Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2011 год » ФТПРПИ №2, 2011 (СПЕЦИАЛЬНЫЙ…

ФТПРПИ №2, 2011 (СПЕЦИАЛЬНЫЙ ВЫПУСК). Аннотации.

ПРЕДИСЛОВИЕ ГЛАВНОГО РЕДАКТОРА

Уважаемые читатели академического журнала «Физико-технические проблемы разработки полезных ископаемых» (Journal of Mining Science)!

Начиная с 2011 года редколлегия журнала намерена регулярно формировать «Специальные выпуски» ФТПРПИ (JOMS), посвященные наиболее важным достижениям в мировой горной науке и практике, которые ежегодно представляются и обсуждаются на профильных нашему журналу международных научных форумах России и за рубежом.

Знакомство читателя «из первых рук» с современными достижениями деятелей мировой горной науки в области решения актуальных проблем освоения полезных ископаемых на нашей планете позволит, несомненно, более уверенно ориентироваться в «океане» информации, касающейся стратегии развития горнодобывающих стран мира с учетом их специфических особенностей, а также в плане решения конкретных практических задач горного производства.

Полезные ископаемые, представляя собой стратегический ресурс в развитии промышленности практически любого государства, в современном мире отрабатываются в масштабах, трудно вообразимых еще век назад.

Укрепляются транснациональные связи по встречным потокам полезных ископаемых и их конечным продуктам переработки. В этих условиях невозможно игнорировать конъюнктуру мирового рынка.

Очевидна тенденция перехода ведения горных работ на большие глубины, связанная не только с повышением капитальных вложений в обеспечение всего технологического процесса добычи и переработки полезных ископаемых, но и с возрастающим риском проявления горного давления в катастрофических формах.

Мировая горная наука уже сейчас должна озаботиться созданием фундаментального задела для разработки и создания техники и геотехнологий будущего — в условиях природных ограничений и нарастающего риска техногенных катастроф, которые во многом еще предстоит познать естествоиспытателям.

Эта, интеллектуальная в своей основе, составляющая технологического процесса требует к себе особого внимания. «Подземный космос» ничуть не проще устроен, чем межпланетное пространство. Явно недостаточные финансовые и организационные «вливания» в это жизненно важное направление развития мировой горной науки — залог возрастания природного фактора риска, но уже в особо крупных размерах (!).

Идею формирования «Специальных выпусков» журнала ФТПРПИ (JOMS) в отмеченных выше качествах — как своеобразных аналитических обзоров развития современной горной науки в мире — я сформулировал профессору Руссо Димитрокопулусу во время моего участия с коллегами из ИГД СО РАН в работе Международного симпозиума «Orebody Modelling and strategic Mine Planning: Old and new dimensions in changing world» (16 — 18 March 2009, Perth Western Australia).

Я искренне рад, что нашел заинтересованный и конструктивный отклик со стороны проф. Р. Димитрокопулуса — мирового лидера в области экономического моделирования технологических процессов горного производства в условиях ограничений и риска.

Заключительная статья этого номера журнала не относится к тем докладам, что были сделаны на этом симпозиуме учеными из ИГД СО РАН (В. Опарин, А. Тапсиев, С. и А. Неверовы, П. Филиппов, А. Фрейдин) — они были опубликованы ранее в ФТПРПИ (JOMS). Полагаю, что эта статья придаст некоторую «завершенность» для отобранных проф. Р. Димитрокопулусом докладов видных специалистов по тематической направленности настоящего «Специального выпуска» журнала, за что я ему очень благодарен.

Член-корреспондент РАН профессор В. Н. Опарин


СТРАТЕГИЯ ПЛАНИРОВАНИЯ ГОРНЫХ РАБОТ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ И РИСК


УДК 622.271.3/519.21 

СТОХАСТИЧЕСКАЯ ОПТИМИЗАЦИЯ СТРАТЕГИЧЕСКОГО ПРОЕКТИРОВАНИЯ ШАХТ: ДЕСЯТИЛЕТИЕ РАЗРАБОТОК И ИССЛЕДОВАНИЙ
Р. Димитракопулос

Университет МакГилл, Монреаль, Канада

Традиционные методы оценки запасов, оптимизации планирования и прогнозирования производительности дают обобщенный и зачастую ошибочный результат. В большинстве случаев это происходит вследствие нелинейного роста погрешности представления параметров рудного тела на всем протяжении добычи. В статье рассматривается новая парадигма планирования, объединяющая в себе стохастическое моделирование и стохастическую оптимизацию, что позволяет расширить математические рамки моделирования и учесть неопределенности характеристик рудного тела уже на стадиях проектирования рудника. При этом объем добычи повышается на 25 %. На примере конкретных ситуаций показано, что производительность можно увеличить на 15 % при росте чистого дохода на 10 %.

Проектирование, стохастическая оптимизация, геологическая неопределенность, метод «имитации отжига», планирование добычи

СПИСОК ЛИТЕРАТУРЫ
1. J. Whittle. A decade of open pit mine planning and optimisation — the craft of turning algorithms into packages, in: APCOM’99 Computer Applications in the Minerals Industries 28th International Symposium, Colorado School of Mines, Golden, 1999.
2. M. David. Handbook of applied advanced geostatistical ore reserve estimation. Elsevier Science Publishers, Amsterdam, 1988.
3. R. Dimitrakopoulos, C. T. Farrelly, and M. Godoy. Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 111, 2002.
4. A. G. Journel. Modelling uncertainty: some conceptual thoughts, in: Geostatistics for the Next Century, R. Dimitrakopoulos, ed., Kluwer Academic Publishers, Dordrecht, 1994.
5. M. Kent, R. Peattie, and V. Chamberlain. Incorporating grade uncertainty in the decision to expand the main pit at the Navachab gold mine, Namibia, through the use of stochastic simulation, The Australasian Institute of Mining and Metallurgy, Spectrum Series, No. 14, 2007.
6. M. C. Godoy and R. Dimitrakopoulos. A risk analysis based framework for strategic mine planning and design — Method and application, Journal of Mining Science, No. 2, 2011.
7. M. C. Godoy and R. Dimitrakopoulos. Managing risk and waste mining in long-term production scheduling, SME Transactions, 316, 2004.
8. S. A. Abdel Sabour and R. Dimitrakopoulos. Accounting for joint ore supply, metal price and exchange rate uncertainties in mine design, Journal of Mining Science, No. 2, 2011.
9. C. Meagher, S. A. Abdel Sabour, and R. Dimitrakopoulos. Pushback design of open pit mines under geological and market uncertainties, The Australasian Institute of Mining and Metallurgy, Spectrum Series No. 17, 2010.
10. R. Dimitrakopoulos, H. Mustapha, and E. Gloaguen. High-order statistics of spatial random fields: Exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomena, Mathematical Geosciences, 42, No. 1, 2010.
11. B. D. Ripley. Stochastic simulations, J. Wiley & Sons, New York, 1987.
12. A. M. Law and W. D. Kelton. Simulation modeling and analysis, McGraw-Hill Higher Education, Singapore, 1999.
13. R. Dimitrakopoulos and X. Luo. Generalized Sequential Gaussian Simulation on Group Size and Screen-effect Approximations for Large Field Simulations, Mathematical Geology, 36, 2004.
14. H. Mustapha and R. Dimitrakopoulos. Generalized Laguerre expansions of multivariate probability densities with moments, Computers & Mathematics with Applications 60, No. 7, 2010.
15. A. Leite and R. Dimitrakopoulos. A stochastic optimization model for open pit mine planning: Application and risk analysis at a copper deposit, Transactions of The Institution of Mining and Metallurgy: Mining Technology, 116, No. 3, 2007.
16. F. Albor Consquega and R. Dimitrakopoulos. Stochastic mine design optimization based on simulated annealing: Pit limits, production schedules, multiple orebody scenarios and sensitivity analysis, Transactions of the Institution of Mining and Metallurgy: Mining Technology, 118, No. 2, 2009.
17. S. Ramazan and R. Dimitrakopoulos. Stochastic optimisation of long-term production scheduling for open pit mines with a new integer programming formulation, The Australasian Institute of Mining and Metallurgy, Spectrum Series No. 14, 2007.
18. S. Ramazan and R. Dimitrakopoulos. Production scheduling with uncertain supply — A new solution to the open pit mining, COSMO Research Report No. 2, McGill University, Montreal, 2008.
19. M. Menabde, G. Froyland, P. Stone, and G. Yeates. Mining schedule optimization for conditionally simulated orebodies, The Australasian Institute of Mining and Metallurgy, Spectrum Series No. 14, 2007.
20. A. Leite and R. Dimitrakopoulos. Production scheduling under metal uncertainty — Application of stochastic mathematical programming at an open pit copper mine and comparison to conventional scheduling, The Australasian Institute of Mining and Metallurgy, Spectrum Series No. 17, 2010.
21. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-6, No. 6, 1984.
22. H. Lerchs and I. F. Grossmann. Optimum design of open pit mines, CIM Bulletin, Canadian Institute of Mining and Metallurgy, 58, 1965.
23. R. Dimitrakopoulos and S. Ramazan. Stochastic integer programming for optimizing long term production schedules of open pit mines: methods, application and value of stochastic solutions, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 117, No. 4, 2008.
24. R. Dimitrakopoulos and S. Ramazan. Uncertainty based production scheduling in open pit mining, SME Transactions, 316, 2004.


УДК 622.831 

ОПТИМИЗАЦИЯ ПОСЛЕДОВАТЕЛЬНОСТИ ПОДЗЕМНОЙ ОТРАБОТКИ УГЛЯ СПЛОШНОЙ СИСТЕМОЙ
Л. Рокчи, П. Картер, П. Стоун*

BHP Billiton Limited, Перт, Австралия
*BHP Billiton Resource and Business Optimization, Мельбурн, Австралия

В работе представлен пример использования программы Blasor, позволяющей находить максимальную эффективность инвестиционных вложений в шахту с помощью решения задачи смешанного целочисленного линейного программирования, в отличие от используемой компанией Illawarra Coal (IC), BHP Billiton программы ХРАС, которая решает задачу эвристическим методом. Описаны некоторые приемы позволившие приспособить Blasor, разработанную для карьеров, к моделированию отработки шахты сплошными системами.

Система сплошной выемки, оптимизация последовательности выемки, экономическая оценка, смешанное целочисленное программирование


УДК 622.271 

ОПТИМАЛЬНОЕ КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ РАБОТЫ БОКСИТОВОГО РУДНИКА
М. Зукерберг, Д. Райет*, У. Малайчук*, П. Стоун

BHP Billiton Resource and Business Optimization, Мельбурн, Австралия
*BHP Billiton Limited, Перт, Австралия

Описана новая программная система Боддингтон оптмизатор (Бодор), предназначенная для планирования работы бокситового рудника Боддингтон компании BHP Billiton, расположенного в штате Западная Австралия. Данное программное средство позволяет согласовывать разнообразные производственные и экологические факторы при определении оптимального графика отработки запасов и предельно уменьшать чистую приведенную стоимость до уплаты налогов (капитальные затраты и эксплуатационные расходы) в пределах срока эксплуатации рудника.

Бокситовый рудник, оптимизация планирования, внешние (экологические) ограничения, график выемки, автопарк


УДК 553.044 

МЕТОД КОМБИНИРОВАННОГО УСЛОВНОГО МОДЕЛИРОВАНИЯ С ГЕОЛОГИЧЕСКИМИ ОГРАНИЧЕНИЯМИ
Х. А. Лопес, К. Ф. Росас, Ж. Б. Фернандес, Г. А. Ванзела

Votorantim Metais Ltda, Сан Пауло, Бразилия

Одним из ключевых моментов определения размера капитальных вложений в горный проект является количественное описание рисков путем построения соотношений между содержанием полезного компонента в руде и объемом добычи. Для получения данных зависимостей, а также установления неопределенностей и оценки степени проектных рисков при отработке рудного тела используют метод геостатистического моделирования, который, однако, довольно сложно применить при моделировании многокомпонентных месторождений. Кроме того, он требует интенсивной вычислительной работы. В статье описывается способ оценки горно-проектных рисков, использующий построение зависимостей между содержанием полезного компонента в руде и объемом рудодобычи и процесс категоризации запасов, Предложенный метод рассматривается на примере месторождения латеритового никеля, залегающего в центральной части Бразилии. Метод реализуется путем совместного моделирования множеств коррелированных переменных (в нашем случае Ni, MgO и SiO2) на основе автокорреляционных факторов минимум/максимум (MAF). В данном подходе категоризация запасов Ni производится по результатам комбинированного моделирования, при использовании которых статистическая погрешность не превышает 15 %, а доверительный интервал на производственный период составляет 90 %.

Зависимость «содержание полезного компонента в руде — объем рудодобычи», автокорреляционные факторы минимум/максимум для латеритового никеля, категоризация запасов, риск

СПИСОК ЛИТЕРАТУРЫ
1. V. C. Deutsch, A. G. Journel. Gslib: Geostatisitcal software library and user?s guide (2nd Edition). Oxford University Press. New York, 1998.
2. G. W. Verly. Sequencial Gaussian co-simulation: a simulation method integrating several types of information in Geostatistics — Kluwer Academic Publishers: Dordrecht. Ed: A Soares, 5, 1993.
3. P. Goovaerts. Geostatistics for natural resources evaluation. Oxford University Press, New York, 1998.
4. J. P. Chiles P. Delfiner. Geostatistics modeling spatial uncertainty, John Wiley and Sons, New York, 1999.
5. A. S. Almeida, A. G. Journel. Joint simulation of multiple variables with a Markov-type coregionalization model, Mathematical Geology, 26, 1994.
6. M. David. Handbook of applied advanced geostatistical ore reserve estimation, Elsevier, Amsterdam, 1988.
7. A. J. Desbarats, R. Dimitrakopoulos. Geostatistical simulation of regionalized pore-size distribution using min/max autocorrelation factors, Mathematical Geology, 32, 2000.
8. P. Switzer, A. A. Green. Min/max autocorrelation factors for multivariate special imagery, Technical Report 6. Stanford University. Department of Statistics, 1984.
9. A. Boucher, R. Dimitrakopoulos. A new efficient joint simulation framework and application in a multivariable deposit, Orebody Modelling and Strategic Mining Planning, Spectrum Series, vol. 14, 2nd Edition, The AuSIMM, Melbourne, 2007.
10. A. Boucher, R. Dimitrakopoulos. Block simulation of multiple correlated variables, Mathematical Geosciences, 41, 2010.
11. R. Dimitrakopoulos, M. B. Fonseca. Assessing risk in grade-tonnage curves in a complex copper deposit, northern Brazil, based on an efficient joint simulation of multiple correlated variables, Application of Computers and Operations Research in the Minerals Industries, South African Institute of Mining and Metallurgy, 2003.
12. C. Dohm. Quantifiable mineral resource classification: A logical approach, Geostatistics Banff — Book Series Quantitative Geology and Geostatistics. Springer, 2, 2004.
13. R. Dimitrakopoulos, and X. Luo, Generalized sequential Gaussian simulation on group size and screen-effect approximations for large field simulations, Mathematical Geology, 36, 2003.


УДК 622.271.3/519.21 

ОБЪЕДИНЕНИЕ ЗАДАЧ ОПРЕДЕЛЕНИЯ РАЗМЕРА ПРИКОНТУРНЫХ БЛОКОВ И ОПТИМИЗАЦИИ ПРОИЗВОДСТВЕННОЙ МОЩНОСТИ КАРЬЕРА
Т. Элкингтон, Р. Дурхэм

Университет Западной Австралии, Австралия

Развитие стратегического планирования открытой разработки полезных ископаемых достигло уровня, на котором стала возможной одновременная комплексная оптимизация множества технологических решений. Описывается метод одновременной оптимизации таких параметров отрытой разработки, как производственная мощность, предельные границы карьера и объемы обогащения, промежуточный приконтурный блок карьера, календарное планирование, определение бортового содержания.

Оптимизация карьера, целочисленное программирование, календарное планирование добычи открытым способом, бортовое содержание, производительность

СПИСОК ЛИТЕРАТУРЫ
1. T. Johnson. Optimum Open Pit Production Scheduling, PhD Thesis, University of California, Berkeley, USA, 1968.
2. M. Gershon. Optimal mine production scheduling: Evaluation of large-scale mathematical programming approaches, Int. J. Mining Engineering, 1, 1983.
3. S. Ramazan and R. Dimitrakopoulos. Recent applications of operations research in open pit mining, SME Transactions, 314, 2004.
4. L. Caccetta and S. Hill. An application of branch and cut to open pit mine scheduling, J. Global Optimization, 27, 2003.
5. H. Lerchs and I. Grossman. Optimum design of open pit mines, Transactions of the CIM, 68 (1965).
6. J. Whittle and L. Rozman. Open pit design in the 90’s, in: Proceedings of Mining Industry Optimisation Conference, Australasian Institute of Mining and Metallurgy, Sydney, 1991.
7. S. Ramazan and R. Dimitrakopoulos. Stochastic optimization of long term production scheduling for open pit mines with a new integer programming formulation, Orebody Modelling and Strategic Mine Planning, The Australasian Institute of Mining and Metallurgy, Spectrum Series, 14, 2nd Edition, 2007.
8. P. Stone, G. Froyland, M. Menabde, B. Law, R. Pasyar, and P. Monkhouse. Blasor-blended iron ore mine planning optimisation at Yandi, in: Orebody Modelling and Strategic Mine Planning, Spectrum Series, 14, 2nd Edition, Australasian Institute of Mining and Metallurgy, Melbourne, 2007.
9. S. Ramazan. The new fundamental tree algorithm for production scheduling of open pit mines, Eur. J. Operational Research, 177, 2007.
10. K. Lane. The economic definition of ore: Cut-off grades in theory and practice, Mining Journal Books, London, 1988.
11. B. King. Optimal Mine Scheduling Policies, PhD Thesis, University of London, London, 2000.
12. S. Hoerger, J. Bachmann, K. Criss, and E. Shortridge. Long term mine and process scheduling at Newmont’s Nevada Operations, in: Twenty-Eighth International Symposium on the Application of Computers and Operations Research in the Mineral Industry, Colorado School of Mines, Golden, 1999.
13. M. Menabde, G. Froyland, P. Stone, and G. Yeates. Mining schedule optimisation for conditionally simulated orebodies, in: Orebody Modelling and Strategic Mine Planning, Spectrum Series, 14, 2nd Edition, Australasian Institute of Mining and Metallurgy, Melbourne, 2007.
14. T. Elkington and R. Durham. Open pit optimisation — Modelling time and opportunity costs, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 118, 2009.
15. R. Dimitrakopoulos, C. Farrelly, and M. Godoy. Moving forward from traditional optimization: Grade uncertainty and risk effects in open-pit design, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 111, 2002.


УДК 622.65.012.22 

УЧЕТ ГЕОЛОГИЧЕСКИХ И ЭКОНОМИЧЕСКИХ НЕОПРЕДЕЛЕННОСТЕЙ, ФАКТОРА ЭКСПЛУАТАЦИОННОЙ ГИБКОСТИ ПРИ ПРОЕКТИРОВАНИИ ОТКРЫТЫХ ГОРНЫХ РАБОТ
С. Сабур, Р. Димитракопулос*

Университет МакГилл, E-mail: sabry.abdelhafezabdelsabour@mcgill.ca,
*E-mail: roussos.dimitrakopoulos@mcgill.ca, Монреаль, Канада

Представлена методика учета неопределенностей и оперативной гибкости оценки при выборе проектного решения карьера. Предложена многокритериальная система ранжирования технологических решений карьера на основе современных методов моделирования факторов неопределенностей и финансовых вложений, таких как система моделирования Монте-Карло (MC) и моделирование реальных альтернатив (ROV). Приводится анализ эффективности применения новой методики на примере карьера по добыче меди.

Проектирование карьера, экономическая оценка, метод оценки альтернативных вариантов, метод моделирования Монте-Карло

Работа выполнена при поддержке NSERC CDR, грант № 335696, BHP Billiton, а также NSERC Discovery, грант № 239019, McGill’s COSMO Lab и промышленных партнеров AngloGold Ashanti, Barrick, BHP Billiton, De Beers, Newmont, Vale и Vale Inco.

СПИСОК ЛИТЕРАТУРЫ
1. J. Whittle. Beyond optimization in open pit design, in Canadian Conference on Computer Applications in the Mineral Industries, Balkema, Rotterdam, 1988.
2. S. Ramazan. The new fundamental tree algorithm for production scheduling of open pit mines, European Journal of Operations Research, 177, 2007.
3. R. Dimitrakopoulos and S. Ramazan. Stochastic integer programming for optimizing long-term production schedules of open pit mines: Methods, application and value of stochastic solutions, IMM Transactions, Mining Technology, 117, 2008.
4. M. W. A. Asad. Multi-period quarry production planning through sequencing techniques and sequencing algorithm, Journal of Mining Science, 44, 2008.
5. M. Zuckerberg, J. van der Riet, W. Malajczuk and P. Stone. Optimization of life-of-mine production scheduling at a Bauxite mine, Journal of Mining Science, No. 2, 2011.
6. M. Vallee. Mineral resource + engineering, economic and legal feasibility = ore reserve, CIM Bulletin, 93, 2000.
7. R. Dimitrakopoulos, C. T. Farrelly and M. Godoy. Moving forward from traditional optimisation: grade uncertainty and risk effects in open pit design, Trans. Instn. Min. Metall. (Sec. A: Min. Technol.), 111, 2002.
8. M. C. Godoy and R. Dimitrakopoulos. Managing risk and waste mining in long-term production scheduling, SME Transactions, 316, 2004.
9. A. Leite and R. Dimitrakopoulos. A stochastic optimization model for open pit mine planning: Application and risk analysis at a copper deposit, Mining Technology (Trans. Inst. Min. Metall. A), 116, 2007.
10. R. Dimitrakopoulos, L. S. Martinez and S. Ramazan. A maximum upside/minimum downside approach to the traditional optimization of open pit mine design, Journal of Mining Science, 43, 2007.
11. R. Dimitrakopoulos and N. Grieco. Stope design and geological uncertainty: Quantification of risk in conventional designs and a probabilistic alternative, Journal of Mining Science, 45, 2009.
12. M. Godoy and R. Dimitrakopoulos. A risk analysis based framework for strategic mine planning and design method and application, Journal of Mining Science, No. 2, 2011.
13. P. H. L. Monkhouse and G. Yeates. Beyond naive optimization, in Orebody Modelling and Strategic Mine Planning, The Australian Institute of Mining and Metaluurgy, Spectrum Series No. 14, 2005.
14. L. T. Miller and C. S. Park. Decision making under uncertainty-real options to the rescue? The Engineering Economist, 47, No. 2, 2002.
15. A. Moel and P. Tufano. When are real options exercised? An empirical study of mine closings, Review Financial Studies, 15, No. 1, 2002.
16. M. Samis, G. A. Davis, D. Laughton, and R. Poulin. Valuing uncertain asset cash flows when there are no options: a real options approach, Resources Policy, 30, (2006).
17. M. E. Slade. Valuing managerial flexibility: an application of real option theory to mining investments, Journal of Environmental Economics and Management, 41, 2001.
18. A. Boucher and R. Dimitrakopoulos. Block-support simulation of multiple correlated variables, Mathematical Geosciences, 41, 2009.
19. C. Scheidt and J. Caers. Representing spatial uncertainty using distances and kernels, Mathematical Geosciences, 41, 2009.
20. E. S. Schwartz. The stochastic behaviour of commodity prices: implications for valuation and hedging, Journal of Finance, 52, 1997.
21. F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least-squares approach, The Review of Financial Studies, 14, 2001.
22. S. A. Abdel Sabour and R. Poulin. Valuing real capital investments using the least-squares Monte Carlo method, The Engineering Economist, 51, 2006.
23. R. Dimitrakopoulos and S. A. Abdel Sabour. Evaluating mine plans under uncertainty: Can the real options make a difference?, Resources Policy, 32, 2007.
24. S. A. Abdel Sabour, R. Dimitrakopoulos, and M. Kumral. Mine plan selection under uncertainty, Mining Technology: IMM Transactions Section A, 117, No. 2, 2008.
25. C. Meagher, S. A. Abdel Sabour, and R. Dimitrakopoulos. Pushback design of open pit mines under geological and market uncertainties, in Orebody Modelling and Strategic Mine Planning, Perth, WA, 2009.
26. J. Whittle. A decade of open pit mine planning and optimization — The craft of turning algorithms into packages, in APCOM’99 Computer Applications in the Minerals Industries 28th International Symposium, Colorado School of Mines, Golden, 1999.


УДК 622.271.3/519.21 

МОДЕЛИРОВАНИЕ СИСТЕМЫ ПОСТАВОК РУДЫ ОТ КАРЬЕРА ДО ПОРТА: КОМБИНИРОВАННЫЙ ОПТИМИЗАЦИОННО-МОДЕЛИРУЮЩИЙ ПОДХОД
П. Бодон, К. Фрике, Т. Сандеман, С. Стэнфорд*

TSG Consulting, Мельбурн, Австралия,
*PT Kaltim Prima Coal, Калимантан Тимур, Индонезия

Описан метод моделирования комплексной системы экспортных поставок путем комбинирования оптимизационного и дискретно-событийного методов для анализа производственной мощности и оценки вариантов ее расширения. Процесс моделирования показан на примере применения данного подхода при анализе системы экспортных поставок компании PT Kaltim Prima Coal в Индонезии.

Моделирование системы поставок горнодобывающего предприятия, дискретное моделирование событий, оптимизация

СПИСОК ЛИТЕРАТУРЫ
1. Y. Chang and H. Makatsoris. Supply Chain Modeling Using Simulation, International Journal of Simulation, 2, No. 1, 2001.
2. N. Anderson and G. W. Evans. Determination of Operating Policies for a Barge Transportation System through Simulation and Optimization Modeling, Proceedings of the 2008 Winter Simulation Conference, 2008.
3. B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation, Academic Press, 2000.
4. W. L. Winston. Operations Research: Applications and Algorithms, Duxbury Press, 1987.
5. W. Hustrulid and M. Kuchta. Open Pit Mine Planning & Design, Taylor & Francis, 2006.
6. L. A. Wolsey. Integer Programming, Wiley-Interscience, 1998.
7. L. Schrage. Optimization Modeling with Lingo, LINDO Systems, 2000.


УДК 622.83 

ГИБКОЕ ПРОЕКТИРОВАНИЕ КАРЬЕРА С УЧЕТОМ НЕОПРЕДЕЛЕННОСТЕЙ
Б. Гроневельд, Э. Топал

Университет Куртин, г. Калгурли, Австралия

Риски горного предприятия связаны с неопределенностями, существующими в горнодобывающей промышленности. Горнодобывающие компании, прикладывающие все усилия для увеличения прибыли своих акционеров, принимают стратегические решения, на реализацию которых могут потребоваться годы или даже десятилетия. Тем не менее многие довольствуются методом «точечных» (детерминированных, средних) оценок всех параметров проекта карьера, не осознавая того, что ни один параметр не является достоверным. Проектирование карьера с улучшенным соотношением «риск — отдача» нуждается в модели, отображающей неопределенности и адаптируемых к ним. Разработана новая методология гибкого и адаптивного проектирования открытых горных работ. Следуя последним разработкам в области принятия решений, предлагаемая модель, основанная на целочисленном программировании, выбирает оптимальный проект по стохастическим параметрам. В статье показан способ учета вариативности (гибкости) параметров карьера и приемных емкостей (склад, отвал), ограничений по мощности. Результаты моделирования горных работ в карьере дают возможность судить о величине рисков в будущих предприятиях и периодичности применения предложенного подхода.

Метод оценки альтернативных вариантов (ROV), робастное проектирование, неопределенность, гибкость, стохастическое моделирование, проектирование карьера (рудника)

СПИСОК ЛИТЕРАТУРЫ
1. E. Topal. Evaluation of a mining project using discounted cash flow analysis, decision tree analysis, monte carlo simulation and real options using an example, International Journal of Mining and Mineral Engineering, 1, No. 1, 2008.
2. P. A. Dowd. Risk in minerals industry projects: perception, analysis and management, Trans. Instn. Min. Metall., 106, No. A, 1997.
3. R. Dimitrakopoulos, L. S. Martinez, and S. Ramazan. A maximum upside/minimum downside approach to the traditional optimization of open pit mine design, Journal of Mining Science, 43, 2007.
4. T. Elkington and R. Durham. Integrated open pit pushback selection and production capacity optimization, Journal of Mining Science, No. 2, 2011.
5. H. Mustapha and R. Dimitrakopoulos. High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns, Mathematical Geosciences, 42, No. 5, 2010.
6. A. Boucher and R. Dimitrakopoulos. Block-support simulation of multiple correlated variables, Mathematical Geosciences, 41, 2009.
7. M. Godoy and R. Dimitrakopoulos. Managing risk and waste mining in long-term production scheduling, SME Transactions, 316, 2004.
8. A. Leite and R. Dimitrakopoulos. A stochastic optimization model for open pit mine planning: Application and risk analysis at a copper deposit, in: Mining Technology, Transactions of the Institute of Materials, Minerals and Mining, 116, No. 3, 2007.
9. S. Ramazan and R. Dimitrakopoulos. Stochastic optimization of long term production scheduling for open pit mines with a new integer programming formulation, Orebody Modelling and Strategic Mine Planning — Second Edition, Spectrum Series AusIMM, 2007.
10. A. Leite and R. Dimitrakopoulos. Production scheduling under metal uncertainty-application of stocastic mathematical programming at an open pit copper mine and comparison to conventional scheduling, Orebody Modelling and Strategic Mine Planning — Second Edition, Spectrum Series AusIMM, 2009.
11. C. Meagher, S. A. A. Sabour, and R. Dimitrakopoulos. Pushback design of open pit mines under geological and market uncertainties, Orebody Modelling and Strategic Mine Planning — Second Edition, Spectrum Series AusIMM, 2009.
12. R. de Neufville. Analysis methodology for the design of complex systems in uncertain environment: Application to mining industry, (unpublished) Engineering Systems Division, Massachusetts Institute of Technology, 2006.
13. R. de Neufville, S. Scholtes, and T. Wang. Real Options by Spreadsheet: Parking Garage Case Example, Journal of Infrastructure Systems, 12, No. 2, 2005.
14. T. Wang and R. de Neufville. Identification of real options ’in’ projects, in: Proceedings of the 16-th Annual International Symposium of the International Council on Systems Engineering, Orland, 2006.
15. T. Wang and R. de Neufville. Real options in projects, in: Proceedings of the 9th Real Options Annual International Conference, Pari, 2005.
16. M. Cardin. Facing reality: Design and management of flexible engineering systems, Masters (unpublished), Engineering System Divisions, Massachusetts Institute of Technology, 2007.
17. M. A. Cardin, R.de Neufville, and V. Kazakidis. A process to improve expected value of mining operations, in: Mining Technology, Transactions of the Institute of Materials, Minerals and Mining, 117, No. 2, 2008.
18. B. Groeneveld, E. Topal, and B. Leenders. A new methodology for flexible mine design, in: Proceedings of the International Symposium on Orebody Modelling and Strategic Mine Planning, Perth, 2009.
19. R. Dimitrakopoulos and S. A. Abdel Sabour. Evaluating mine plans under uncertainty: Can the real options make a difference?, Resources Policy, 32, No. 3, 2007.


УДК 622.271.3/519.21 

ОПТИМИЗАЦИЯ ЭФФЕКТИВНОСТИ ОТКРЫТЫХ РАБОТ С ПОМОЩЬЮ ОЦЕНКИ СРОКОВ КАПИТАЛОВЛОЖЕНИЙ И СТОХАСТИЧЕСКОГО МОДЕЛИРОВАНИЯ НА ОСНОВЕ ПЕРЕМЕННЫХ, ЗАВИСИМЫХ ОТ ВРЕМЕНИ
Э. Ричмонд

Golder Associates, Тувонг, Австралия

Рассмотрен новый оптимизационный подход к определению сроков капиталовложений, направленных на разработку полезных ископаемых открытым способом. В предложенном способе учитываются в явной форме неопределенности циклов изменения цен на сырье и эксплуатационных затрат с помощью методик стохастического моделирования. Стохастические модели цен на сырье и затрат на его добычу вводятся непосредственно в процесс построения множества вложенных карьеров либо в алгоритм оптимизации NPV. Приводится пример применения данного подхода для крупного месторождения меди.

Оптимизация, экономическая оценка, стохастическое моделирование, календарное планирование добычи

СПИСОК ЛИТЕРАТУРЫ
1. H. Lerchs and I. F. Grossman. Optimum design of open pit mines, Bulletin of Canadian Institute of Mining, 58, 1965.
2. T. B. Johnson, Optimum Open Pit Mine Production Scheduling. PhD thesis, University of California Berkeley, 1968.
3. D. S. Hochbaum and A. Chan. Performance analysis and best implementations of old and new algorithms for the open-pit mining problem, Operations Research, 48, 2000.
4. L. Caccetta and S. P. Hill. An application of branch and cut to open pit mine scheduling, Journal of Global Optimization, 27, 2003.
5. S. Ramazan. The new fundamental tree algorithm for production scheduling of open pit mines, European Journal of Operations Research, 177, 2007.
6. P. H. L. Monkhouse and G. Yeates. Beyond naive optimization, Orebody Modelling and Strategic Mine Planning, AusIMM Spectrum Series, 14, 2007.
7. P. Stone, G. Froyland, M. Menabde, B. Law, R. Pasyar, and P. Monkhouse. Blended iron-ore mine planning optimization at Yandi Western Australia, in: AusIMM Spectrum Series, 2007.
8. A. J. Richmond and J. E. Beasley. An iterative construction heuristic for the ore selection problem, Journal of Heuristics, 10.2, 2004.
9. M. Menabde, P. Stone, B. Law, and B. Baird. A generalized strategic mine planning optimization tool, in: SME Annual Meeting and Exhibit, 2007.
10. R. Dimitrakopoulos and S. A. A. Sabour. Evaluating mine plans under uncertainty: Can the real options make a difference?, Resources Policy, 32, 2007.
11. M. Menabde, G. Froyland, P. Stone, and G. A. Yeates. In Orebody Modelling and Strategic Mine Planning (The Australasian Institute of Mining and Metallurgy, Melbourne, Australia, 2007).
12. S. Ramazan and R. Dimitrakopoulos. Stochastic optimisation of long-term production scheduling for open pit mines with a new integer programming formulation, in: Orebody Modelling and Strategic Mine Planning,Second edn, 2007.
13. A. Leite and R. Dimitrakopoulos. A stochastic optimization model for open pit mine planning: Application and risk analysis at a copper deposit, Transactions of the Institute of Mining and Metallurgy, Section A: Mining Technology, 116, 2007.
14. M. C. Godoy and R. Dimitrakopoulos. Managing risk and waste mining in long-term production scheduling, SME Transactions, 316, 2004.
15. P. J. Ravenscroft. Risk analysis for mine scheduling by conditional simulation, Transactions of the Institute of Mining and Metallurgy, Section A: Mining Technology, 101, 1992.
16. A. J. Richmond. Integrating multiple simulations and mining dilution in open pit optimisation algorithms, in: Orebody Modelling and Strategic Mine Planning Conference, 2004.
17. A. Boucher and R. Dimitrikopoulos. Block-support simulation of multiple correlated variables, Mathematical Geosciences, 42, No. 2, 2009.
18. H. Mustapha and R. Dimitrikapoulos. High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns, Mathematical Geosciences, 42, No. 5, 2010.
19. J. Wu, T. Zhang and A. Journel. Fast FILTERSIM simulation with score-based distance, Mathematical Geosciences, 40, No. 7, 2010.
20. C. Scheidt and J. Caers. Spatial Uncertainty Using Distances and Kernels, Mathematical Geosciences, 41, 2009.
21. P. A. Dowd and A. H. Onur. Open pit optimization — part 1: optimal open-pit design, Transactions of the Institute of Mining and Metallurgy, Section A: Mining Technology, 102, 1993.
22. A. J. Richmond. Direct NPV open pit optimisation with probabilistic models, in: Orebody Modelling and Strategic Mine Planning Conference, 2009.
23. M. Lemieux. Moving cone optimizing algorithm, in Computer methods for the 80’s, in: SME of AIMMPE, 1979.
24. M. Godoy. The effective management of geological risk in long-term production scheduling of open pit mines, University of Queensland, 2002.


УДК 622.83 

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ РИСКОВ ПРИ СТРАТЕГИЧЕСКОМ ПЛАНИРОВАНИИ ГОРНЫХ РАБОТ: МЕТОДИКА И ПРИМЕНЕНИЕ
М. Годой, Р. Димитракопулос*

Golder Associates Santiago, E-mail: mgodoy@golder.cl, г. Сантьяго, Чили
*Университет МакГилл, E-mail: roussos.dimitrakopoulos@mcgill.ca,
г. Монреаль, Канада

Важными элементами стратегического планирования являются количественный анализ, оценка и контроль неопределенностей рудного месторождения. В статье предложен метод, включающий в себя серию шагов по дискретизации неопределенностей и оценке рисков при оптимизации проекта карьера. В процессе работы оптимизационного алгоритма обрабатывается множество модельных сценариев распределения качества руды в рудном теле с целью определения возможных значений проектных показателей, которые затем оцениваются при обосновании принятого решения.

Проектирование карьера, анализ риска, связанного с качеством руды, повышательный потенциал, риск убытков

СПИСОК ЛИТЕРАТУРЫ
1. M. David. Handbook of applied advanced geostatistical ore reserve estimation. Elsevier Science Publishers, 1988.
2. R. Dimitrakopoulos, C. T. Farrelly, and M. Godoy. Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 111, 2002.
3. A. G. Journel. Computer imaging in the minerals industry — Beyond mere aesthetics, in: APCOM’92 Computer Applications in the Minerals Industries 23rd International Symposium, 1992.
4. P. J. Ravenscroft. Risk analysis for mine scheduling by conditional simulation, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 101, 1992.
5. R. Dimitrakopoulos. Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation, International Journal of Surface Mining, Reclamation and Environment, 12, 1998.
6. R. Dimitrakopoulos, L. Martinez and S. Ramazan. A maximum upside / minimum downside approach to the traditional optimization of open pit mine design, Journal of Mining Science, 43, No. 2, 2007.
7. M. Kent, R. Peattie and V. Chamberlain. Incorporating grade uncertainty in the decision to expand the main pit at the Navachab gold mine, Namibia, through the use of stochastic simulation, in: The Australasian Institute of Mining and Metallurgy, Spectrum Series No. 14, 2007.
8. P. A. Dowd and A. H. Onur. Open pit optimization — part 1: optimal open-pit design, Transactions of the Institute of Mining and Metallurgy, Section A: Mining Technology, 102, 1993.
9. P. A. Dowd. Risk in minerals projects: analysis, perception and management, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 106, 1997.
10. H. Mustapha and R. Dimitrakopoulos. High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns, Mathematical Geoscience, 42, No. 5, 2010.
11. J. Wu, T. Zhang and A. Journel. Fast FILTERSIM simulation with score-based distance, Mathematical Geosciences, 40, No. 7, 2010.
12. C. Scheidt and J. Caers. Spatial Uncertainty Using Distances and Kernels, Mathematical Geosciences, 41, 2009.
13. H. Lerchs and I. F. Grossmann. Optimum design of open pit mines, CIM Bulletin, Canadian Institute of Mining and Metallurgy, 58, 1965.
14. J. Whittle. A decade of open pit mine planning and optimization — The craft of turning algorithms into packages, in: APCOM ’99 Computer Applications in the Minerals Industries 28th International Symposium, 1999.


УДК 622.7.012.7 

СТРАТЕГИЧЕСКОЕ ПЛАНИРОВАНИЕ КАК СРЕДСТВО ПОВЫШЕНИЯ РЕНТАБЕЛЬНОСТИ ГОРНОГО ПРОИЗВОДСТВА
Б. Кинг

Strategy Optimisation Systems Pty Ltd, Веллингтон Пойнт, Австралия

За последние годы горнопромышленники осознали пользу стратегического планирования как экономически целесообразного средства повышения рентабельности проекта. С улучшением исходных посылок улучшается результат, повышается качество принимаемых решений и ценность извлеченных природных запасов. Несмотря на то, что научно-исследовательские институты и компании-разработчики программных средств предлагают все новые и новые улучшенные программы и алгоритмы, горные компании все еще имеют ограниченные возможности их применения. Инженеры-конструкторы, отвечающие за стратегическое проектирование в крупных горнодобывающих компаниях, часто идут на значительные компромиссы, принимая окончательные решения. В статье рассмотрен человеческий фактор и уровень мастерства инженеров, что имеет огромное влияние на потенциальную реализацию проектов, описываются возможные трудности и некоторые правила, выполнение которых поможет увеличить размер извлекаемых запасов.

Стратегическое планирование, оптимизация, экономическая оценка

СПИСОК ЛИТЕРАТУРЫ
1. B. M. King. Optimal Mining Principles, AusIMM Orebody Modelling and Strategic Mine Planning, Perth, 2009.
2. H. Lerchs and I. F. Grossman. Optimum design of open-pit mines, Trans. CIM Vol. LXVIII, 1965.
3. R. A. Brealey and S. C. Myers. Principles of Corporate Finance, 6th edition, Irwin McGraw-Hill, 2000.
4. R. Wooller. Optimising Multiple Operating Policies for Exploiting Complex Resources — An Overview of the COMET Scheduler, Orebody Modelling and Strategic Mine Planning, AusIMM Spectrum Series 14, 2nd Edition, Melbourne, 2007.


УДК 622.33.013.3 

О ТЕОРИИ ХАББЕРТА И ПРЕДЕЛЬНЫХ ОБЪЕМАХ ДОБЫЧИ УГЛЯ В КУЗНЕЦКОМ УГОЛЬНОМ БАССЕЙНЕ
В. Н. Опарин, А. А. Ордин

Институт горного дела СО РАН,
Красный проспект, 54, 630091, г. Новосибирск, Россия

Приведены сведения о теории Хабберта и сделан анализ возможности ее применения для описания динамики добычи угля в Кузбассе. Изложена методика обоснования предельных объемов добычи угля в бассейне на основе лагового моделирования и законе убывающей предельной эффективности разработки месторождений полезных ископаемых. Приведены предварительные результаты оценки предельных объемов добычи угля в Кузбассе по критерию максимума чистого дисконтированного дохода в постановке динамической задачи безусловной оптимизации.

Теория Хабберта, асимптота, логистическая кривая, предельные объемы добычи угля, оптимизация, проектная мощность, чистый дисконтированный доход

Работа выполнена при поддержке РАН (проект ОНЗ-3.1) и Российского фонда фундаментальных исследований (проект 10–05–98013).

СПИСОК ЛИТЕРАТУРЫ
1. Hubbert, M. King. (1956) Nuclear Energy and the Fossil Fuels. Представлено на весенней конференции Южного отделения Американского института нефти, отель Плаза, Сан Антонио, Техас, Март 7–9, 1956.
2. P. F. Verhulst. (1838). Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathematique et physique 10:113–121.1838.
3. Лопатников Л. И. Экономико-математический словарь. — М.: Наука, 1993.
4. http://www.inopressa.ru/nytimes/2010/09/30/15:56:00/coal.
5. Ордин А. А. Динамические модели оптимизации проектной мощности рудника. — Новосибирск: ИГД СО РАН, 1991.
6. Ордин А. А., Клишин В. И. Оптимизация технологических параметров горнодобывающих предприятий на основе лаговых моделей. — Новосибирск: Наука, 2009.
7. Курленя М. В., Ордин А. А. Об убывающей предельной эффективности разработки месторождений полезных ископаемых // ФТПРПИ. — 1998. — № 4.
8. Ордин А. А. К оценке предельных объемов добычи руды в Кузбассе на основе лагового моделирования / Сб. трудов ХII Международной научно-практической конференции «Энергетическая безопасность России: новые подходы к развитию угольной промышленности». — Кемерово, 2010.
9. Косов В. В., Лившиц В. Н., Шахназаров А. Г. и др. Методические рекомендации по оценке эффективности инвестиционных проектов. — М.: Экономика, 2000.
10. Капутин Ю. Е. Информационные технологии и экономическая оценка горных проектов. — СПб.: Недра, 2008. 11. Звягин П. З. Выбор мощности и сроков службы шахт. — М.: Госгортехиздат, 1962.
12. Опарин В. Н., Сашурин А. Д., Кулаков Г. И. и др. Современная геодинамика массива горных пород верхней части литосферы: истоки, параметры, воздействие на объекты недропользования. — Новосибирск: Изд-во СО РАН, 2008.
13. Опарин В. Н., Багаев С. Н., Маловичко А. А. и др. Методы и системы сейсмодеформационного мониторинга техногенных землетрясений и горных ударов. Т. 1. — Новосибирск: Изд-во СО РАН, 2009.
14. Опарин В. Н., Багаев С. Н., Маловичко А. А. и др. Методы и системы сейсмодеформационного мониторинга техногенных землетрясений и горных ударов. Т 2. — Новосибирск: Изд-во СО РАН, 2010.
15. R. Dimitrakopoulos. Orebody Modelling and Strategic Mine Planning: Old and new dimensions in a changing World./Ed.: Proc. of 2009 Int. Symp. 16–18 March 2009. Aus IMM, Perth, Western Australia.


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2024. Информация о сайте