Fedulov, A.I., and Mattis, A.R., Raschet i sozdanie kovsha aktivnogo deistviya (Design and Development of a Dynamic Bucket), Novosibirsk: IGD SO AN SSSR, 1989.
5. Mattis, A.R., Kuznetsov, V.I., Vasil’ev, E.I., et al., Ekskavatory s kovshom aktivnogo deistviya (Shovels with Dynamic Buckets), Novosibirsk: Sib. Izd. Firma RAN, 1996.
6. Labutin, V.N., Mattis, A.R., and Stazhevskii, S.B., Loading-Hauling Machine, RF Patent 2298103, Byull. Izobret., 2007, no. 12.
7. Dubynin, N.G. and Khramtsov, V.F., Upravlenie vypuskom rudy pri podzemnoi razrabotke (Underground Ore Drawing-Off Control), Novosibirsk: IGD SO AN SSSR, 1970.
8. Stazhevskii, S.B., Mechanical State of a Free Conical Bank under Pressure, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1993, no. 6 (J. Min. Sci., 1973, vol. 9, no. 6, pp. 680–682).
METHOD OF DRILLING OF COAL PILLAR
V. Hudecek and M. Stonis
One of outputs of the research project of the Czech Mining Office “Protection of Employees against Consequences of Rock and Gas Outbursts” was the application of yet not used methods of coal mining in the conditions of the Czech Republic. The aim of these methods is an increase in the recovery of coal reserves blocked in residual pillars left. For the conditions of Paskov Mine (Ostrava-Karvina Mines company) [1], the method of mining by means of long large diameter boreholes was chosen. The contribution provides information on the application of this mining method abroad and in the Czech Republic in the Paskov Mine.
Mining method, large diameter boreholes, mining system, drilling of coal
REFERENCES
1. Tezebni soustava se spiralovym vrtakembn. Statni Makajevsky vedecko-vyzkumny ustav pro bezpecnost prace v dulnim prumyslu, Zkusei stredisko (ZS) MakNII, akreditacni atestace.zari 2003.
2. Hudecek, V., Analysis of Safety Precautions for Coal and Gas Outburst-Hazardous Strata, J. Min. Sci., 2008, vol. 44, no. 5.
3. Slivka, V., Welser, P. a kol. Obecna geologicka charakteristika casti horskeho masivu ohrozeneho prutrzemi hornin a plynu s konkretizaci teto charakteristiky na podminky OKR. Dilci zprava za 3. ctvrtleti 2007 projektu VaV CBU.
4. Hudecek, V., Stonis, M. a kol. Analyza moznosti vyuziti netradicnich metod dobyvani uhli v oblastech s nebezpecim prutrzi hornin a plynu. Dilci zprava za 3. ctvrtleti 2008 projektu VaV CBU.
MINERAL DRESSING
KINETIC REGULATIONS IN FLOCCULATION OF FINE-DISPERSED
WASHED PRODUCTS: TWO MECHANISMS FOR MICRON AND
SUBMICRON PARTICLES
G. Yu. Gol’berg and V. E. Vigdergauz
The article discusses experimental results on flocculation of coal flotation waste. In analyzing kinetics of sedimentation and structure of flocs, it has been found that flocculation of particles larger than 1 μm follows the orthokinetic mechanism within fractions of second, while flocculation of submicron particles runs the perikinetic mechanism in 400 – 600 s. The structural features of the mechanism-related flocs are revealed.
Flocculation, coal flotation waste, sedimentation, kinetics, flocculation mechanism, structure of flocs
REFERENCES
1. Myagchenkov, V.A., Baran, A.A., Bekturov, E.A., and Bulidorova, G.V., Poliakrilamidnye flokulyanty (Polyacrylimide Flocculation Agents), Kazan’: KGTU, 1998.
2. Jarvis, P., Jefferson, B., and Parsons, S.A., Measuring Floc Structural Characteristics, Reviews in Environmental Science and Biotechnology, 2005, vol. 4, nos. 1, 2.
3. Liao, J. Y. H., Selomulya, C., Bushell, G., Bickert, G., and Amal, R., On Different Approaches to Estimate the Mass Fractal Dimension of Coal Aggregates, Particle and Particle Systems Characterization, 2005, vol. 22, nos. 1, 2.
4. Spicer, P.T, Keller, W., and Pratsinis, S.E., The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation, Journal of Colloid and Interface Science, 1996, vol. 184.
5. Yusa, M., Mechanisms of Pelleting Flocculation, International Journal of Mineral Processing,
1977, no. 4.
6. Kleiman, R.Ya., Skripchenko, G.B., Shpirt, M.Ya., and. Itkin, Yu.V, Quantity Phase Analysis of Coal Extraction and Processing Waste, Khim. Tverd. Topl., 1989, no. 3.
7. Gregory, J., Effect of Polymers on Colloid Stability, in The Scientific Basis of Flocculation, Ives, K.J, Ed., Nordhoff, 1978.
8. Gregory, J., Flocculation by Polymers and Polyelectrolytes, in Solid/Liquid Dispersions, London: Academic Press Inc., 1987.
9. Elimelich, M., Gregory, J., Jia, X., and Williams, R.A., Elimelich Particle Deposition and Aggregation: Measurement, Modeling and Simulation, Oxford: Butterworth-Heinemann, 1995.
10. Panfilov, P. F., Increased Efficiency of Flocculation Conditioning of Coal Flotation Waste toward Their Intensified Dewatering on Belt Filter Presses, Extended Abstract of Cand. Sci. Dissertation, Lyubertsy, 2005.
11. Linev, B.I., Gol’berg, G.Yu., and Panfilov, P.F., On the Effective Static Mixing of Suspensions with Flocculation Agents, Gorn. Inform.-Analit. Byull., 2005, no. 429.
12. Gregory, J., Polymer Adsorption and Flocculation in Sheared Suspensions, Colloids and Surfaces,
1988, vol. 31.
13. Rulev, N.N., Dontsova, T.A., and Nebesnova, T.V., Pair Bonding Energy of Particles and the Size of Flocs Formed in Turbulent Flow, Khim. Tekhnol. Vody, 2005, vol. 27, no. 1.
14. www.xumuk.ru.
ELECTROCHEMICAL KINETICS OF GALENA – SULPHYDRYL
COLLECTOR INTERACTION AS THE BASIS TO DEVELOP ION MODELS
OF SORPTION-LAYER FORMATION ON THE SURFACE OF SULPHIDE MINERALS
B. E. Goryachev, A. A. Nikolaev, and L. N. Lyakisheva
Electrochemical analysis of a galena electrode in alkaline xanthate-bearing solutions has revealed the order of reaction and yielded the reaction rate equation. The IR-spectroscopic analysis has shown that lead xanthate and galena oxidation products, namely, lead sulphate, lead thiosulphate and lead hydroxide, formed on the surface of the polarizable galena electrode in the xanthate-bearing solutions with varied concentrations and pH values.
Galena electrode, xanthate-ions, alkaline solutions, cathodic and anodic polarization, kinetic characteristics, Tafel sites, IR-spectroscopy
REFERENCES
1. Avdokhin, V.M. and Abramov, A.A., Okislenie sul’fidnykh mineralov v protsesse obogashcheniya (Sulphide Mineral Oxidation in Mineral Dressing), Moscow: Nedra, 1989.
2. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii (Electrochemistry of Sulphides. Flotation Theory and Practice), Moscow: Ruda & Metally, 2008.
3. Abramov, A.A., Teoreticheskie osnovy optimizatsii selektivnoi flotatsii sul’fidnykh rud (Theoretical Fundamentals of Selective Flotation of Sulphide Ores), Moscow: Nedra, 1978.
4. Strizhko, V.S., Goryachev, B.E., and Ulasyuk, S.M., Basic Kinetic Parameters of Electrochemical Oxidation of Galena in Alkaline Solutions, Izv. Vuzov. Tsvet. Met., 1986, no. 6.
5. Litle, L., Infrakrasnye spektry adsorbirovannykh molekul (Infrared Spectra of Adsorbed Molecules), Moscow: Mir, 1969.
6. Nakomoto, K., Infrared and Raman Spectra of Inorganic and Co-Ordination Compounds, New York, Wiley, 1991.
7. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infra-Red Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.
8. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemistry of Galena Oxidation as the Basis for Optimization of Agent Modes in Flotation of Polymetallic Ores, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2010, no. 6, pp. 106–115 (J. Min. Sci., 2010, vol. 46, no. 6, pp. 681–689).
9. Lundan, A., Tarvainen, M., and Mattia, O., Experiments in Applying Computers for On-Stream X-Ray Analyzing and Development of Automation in Mineral Flotation Process, APCOM 77, in 15th Int. Symp. Appl. Comput. and Oper. Pes. Miner. Ind., Brisbane, Parkville, 1977.
10. Pritzker, M.D. and Yoon, R.H., Thermodynamic Calculation on Sulfide Flotation System. 2. Comparison with Electrochemical Experiments on Galena – Ethylxanthate System, Intern. J. Miner. Process, 1987, vol. 20, no. 3/4.
11. Vigdergauz, V.E. and Kondrat’ev, S.A., Role of Dixantogen in Froth Flotation, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2009, no. 4, pp. 104–110 (J. Min. Sci., 2009, vol. 45, no. 4, pp. 398–403).
12. Kondrat’ev, S.A., Evaluation of Flotation Activity of Collectors, Obog. Rud, 2010, no. 4.
13. Abramov, A.A., Tekhnologiya obogashcheniya rud tsvetnykh metallov (Beneficiation Technology for Nonferrous Ores), Moscow: Nedra, 1983.
14. Bogdanov, O.S., Maksimov, I.I., and Podnek, A.K., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1990.
COMPUTER-AIDED MODELING OF DISULFIDES
OF THIOPHOSPHORIC ACIDS AND SULPHYDRYL COLLECTORS
P. M. Solozhenkin and O. I. Solozhenkin
TThe authors have built ball and stick and Stuart-type molecular models of some disulfides of thiphosphoric acids and sulphydryl collectors, determined basic parameters of molecules, such as dipole moments and limit electron densities NMR1 H and NMR13C, and analyzed flotation properties of disulfides of sulphydryl collectors.
Molecular models, ball and stick models, Stuart-type models, disulfides of sulphydryl collectors, mineral flotation
REFERENCES
1. Roshchupkin, S.I., 3D Modeling of Molecular Compounds, Khim.: Metod. Prepod., 2004, no. 1.
2. Solozhenkin, P. and Solozhenkin, O., Computer Chemistry Flotation of Reagents: Updating Sulphydrylic Collectors Carboxyl by Acids and Tetraphenylantimony(V), in Proc. 14th Conference on Environment and Mineral Processing, VSB-TU OSTRAVA, Czech Republic, 2010.
3. Girevaya, Kh.Ya., Improvement in Flotation Efficiency of Gas Coals Based on Quant-Chemical Validation of Reagent, Extended Abstract of Cand. Sci. Dissertation, Magnitogorsk, 2006.
4. Medyanik, N.L., Girevaya, Kh.Ya., and Varlamova, I.A., Quant-Chemical Approach to Choosing Collectors for Flotation of Low Rank Coals, Koks Khim., 2006, no. 1.
5. Kakovskii, I.O., Sulphydryl Agents. Flotation Modifiers, in Fiziko-khimicheskie osnovy flotatsii (Physicochemical Basics of the Flotation Theory), Laskorin, B.N. and Plaksina, L.D., Eds., Moscow: Nauka, 1983.
6. Solozhenkin, P.M., Sokolov, E.S., Grishina, O.N., and Pulatov, G.Yu, USSR Author’s Certificate
No. 402391. Reagent-Collector, Byull. Izobret., 1973, no. 42.
7. Solozhenkin, P.M., USSR Author’s Certificate No. 368781. Flotation Agent-Collector, Byull. Izobret., 1973, no. 17.
Âåðñèÿ äëÿ ïå÷àòè (îòêðîåòñÿ â íîâîì îêíå)
|