JMS, Vol. 47, No. 1, 2011
GEOMECHANICS
JUSTIFICATION METHODOLOGY OF GAS REMOVAL METHODS AND
THEIR PARAMETERS IN UNDERGROUND COAL MINES
K. N. Trubetskoy, A. D. Ruban, and V. S. Zaburdyaev
The paper reports the researching into relationship of methane content, occurrence depth of coal, methane emission rate in stopes and average daily coal production; gas balance in highly productive stopes, methane content minimum value in coal beds to be put to preliminary gas removal; gas removal efficiency in close-occurred coal beds put to development. Gas removal experience in highly productive and high methane underground mines in the Kuznetsk Cola Basin is discussed.
Coal bed, methane content, underground mine, extraction district, methane emission rate, gas balance, gas removal
REFERENCES
1. J. Gale and P. Freund, «Reducing methane emission to combat global climate change: The role Russia can play,» in: Proceedings of the 2nd International Methane Mitigation Conference, Novosibirsk (2000).
2. Gas Content of Coal Fields in the USSR [in Russian], 3, Nedra, Moscow (1980).
3. A. D. Ruban, V. S. Zaburdyaev, and G. S. Zaburdyaev, Assessment of Methane Amount and Recovery Capacity in Underground Coal Mines in Russia [in Russian], IPKON RAN, Moscow (2005).
4. V. S. Zaburdyaev, A. D. Ruban, G. S. Zaburdyaev et al., Methodology Framework for Gas Removal Planning in Underground Mines in Operation and under Closure [in Russian], Skochinsky’s Institute of Mining, Moscow (2002).
5. A. D. Ruban, V. S. Zaburdyaev, G. S. Zaburdyaev et al., Methane in Underground Mines in Russia: Prediction Estimate, Recovery and Utilization [in Russian], IPKON RAN, Moscow (2006).
6. A. D. Ruban, G. S. Zaburdyaev, and V. S. Zaburdyaev, Problems of Geotechnology for Gas and Dust Hazardous Coal Beds [in Russian], Nauka, Moscow (2007).
7. A. D. Ruban, V. B. Artem’ev, V. S. Zaburdyaev et al., Preparation and Development of High Gas Content Coal Beds: Reference Aid [in Russian], A. D. Ruban and M. I. Shchadov (Eds.), Gornaya Kniga,
Moscow (2010).
8. A. D. Ruban, V. B. Artem’ev, V. S. Zaburdyaev et al., High Production Provision Problems in Stopes in High Methane Content Mines [in Russian], IPKON RAN, Moscow (2009).
9. A. D. Ruban, V. S. Zaburdyaev, and V. B. Artem’ev, «Characteristics of gas removal from coal beds in highly productive stopes,» Bezop. Truda Prom., No. 11 (2010).
10. Composite author, Gas Removal Guidelines for Underground Coal Mines. RD-15–09–2006 [in Russian], Series 05, Issue 14, Nauch.-Tekh. Ts. Bezop. Prom. OAO, Moscow (2007).
11. A. D. Ruban, V. S. Zaburdyaev, V. B. Artem’ev, and A. K. Loginov, «High production stoping practice in methane coal beds,» Ugol, No. 10 (2009).
12. V. S. Zaburdyaev, Yu. F. Rudenko et al, «Gas removal as an efficient provision of mining safety in the conditions of high methane content,» Bezop. Truda Prom., No. 11 (2010).
13. A. D. Ruban and V. S. Zaburdyaev, «Efficiency estimate of gas removal in coal beds under extraction,» Ugol, No. 11 (2010).
MODELING OF FLUID FLOW, STRESS STATE AND
SEISMICITY INDUCED IN ROCK BY AN INSTANT PRESSURE DROP
IN. A. HYDROFRACTURE
A. A. Dobroskok and A. M. Linkov
The paper presents a methodology and results of simulations of fluid flow, stress state, and seismicity induced in rock by instant pressure drop in a hydrofracture.
Poro-elasticity, rock, numerical modeling, hydraulic shock, fluid flow, effective stresses, microseismic events
REFERENCES
1. M. D. G. Salamon, «Keynote address: Some applications of geomechanical modeling in rockburst and related research,» in: Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines, R. P. Young (Ed.), Rotterdam: Balkema (1993).
2. A. M. Linkov, «Keynote address: New geomechanical approaches to develop quantitative seismicity,» in: Proceedings of the 4th International Symposium on Rockbursts and Seismicity in Mines, S. I. Gibowicz,
S. Lasocki (Eds), Rotterdam: Balkema (1997).
3. T. Wiles, R. Lachenichtm, and G. van Aswegen, « Integration of deterministic modelling with seismic monitoring for assessment of the rockmass response to mining,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds), South African Institute of Mining and Metallurgy (2001).
4. E. J. Sellers and J. A. L. Napier, « A point kernel representation of large-scale seismic activity in mining,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds), South African Institute of Mining and Metallurgy (2001).
5. S. Spottiswoode, «Keynote address: Synthetic seismicity mimics observed seismicity in deep tabular mines,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds), South African Institute of Mining and Metallurgy (2001).
6. A. M. Linkov, «Integration of numerical modeling and seismic monitoring: general theory and first steps,» in: Proceedings of International Conference on New Developments in Rock Mechanics, Yunmei Lin (Ed.), Rinton Press, New York (2002).
7. A. M. Linkov, «Numerical modeling of seismic and aseismic events in geomechanics,» Journal of Mining Science, No. 1 (2005).
8. A. M. Linkov, «Numerical modeling of seismic and aseismic events in three-dimensional problems of rock mechanics,» Journal of Mining Science, No. 1 (2006).
9. A. A. Dobroskok and A. M. Linkov, «Simulation of seismicity accompanying hydraulic fracture propagation,» in: Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco (2008).
10. A. A. Dobroskok and A. M. Linkov, «Joint numerical simulation of stress changes, acoustic emission and/or microseismicity,» in: Theses of the 23rd International Conference «Mathematical Modeling in Solid Mechanics, Boundary & Finite Elements Methods», Saint Petersburg (2009).
11. A. A. Dobroskok, A. M. Linkov, and V. V. Zoubkov, «On joint geomechanical and geophysical monitoring in mines,» Journal of Mining Science, No. 1 (2010).
12. A. A. Dobroskok and A. M. Linkov, «CV dual reciprocity BEM for transient flow in blocky systems with singular points and lines of discontinuities,» Engineering Analysis with Boundary Elements, 34,
No 3 (2010).
13. A. A. Dobroskok and A. M. Linkov, «CV BEM for transient poro-(thermo-)elastic problems concerning with blocky systems with singular points and lines of discontinuities,» Int. J. of Engineering Science, 48 (2010).
14. C. Wright, «Case study: HDTV versus early television — you get to choose,» in: Pinnacle Newsletters,
Spring (2007).
15. A. A. Dobroskok and A. M. Linkov, «Two-stage BEM for efficient solving transient thermo-(poro-)elastic problems,» in: Proceedings of the 38th Summer School-Conference «Advanced Problems in Mechanics, APM 2010», Saint Petersburg (2010).
METHANE ACCUMULATION IN NON-VENTILATED
BLIND COAL ROADWAYS
E. P. Fel’dman, G. V. Kirik, A. D. Stadnik, A. I. Spozhakin, and N. A. Kalugina
The authors propose a theoretical solution to the problem on the air displacement by methane in blind coal roadways when their ventilation is ceased. Dependences of methane ingress rate into a coal roadway and time for methane concentration to reach maximum admissible level in the roadway on coal gas content, methane filtration factor, coal’s open and closed porosity, roadway advance, conveyor speed, size of broken coal lumps and other geotechnical factors are established.
Methane, coal, mass transfer, diffusion, filtration, methane concentration, closed porosity
REFERENCES
1. A. V. Agafonov, A. I. Bobrov, E. P. Zakharov, and I. N. Popov, « Conditions for local methane concentration at conjugation of two longwalls equipped with air-ways,» Ugol Ukr., No. 7 (2004).
2. V. B. Gryadushchy and E. Ya. Samoilenko, «Prevention of explosions and methane ignitions at blind, air ways,» Ugol Ukr., No. 3 (2006).
3. V. Ya. Bel’denikov, T. Zh. Ospanov, and S. N. Byalik, «Liquidation of local methane concentrations at conjugation of longwalls and an air way,» Tekhn. Bezopasn. Okhr. Truda, Gornspasat. Delo, No. 9 (1980).
4. Coal Mine Ventilation Planning Manual [in Russian], Osnova, Kiev (1994).
5. Safety Rules and Regulations for Coal Mines, NPAOP НПАОП 10.0.-1.01–05 (State Standard Labor Protection Act) [in Russian].
6. K. Z. Ushakov, A. S. Burchakov, L. A. Puchkov, and I. I. Medvedev, Aerology of Mines: Textbook
[in Russian], Nedra, Moscow (1987).
7. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).
8. E. P. Feld’man, T. A. Vasilenko, and N. A. Kalugina, «Methane escape from coal into a closed reservoir: role of diffusion and filtration,» Fiz. Tekh. Vys. Davl., 16, No. 2 (2006).
9. Yu. M. Kovalev and S. V. Kuznetsov, «Filtration of gas in a coal seam being worked in the presence of diffusion desorption,» Journal of Mining Science, No. 6 (1974).
10. A. D. Alekseev, E. P. Fel’dman, T. A. Vasilenko et al., «Diffusion-filtration model of methane release from a coal seam,» Zh. Tekh. Fiz., 77, Issue 4 (2007).
DENSITY AND PRESSURE IN GRANULAR MEDIA IN THE GRAVITY FIELD
M. N. Skachkov
The author proposes an axiomatic model of porous medium compaction under triaxial compression. The model results agree well with the in situ measurements in carbonates down to 500 m depth and in snow banks to 10 m thick. The constitutive relations of the model are simple and pass into the volume Hooke law and into the perfect gas state equation in the respective limiting cases.
Granular materials, porosity, pressure, compaction, gravity, carbonates, snow
REFERENCES
1. E. N. Shemyakin, «Two problems in rock mechanics arising out of the working of deep ore and coal deposits,» Journal of Mining Science, No. 6 (1975).
2. A. F. Revuzhenko, S. B. Stazhevsky, and E. I. Shemyakin, «Structural-dilatance strength of rocks,» Dokl. Akad. Nauk SSSR, 305, No. 5 (1989).
3. A. F. Revuzhenko, Mechanics of Granular Media, Springer-Verlag Berlin Hiedelberg (2006).
4. V. P. Myasnikov and A. I. Oleinikov, Basic Mechanics of Heterogeneous-Resistant Media [in Russian], Dalnauka, Vladivostok (2007).
5. J. W. Schmoker and R. B. Halley, «Carbonate porosity versus depth; a predictable relation for South Florida,» AAPG Bull., 66, No. 12 (1982).
6. R. D. Tabler and R. P. Furnish, «In-depth study of snow fences,» Public Works, 113, No. 8 (1982).
7. l. A. Bekhovykh, S. V. Makarychev, and I. V. Shorina, Basic Hydrophysics [in Russian], AGAU,
Barnaul (2008).
8. L. F. Athy, «Density, porosity and compaction of sedimentary rocks,» AAPG Bull., 14 (1930).
9. H. D. Hedberg, «Gravitational compaction of clays and shales,» Am. Jour. Science, 31, No. 184 (1936).
10. J. Maxant, «Variation of density with rock type, depth and formation in the Western Canada basin from density logs,» Geophysics, 45 (1980).
11. D. B. Bah, E. W. H. Hutton, J. P. M. Syvitski, and L. F. Pratson, «Exponential approximations to compacted sediment porosity profiles,» Computers & Geosciences, Numerical Models of Marine Sediment Transport and Deposition, 27, No. 6. (2001).
12. A. M. Wilson, W. Sanford, F. Whitaker, and P. Smart, «Spatial patterns of diagenesis during geothermal circulation in carbonate platforms,» Am. Jour. Science, 301 (2001).
13. Xu-Sheng Wang, Xiao-Wei Jiang, Li Wan et al., «Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability — depth trends,» Int. J. Rock Mech. Min. Sci., 46, No. 7 (2009).
14. G. Sh. Boltachev, N. B. Volkov, S. V. Dobrov et al., «Quasi-static approximation modeling of radial magnetic-impulsive compaction of a granular medium,» Zh. Tekh. Fiz., 77, No. 10 (2007).
15. V. A. Pal’mov and E. E. Shtain, «Decomposition of finite elastic-plastic strain into an elastic component and a plastic component,» Matem. Model. Sist. Porots., No. 9 (2001).
16. A. L. Svistkov, «Differential constitutive equations for media in the finite deformation conditions,» Matem. Model. Sist. Porots., No. 13 (2005).
17. M. N. Skachkov, «Archy model of granular matter. Density and pressure relations,» Trudy DVGTU, Issue 146 (2007).
18. P. G. Nutting, «The deformation of granular solids,» J. Wash. Acad. Sci., 18 (1928).
NON-EUCLIDEAN CONTINUUM MODEL OF THE ZONAL DISINTEGRATION
OF SURROUNDING ROCKS AROUND. A. DEEP CIRCULAR TUNNEL
IN. A. NON-HYDROSTATIC PRESSURE STATE
Qihu Qian and Xiaoping Zhou
A non-Euclidean continuum model for the descriptions of the elastic stress-field distributions and fractured zones in the surrounding rock masses around the deep circular tunnels subjected to non-hydrostatic pressure are established. In the non-Euclidean continuum model, the elastic stress-field distribution of the deep surrounding rock induced by compatible deformation of non-fractured zones and incompatible deformation of fractured zones is determined. The wavy behavior of the stress components based on the non-Euclidean model are obviously different from that of the stress components which have extrema on the working contour and tend monotonically to the value of the in-situ stress at infinity in rock masses within the framework of the classical model. Mohr-Coulomb criterion is applied to research the occurrence of disintegration zones. Disintegration zones appear when the stresses in deep rock masses reach a certain critical value. It is found from the numerical results that the magnitude and site of fractured zones depend on the value of in-situ stress and non-Euclideanness parameters.
The non-Euclidean continuum model, non-hydrostatic pressure, deep circular tunnel, zonal disintegration phenomenon, fractured zones, non-fractured zones
REFERENCES
1. D. R. Cloete and A. J. Jager, «The nature of the fracture zone in gold mines as revealed by diamond core drilling,» Association of Mine Managers, Papers and Discussions (1972–1973).
2. G. R. Adms and A. J. Jager, «Retroscopic observations of rock fracturing ahead of stope faces in deep-level gold mine,» Journal of the South African Institute of Mining and Metallurgy, 80, No. 6 (1980).
3. E. A. Tropp, M. A. Rozenbaum, V. N. Reva, and F. P. Glushikhin, «Disintegration zone of rocks around workings at large depths,» Preprint No. 976, Yoffe Physicotech. Inst., Acad. of Sci. of the USSR,
Leningrad (1985).
4. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., «Disintegration zone of rocks around underground workings. Part 1: Data of full-scale observations,» Journal of Mining Science, No. 3 (1986).
5. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., «Disintegration zone of rocks around underground workings. Part 2: Rock fracture on models from equivalent materials,» Journal of Mining Science, No. 4 (1986).
6. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., «Disintegration zone of rocks around underground workings. Part 3: Theoretical concepts,» Journal of Mining Science, No. 1 (1987).
7. E. I. Shemyakin, M. V. Kurlenya, V. N. Oparin et al., «Disintegration zone of rocks around underground workings. Part 4: Practical applications,» Journal of Mining Science, No. 4 (1989).
8. S. P. Li, «Observation report of Anchor test in roadways of Quantai coal mine-and discussion on new viewpoint of anchor characteristics and parameter selection,» Journal of China College of Mining
[in Chinese], 8 No. 4 (1979).
9. Y. N. He, «Analysis of loose zone around the roadway in soft rock,» Journal of China Coal Society
[n Chinese], 16, No. 2 (1991).
10. Z. L. Fang, «Support principles for roadway in soft rock and its controlling measures,» in: Soft Rock Tunnel Support in China Mines: Theory and Practice [in Chinese], China University of Mining and Technology, Beijing, (1996).
11. V. N. Reva and E. A. Tropp, «Elastoplastic model of the zonal disintegration of the neighborhood of an underground working,» in: Physics and Mechanics of Rock Fracture as Applied to Prediction of Dynamic Phenomena. Collected Scientific Papers [in Russian], Mine Surveying Inst., Saint Petersburg (1995).
12. Q. H. Qian, «The key problems of deep underground space development:,» The Key Technical Problems of Base Research in Deep Underground Space Development: The 230th Xiangshan Science Conference [in Chinese], Beijing (2004).
13. Q. H. Qian, «The current development of nonlinear rock mechanics: the mechanics problems of deep rock mass,» in: Proceedings of the 8th Conference on Rock Mechanics and Engineering [in Chinese], Chinese Society for Rock Mechanics and Engineering (Ed.), Science Press, Beijing (2004).
14. X. P. Zhou and Q. H. Qian, «Zonal fracturing mechanism in deep tunnel,» Chinese Journal of Rock Mechanics and Engineering [in Chinese], 26, No. 5 (2007).
15. X. P. Zhou, F. H. Wang, Q. H. Qian, and B. H. Zhang, «Zonal fracturing mechanism in deep crack-weakened rock masses,» Theoretical and Applied Fracture Mechanics, 50, No. 1 (2008).
16. M. A. Guzev and A. A. Paroshin, «Non-Euclidean model of the zonal disintegration of rocks around an underground working,» Journal of Applied Mechanics and Technical Physics, 42, No. (2001).
INFLUENCE OF GROUND WATER EFFECT ON
SHALLOW TUNNEL: A CASE STUDY
Kerim Kucuk
The studies done about shallow tunnels have been going on extensively. In the shallow tunnels especially driven in population dense areas, soil-rock problems are encountered as well as ground water. Although ground water is the most common problem, it does not take place so much in literature. During tunneling, the drainage of the groundwater is the most important point that should be considered. In some cases, the drainage of ground water through the tunnel cause ground settlements in the surrounding buildings. This problem particularly seen in weak soil/rock formations could be turned into a handicap by the surface injection applications. Sometimes, injection application to prevent settlement problem and to reinforce the ground creates risky conditions such as face burst, roof collapse during tunneling. This problematic situation risks both the work safety and the environmental safety. This study investigates retrospectively the collapse of the tunnel roof and faces burst during the construction of Izmir Metro 2nd phase. Eventually, in the zone where ground water regime exists and very weak formation is present, injection study did not seem to serve the purpose.
Shallow tunnel, weak rocks, ground water flow, tunnel collapse, cement injection
REFERENCES
1. R. Goodman, Groundwater. Englewood Cliffs, Prentice-Hall, NJ (1965).
2. J. H. Hwang and C. C. Lu, «A semi-analytical method for analyzing the tunnel water inflow,» Tunnel Underground Space Tech., 22 (2007).
3. P. Perochet, «A simple solution to tunnel or well discharge under constant drawdown,» Hydrogeology Journal, 13 (2005).
4. C. E. Jacob and S. W. Lohmann, «Non steady flow to a well of constant drawdown in an extensive aquifer,» Trans. Am. Geophys. Union, 33, No. 4 (1952).
5. C. O. Aksoy, «Chemical injection application at tunnel service shaft to prevent ground settlement induced by groundwater drainage: A case study,» Int. J. Rock Mech. Min. Sci., 45 (2008).
6. K. Kucuk, M. Genis, T. Onargan et al., «Chemical injection to prevent building damage induced by ground water drainage from shallow tunnels,» Int. J. Rock. Mech. Min. Sci., 46 (2009).
7. G. N. Greenfield, «Plaisted AC. New perspective in grouting materials for the 90s and beyond,» Trenchless Tech., October (1994).
8. R. N. Karol, Chemical Grouting, 2nd Edition, Marcel Dekker; New York (1990).
9. D. M. Pappas, «Laboratory assessment of alternative longwall stabilization materials,» US Bureau of Mines Report Investment, 9152 (1988).
10. C. O. Aksoy, T. Onargan, T. Gungor, K. Kucuk, and M. Kun, The Evaluation of Excavation and Support System between Goztepe and F.Altay Stations of 2nd Stage of Izmir Metro Project, DEU-MAG, DEUEF, Izmir (2006).
11. T. Onargan and C. O. Aksoy, Report on the Evaluation of the Excavation of Type 2 Station Tunnels and Application Project on the 2nd Stage of Izmir Metro Project, Izmir, Turkey, DEUEF (2006).
12. C. O. Aksoy and T. Onargan, «The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages,» Tunneling and Underground Space Technology, 25 (2010).
13. C. O. Aksoy, O. Kantarci, and V. Ozacar, «An example for estimation of rock mass deformations around an underground opening by using numerical modeling,» Int. J. Rock Mech. Min. Sci., 47, No. 2 (2010).
14. C. O. Aksoy, «Performance prediction of impact hammers by block punch index for weak rock masses,» Int. J. Rock Mech. Min. Sci., 46, No. 8 (2009).
15. C. O. Aksoy, «Review of rock mass rating classification: Historical developments, applications and restrictions,» Journal of Mining Science, 44, No. 1 (2008).
16. C. O. Aksoy, T. Onargan, H. Yenice, K. Kucuk, and H. Kose, «Determining the stress and the convergence at Beypazar Trona Field by three dimensional elastic-plastic finite element analysis: A case study,» Int. J. Rock Mech. Min. Sci., 43, No. 2 (2006).
17. C. O. Aksoy, H. Kose, T. Onargan, Y. Koca, and K. Heasley, «Estimation of limit angle by laminated displacement discontinuity analyses in Soma Coal Field, Western Turkey,» Int. J. Rock Mech. Min. Sci., 41, No. 4 (2004).
MINERAL MINING TECHNOLOGY
NUMERICAL MODELING OF OVERBURDEN REHANDLING WITH DRAGLINES
I. V. Nazarov
The numerical modeling techniques are exposed and some mathematical problems are formulated to determine final spatial positions of the technology components included in open cutting with direct dumping, such as a disintegration of broken rocks, a rock pile and a dragline. The discussed formulations were integrated in algorithms and programs designed for automated composition of operating procedures for blasted overburden rehandling by draglines.
Mathematical modeling, drilling-and-blasting, overburden rehandling, dragline, information-and-program system
REFERENCES
1. N. V. Mel’nikov, E. I. Reentovich, B. A. Simkin et al., Open Pit Mining: Theory and Practice [in Russian], Nedra, Moscow (1979).
2. K. K. Kuznetsov, A. I. Yastrebov, L. N. Klepikov et al., Open Pit Mining Methods and Transportation
[in Russian], Nedra, Moscow (1974).
3. NIIOGR. Standard Mining Procedure for Open Pit Coal Mines [in Russian], Nedra, Moscow (1982).
4. I. L. Mordukhovich, Analysis of Work Process Parameters of Walking Draglines [in Russian], Nauka, Moscow (1984).
5. K. E. Vinnitsky, Open Pit Mining Technology Control [in Russian], Nedra, Moscow (1984).
6. E. I. Reentovich, Optimal Decision Validation for Open Mining [in Russian], Nauka, Moscow (1982).
7. L. H. Michaud and P. N. Calder, «Computerized dragline mine planning,» in: Proceedings of the First Canadian Conference on Computer Applications in Mineral Industry, Quebec (1986).
8. Selection of Blasting Schemes Subject to Physico-Mechanical Properties of Rocks and Mechanical Aids in Coal Open Pits. Instructional Guideline [in Russian], NIIOGR, Chelyabinsk (1981).
9. N. Ya. Repin (Ed.), Drilling-and-Blasting in Open Pit Mines [in Russian], Nedra, Moscow (1987).
10. A. V. Biryukov, V. I. Kuznetsov, and A. S. Tashkinov, Statistical Models of Mining Operations
[in Russian], Kuzbassvuzizdat, Kemerovo (1996).
11. M. I. Shchadov, «Determination of dragline capacity in mining with direct dumping,» Ugol, No. 13 (1979).
12. Vl. G. Pronoza and Val. G. Pronoza, «Optimization of dragline installation for single rock pile rehandling,» in: Issues of Open Coal Mining [in Russian], KuzPI, Kemerovo (1990).
13. V. S. Vagorovsky, «Efficiency of utilizing the full spectrum of working characteristics of draglines,» Ugol, No. 2 (1983).
14. V. P. Smagin, «Background and line of improvement for direct dumping techniques at Vostsibugol JSC. open pits,» Gorn. Inform.-Analit. Byull., No. 2 (1997).
15. I. V. Nazarov, «Discrete algorithm for optimal dragline installation in overburden rehandling,» Gorn. Inform.-Analit. Byull., No. 2 (2003).
USE OF GENETIC ALGORITHM IN OPTIMALLY LOCATING ADDITIONAL DRILL HOLES
S. Soltani, A. Hezarkhani, A. Erhan Tercan, and B. Karimi
Optimally locating additional drill holes depends on initial data configuration, spatial structure of the variable under study, the number of additional drill holes and shape of deposit. Several approaches have been proposed for this problem using geostatistics and optimization methods, but all of them treat the mineral deposit in 2D. An optimization procedure that is based on genetic algorithm is presented for optimally locating additional drill holes in 3D. A case study in an industrial mineral deposit using Al2O3 % grade illustrates the procedure. The results showed that this procedure is in effect in the case of varying thickness.
Kriging variance, negative kriging weights, industrial mineral deposit, heuristics methods
REFERENCES
1. D. R. Walton and P. W. Kauffman, «Some practical considerations in applying geostatistics to coal reserve estimation,» in: Proceeding of the SME-AIME Conference, Dallas (1982).
2. F. Szidarovszky, «Multiobjective observation network design for regionalized variables,» Int. J. Min. Eng., 1, No. 4 (1983).
3. D. Chou and D. E. Schenk, «Optimum locations for exploratory drill holes,» Int. J. Min. Eng., 1,
No. 4 (1983).
4. M. Gershon, L. E. Allen, and F. Manley, «Application of a new approach for drillholes location optimization,» Int. J. Min. Reclamat. Environ., 2, No. 1 (1998).
5. C. V. Deutsch, «Correcting for negative weights in ordinary kriging,» Comput. Geosci., 22, No. 7 (1996).
6. R. J. Barnes and T. B. Johnson, «Positive kriging,» in: Geostatistics for Natural Resource Characterization: NATO ASI, Dordrecht (1984).
7. F. Szidarovszky, E. Y. Baafi, and Y. C. Kirn, «Kriging without negative weights,» Math. Geol., 19,
No. 6 (1986).
8. J. Sinclair and G. H. Blackwell, Applied Mineral Inventory Estimation, Cambridge University Press, London (2002).
9. J. Rivoirard, «Looking for a kriging plan in a stockwerk deposit,» in: Geostatistics for Natural Resource Characterization: NATO ASI, Dordrecht (1984).
10. C. V. Deutsch, «Kriging in a finite domain,» Math. Geol., 25, No. 1 (1993).
11. P. Bogaert and D. Russo, «Optimal sampling design for the estimation of the variogram based on a least squares approach,» Water Resour. Res., 35, No. 4 (1999).
12. W. G. Muller and D. L. Zimmerman, «Optimal designs for variogram estimation,» Environmetrics, 10, No. 1 (1999).
13 R. M. Lark, «Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood,» Geoderma, 105, Nos. 1 and 2 (2002).
14. J. W. Van Groenigen, W. Siderius, and A. Stein, «Constrained optimisation of soil sampling for minimisation of the kriging variance,» Geoderma, 87, Nos. 3 and 4 (1999).
15. B. P. Marchant and R. M. Lark, «Optimized sample schemes for geostatistical surveys,» Math. Geol., 39, No. 1 (2007).
16. A. G. Journel and C. H. Huijbregts, Mining Geostatistics, Academic Press London (1978).
17. Y. C. Kim, F. Martino, and I. Chopra, «Application of geostatistics in a coal deposit,» J. Min. Eng., 33, No. 10 (1981).
18. M. Armstrong, «Comparing drilling patterns for coal reserve assessment,» in: Proceedings of the Australian Institute of Mining and Metallurgy, Melbourne (1983).
19. J. W. Van Groenigen and A. Stein, «Spatial simulated annealing for constrained optimization of spatial sampling schemes,» J. Environ. Qual., 27, No. 5 (1998).
20. A. B. McBratney, R. Webster, and T. M. Burgess, «The design of optimal sampling schemes for local estimation and mapping of regionalized variables: I. Theory and method,» Comput. Geosci., 7, No. 4 (1981).
21 J. Sacks and S. Schiller, «Spatial designs,» in: Proceedings of Statistical Decision Theory and Related Topics, New York (1988).
22. G. Christakos and R. A. Olea, «Sampling design for spatially distributed hydrogeologic and environmental processes,» Adv. Water Resour., 15, No. 2 (1992).
23. Q. X. Yun, and S. H. Liu, «Genetic programming for the design of underground mining methods,» in: Proceedings of the 30th International Symposium on Application of Computers and Operations Research in the Mineral Industry (APCOM 2002), Arizona (2002).
24. E. Cetin and P. A. Dowd, «The use of genetic algorithms for multiple cut-off grade optimization,» in: Proceedings on Application of Computers and Operations Research in the Mineral Industry (APCOM 2002), Arizona (2002).
25. H. Yong, Z. Kejun, G. Siwei, L. Ting, and L. Yue, «Theory and method of genetic-neural optimizing cut-off grade and grade of crude ore,» Expert Syst. Appl., 36, No. 4 (2009).
26. C. J. Karr, «Scheduling and resource allocation with genetic algorithms,» in: Proceeding of SME Conference, Albuquerque, NM (1994).
27. D. Schofield and B. Denby, «Genetic algorithms — a new approach to pit optimization,» in: Proceedings of the 24th International Symposium on Application of Computers and Operations Research in the Mineral Industry (APCOM’93), Montreal, Quebec (1993).
28. G. S. Thomas, «Optimization and scheduling of open pits via genetic algorithms and simulated annealing,» in: Proceedings of the 1st International Symposium on Mine Simulation via the Internet, Rotterdam (1997).
29. P. Samar and H. Sasaki, «Optimization of ultimate open pit shape using genetic algorithm,» Shigen Sozai, 47 (2001).
30. B. Guyaguler, R. N. Horne, L. Rogers, and J. J. Rosenzweig, "Optimization of well placement in a gulf of Mexico Waterflooding Project,’ SPE Reserv. Eval. Eng., 5, No. 3 (2002).
31. A. P. A. Da-Silva and D. M. Falcao, «Fundamentals of genetic algorithms,» in: Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, 1 Ed., Wiley (2008)
IMPACT LAW OF THE BULK RATIO OF BACKFILLING BODY TO OVERLYING STRATA MOVEMENT IN FULLY MECHANIZED BACKFILLING MINING
Zhang Jixiong, Zhou Nan, Huang Yanli, and Zhang Qiang
Fully mechanized backfilling mining technology with waste, fly ash, and loess, etc. provides advantages of safety and high efficiency to the extraction of coal under buildings, railways and water bodies. In this paper, the bulk ratios of backfilling bodies with different waste and fly ash mixture ratio was analyzed with MTS815.02 electro-hydraulic servo rock mechanical testing system and compacting device, the optimal mixture ratio of waste and fly ash was determined, and it proposed that the backfilling body should be firstly compacted after being backfilled into the goaf. With numerical simulation, the impacts of bulk ratio of waste and fly ash backfilling body to overlying strata movement law and surface subsidence controlling in backfilling mining were analyzed, and it figured out the bulk ratio of backfilling body that could ensure a reasonable range of surface subsidence. Finally, the engineering application confirmed that the strata movement controlling in fully mechanized backfilling mining was more effective, the surface buildings and facilities were not severely influenced. The above achievements could provide technical reference for the successful implementation of fully mechanized backfilling mining.
Coal extraction under buildings, water bodies and railways, waste and fly ash backfilling body, bulk ratio, fully mechanized backfilling mining, strata movement, numerical simulation
REFERENCES
1. J. A. Wang, X. C. Shang, and H. T. Ma, «Investigation of catastrophic ground collapse in Xingtai gypsum mines in China,» Int. J. Rock Mech. Min. Sci., 45 (2008).
2. J. H. Hwang and C. C. Lu, «A semi-analytical method for analyzing the tunnel water inflow,» Tunnel Underground Space Tech., 22 (2007).
3. Z. Guang, J. Ting-yao, and W. Shan, «Fly ash classification and its application in concrete,» Science and Technology of Overseas Building Materials., 28 (2007).
4. H. Le-ting, «Actuality and development keystones of mining under villages in Cchina,» Mine
Surve, 04 (1999).
5. Z. Ji-xiong and M. Xie-xing, «Underground disposal of waste in coal mine,» Journal of China University of Mining & Technology, 35 (2006).
6. Z. Wen-hai, Z. Ji-xiong, Z. Ji-sheng et al., «Research on waste filling technology and it’s matching equipment in coal mining,» Journal of Mining & Safety Engineering., 24 (2007).
7. Z. Ji-xiong, M. Xie-xing, and G. Guang-li, «Development status of backfilling technology using raw waste in coal mining,» Journal of Mining & Safety Engineering, 26 (2009).
8. Z. Ji-xiong, M. Xie-xing, M. Xian-biao, and C. Zhong-wei, «Research on waste substitution extraction of strip extraction coal-pillar mining,» Chinese Journal of Rock Mechanics and Engineering, 26 (2007).
9. Z. Ji-xiong, M. Xie-xing, and G. Guang-li, «Study on waste-filling method and technology in fully-mechanized coal mining,» Journal of China Coal Society, 35 (2010).
10. M. Xie-xing and Z. Ji-xiong, «Analysis of strata behavior in the process of coal mining by Gangue backfilling,» Journal of Mining & Safety Engineering, 24 (2007).
11. S. F. Greb and G. A. Weisenfluh, «Paleoslumps in coal-bearing strata of the Breathitt Group (Pennsylvanian), Eastern Kentucky Coal Field, USA,» Int. J. Coal Geol., 31 (1996).
12. L. R. Alejano, P. Ramirez-Oyanguren, J. Taboada, «FDM predictive methodology for subsidence due to flat and inclined coal seam mining,» Int. J. Rock Mech. Min. Sci., 36 (1999).
13. R. Trueman, G. Lyman, and A. Cocker, «Longwall roof control through a fundamental understanding of shield-strata interaction,» Int. J. Rock Mech. Min. Sci., 46 (2009).
SCIENCE OF MINING MACHINES
EFFECT OF BLOW FREQUENCY AND ADDITIONAL STATIC FORCE
ON THE VIBRO-PERCUSSION PIPE PENETRATION RATE IN SOIL
V. V. Chervov, I. V. Tishchenko, and B. N. Smolyanitsky
The authors describe and discuss experimental investigation of the effect exerted by blow frequency and additional static force on penetration rate of a pipe under vibration-percussion by a pneumatic hammer with using a measuring and recording instrumentation developed at the Institute of Mining, Siberian Branch, Russian Academy of Sciences. The penetration velocity ranges are found for the real blow frequencies of the test pneumatic hammer equipped with additional static load. Determination of static force sufficient to press the pipe in soil in hammer-free regime is reported.
Compressed air, pressure, blow frequency, penetration rate, penetration depth, force, soil
REFERENCES
1. N. A. Tsytovich, Soil Mechanics [in Russian], Vyssh. Shk., Moscow (1979).
2. Vibration Machines and Operations in Construction Engineering [in Russian], Vyssh. Shk.,
Moscow (1977).
3. V. V. Chervov, «Control of air-feed to back-stroke chamber of the pneumatic impact device,» Journal of Mining Science, No. 1 (2003).
4. V. V. Chervov, «Operation cycle of a pneumatic hammer without compressed air expansion in the back-stroke chamber,» Gorn. Inform.-Analit. Byull., No. 2 (2004).
5. V. A. Grigorashchenko, Laying Metal Pipes with Pneumatic Punchers [in Russia], Preprint No. 38, Institute of Mining, SO AN SSSR, Novosibirsk (1990).
6. V. S. Smerdin, V. V. Chervov, and V. V. Trubitsyn, «TYPHOON-290 as a rep of the new generation air-percussion machines,» Transport Stroit., No. 5 (1996).
7. B. N. Smolyanitsky, V. V. Chervov, V. V. Trubitsyn et al., «New air-percussion machines «Typhoon» for special construction,» Mekhaniz. Stroit., No. 7 (1996).
8. B. B. Danilov and B. N. Smolyanitsky, «Methods to gain better efficiency of driving steel pipes into the ground by the pneumatic hammers,» Journal of Mining Science, No. 6 (2005).
9. B. N. Smolyanitsky, I. V. Tishchenko, V. V. Chervov et al., «Sources for productivity gain in vibro-impact driving of steel elements in soil in special construction technologies,» Journal of Mining Science, No. 5 (2008).
10. V. V. Chervov, «Conditions for pipe cavity self-cleaning from soil when laying underground utility systems,» Journal of Mining Science, No. 2 (2005).
MINE AERODYNAMICS
EXPERIMENTAL JUSTIFICATION OF STATIC BEHAVIOR OF. A. FOLDING-TYPE AIR-DISTRIBUTION REGULATOR IN SUBWAY
D. V. Zedgenizov
The author explicates the procedure for investigation into static characteristics of a folding-type air-distribution regulator intended for subway tunnel airing on a scaled physical model. The static characteristics of the folding-type air regulator and the results of the numerical modeling of air distribution in subway tunnels are presented.
Ventilation control, static characteristic, air regulator, subway
REFERENCES
1. V. Ya. Tsodikov, Ventilation and Heat Supply [in Russian], 2nd Ed., Nedra, Moscow (1975).
2. A. M. Krasyuk and I. V. Lugin, «Investigation of the dynamics of air flows generated by the disturbing action of trains in the metro,» Journal of Mining Science, No. 6 (2007).
3. A. M. Krasyuk, Ventilation of Subway Tunnels [in Russian], Nauka, Moscow (2006).
4. D. V. Zedgenizov, «Air flow control in a shallow subway ventilation network,» Journal of Mining Science, No. 1 (2009).
5. A. A. Skochinsky and V. B. Komarov, Mine Ventilation [in Russian], Ugletekhizdat, Moscow (1959).
6. N. N. Petrov and N. A. Popov, «Similarity theory methods for analysis of loading parameters over SARV operating mechanisms,» in: Reliability, Efficiency and Automatic Control of the Main Mine Fan Facility. Collected Papers [in Russian], IGD SO RAN, Novosibirsk (1969).
7. I. O. Kersten, Aerodynamic Tests of Mine Ventilation Facilities. Handbook [in Russian], Nedra,
Moscow (1986).
8. State Standards GOST 10921–90. Radial and Axial Fan Facilities [in Russian], Izd. Stand., Moscow (1991).
9. A. M. Krasyuk, I. V. Lugin, and S. A. Pavlov, «Mathematical modeling of air distribution in the subway ventilation network including the piston-like motion of trains,» Gorn. Inform.-Analit. Byull., Topical Supplement: Aerology [in Russian], MGTU, Moscow (2009).
10. A. M. Krasyuk, I. V. Lugin, and S. A. Pavlov, «Circulatory air rings and their influence on their distribution in shallow subways,» Journal of Mining Science, No. 4 (2010).
MINERAL DRESSING
NEW COMPLEXING AGENTS TO SELECT AURIFEROUS PYRITE AND ARSENOPYRITE
V. A. Chanturia, T. N. Matveeva, T. A. Ivanova, N. K. Gromova, and L. B. Lantsova
The authors propose the process for selective flotation of auriferous pyrite and arsenopyrite, where the combination of xanthate, 2-hydroxylpropyl ester of diethyldithiocarbamate acid (HPEDEDCA) and oak-bark extract (OBE) is used to produce pyrite concentrate recovered into the froth product. The process provides the selective recovery of valuables into heteronymous concentrates, thus reducing the irrecoverable valuable component loss by 5 — 7 %. The complexing capacity of HPEDEDCA to gold is experimentally proved and allows using it as a selective collector of auriferous iron sulfides. The use of OBE to depress iron sulfides and arsenic in flotation of multicomponent ores contributes to higher flotation selectivity and grade of heteronymous concentrates.
Auriferous ores, pyrite, arsenopyrite, complexing agents, selective flotation
REFERENCES
1. I. N. Plaksin, G. A. Myasnikova, and A. M. Okolovich, Flotation of Arsenic-Pyrite Ores [in Russian], AN SSSR, Moscow (1955).
2. U. G. Ming, U. Shinnosuke, and H. Zhang, «Effect of cupric ions on the separation of pyrite from arsenopyrite,» Proceedings of XVIII IMPC, Vol. 5 (1993).
3. K. A. Kydros, K. A. Matis, I. N. Papadoyannis, and P. Mavros, «Selective separation of arsenopyrite from an auriferous pyrite concentrate by sulphonate flotation,» J. of Miner. Proc., 38, Nos. 1–2 (1993).
4. S. Sun and D. U. B. Wang, «A study of arsenopyrite flotation under the action of sodium sulfide,» Zhongnan kuangye xueyuan xuebao, 24, No. 2 (1993).
5. V. A. Chanturia, A. A. Fedorov, and T. N. Matveeva, «Correlation between elemental composition of the surface of auriferous pyrite an darsenopyrite and their sorption and their flotation properties,» Journal of Mining Science, No. 6 (1997).
6. V. A. Chanturiya, A. A. Fedorov, and T. N. Matveyeva, «Evaluation of technological properties of auriferous pyrites and arsenopyrite from different deposits,» Tzv. Met., No. 8 (2000).
7. V. A. Chanturia, A. A. Fedorov, and T. N. Matveeva, «Some basic mineralogical and electrophysical characteristics of auriferous pyrite and arsenopyrite flotation,» The European J. of Miner. Proc. Environ. Protec., 3, No. 2 (2003).
8. V. A. Chanturia, T. A. Ivanova, and V. D. Lunin, «New agent for separation of pyrite an arsenopyrite by flotation,» Tzvet. Metally, No. 4 (2001).
9. I. A. Kakovsky, «Investigation into physical-chemical properties of a number of organic flotation agents and their salts with ions of heavy non-ferrous metals,» in: Transactions of the Institute of Mining, USSR Academy of Sciences [in Russian], 3, Novosibirsk (1956).
10. P. M. Solozhenkin, G. Yu. Pulatov, and E. Emel’yanova, Flotation Agents [in Russian], Dushanbe (1980).
11. O. S. Bogdanova, Theory and Process for Ore Flotation [in Russian], Nedra, Moscow (1990).
12. A. A. Abramov, Flotation Beneficiation of Ores [in Russian], Nedra, Moscow (1994).
13. L. Ya. Shubov, S. I. Ivankov, and N. K. Shcheglova, Flotation Agents in Mineral Processing [in Russian], L. V. Kondrateva (Ed.), Nedra, Moscow (1990).
14. V. M. Byrko, Dithiocarbamates [in Russian], Nauka, Moscow (1984).
15. T. A. Ivanova and E. V. Koporulina, «New method for comparative evaluation of surface activity of complexing agents in flotation of gold- and platinum-bearing minerals,» in: Proceedings of VII Mineral Processing Congress of CIS [in Russian] (2009).
16. E. B. Sendell, Colorimetric Detection of Traces of Metals, Intersciences Publishers, New York (1959).
17. F. Basolo and R. Johson, Coordination Chemistry, W. A. Benjamin, New York (1964).
18. V. A. Chanturia, T. A. Ivanova, T. N. Matveeva et al., «Russian Federation Patent No. 2397025. Process for separation of pyrite and arsenopyrite,» Byull. Izobret., No. 23 (2010).
DESIGN PRINCIPLES OF SELECTIVE COLLECTING AGENTS
A. A. Abramov
On the ground of the flotation theory requirements to composition of a collector layer adsorbed at the surface of minerals under flotation and depressing, the regularities of the effect exerted by intra-molecular and inter-molecular interactions on physicochemical properties of collectors, the selectivity conditions of the relationship between the functional group of a collector and crystal lattice elements of a mineral, as well as the demands for physical sorption form of collectors, the article couches and validates design principles for selective collecting agents.
Theory and technology of flotation, flotation reagents
REFERENCES
1. A. A. Abramov, Flotation Methods [in Russian], 3rd Edition, MGGU, Moscow (2008).
2. A. A. Abramov, Flotation. Physicochemical Modeling of Processes [in Russian], MGGU, Moscow (2010).
3. A. A. Abramov, Base Metal Ores Preparation and Processing [in Russian], Vol. 3, MGGU,
Moscow (2005).
4. L. M. Kul’berg, Organic Reagents in Analytical Chemistry [in Russian], Goskhimizdat, Moscow-
Leningrad (1950).
5. D. D. Perrin, Organic Complexing Reagents, Interscience Publishers, New York (1964).
6. A. A. Abramov, S. B. Leonov, and M. M. Sorokin, Chemistry of Flotation Systems [in Russian], Nedra, Moscow (1982).
7. A. N. Grebnev and L. K. Stefanovskaya, «Coupling between chemical structure and physicochemical and flotation properties of alkylsulfates,» in: Selective Ore Flotation: State-of-the-Art and Objectives
[in Russian], Nauka, Moscow (1967).
8. С. Du Rietz, «Fatty acids in flotation,» Can. Mining J., 78, No. 8 (1958).
9. B. E. Chistyakov and N. A. Aleinikov, Flotation Properties of High Molecular Acidoses [in Russian], Nauka, Leningrad (1972).
10. H. Kirchberg and B. Wottgen, «Phosphonsauren als Sammler bei der Zinnstein-flotation,» Aufbereit.-Techn., 6, No. 12 (1965).
11. G. Gerstenberger, «Die Steigerung des Zinnausbringens im VEB Zinnerz Altenberg durch umfangreiche technologische Verbesserungen,» Freiberg. Forschungsh., A, No. 281 (1963).
12. E. Oberbillig, «Flotation of antimony ores,» Mining Mag., 110, No. 7 (1964).
13. M. M. Sorokin, E. L. Raukhvarger, and A. S. Shcheveleva, «Flotation effect of the Vetluga oil and its component,» Zh. Prikl. Khim., 37 (1964).
14. M. M. Sorokin, V. A. Glembotsky, and E. L. Raukhvarger, «Flotation properties of some of the aromatic series compounds,» in: A. A. Skochinsky IGD Scientific Reports [in Russian], Gosgortekhizdat, Moscow (1963).
15. A. N. Tsarev, «New collecting agents for iron ores,» in: Kursk Magnetic Anomaly Ores Processing and Pre-Melting Treatment [in Russian], Nauka, Moscow (1966).
16. A. N. Tsarev and A. M. Rakhmanina, «Flotation properties of (phenyl-alpha-ethyl) guaiacol,» in: Kursk Magnetic Anomaly Ores Processing and Pre-Melting Treatment [in Russian], Nauka, Moscow (1966).
17. S. I. Gorlovsky, «Collecting and modifying agents in flotation: Research findings and development trends,» in: Mekhanobr Institute Science and Technology Session VI Proceedings [in Russian], Leningrad (1959).
18. V. A. Ivanova, N. A. Aleinikov, and V. I. Marchevskaya, «Polyol ether-based flotation of titaniferous minerals,» Tsvet. Metally, No. 8 (1972).
19. S. I. Gorlovsky, M. P. Khobotova, and N. E. Shchukina, «Niobium-containing ore preparation with a complexing agent,» Tsvet. Metally, No. 2 (1966).
20. M. C. Fuerstenau, J. D. Miller, and M. C. Kuhn, Chemistry of Flotation, Society of Mineral Engineers, AIME, New York (1985).
21. M. M. Sorokin, Chemistry of Flotation Agents: Section «Oxyhydryl and Sulfhydryl Collectors» [in Russian], MISIS, Moscow (1977).
22. M. M. Sorokin, Chemistry of Flotation Agents: Section «Collectors. Physicochemical and Flotation Properties» [in Russian], MISIS, Moscow (1978).
23. E. Sorensen, «On the adsorption of some anionic collectors on fluoride minerals,» J. Colloid Interface Sci., 45, No. 3(1973).
24. I. Pradip, «Reagents design and molecular recognition at mineral surfaces,» in: Reagents for Better Metallurgy, P. S. Mulukulla (Ed.), SME-AIME Publication, Littleton, CO. (1994).
25. N. J. Reeves and S. Mann, «Influence of inorganic and organic additives on the tailored synthesis of iron oxides,» J. Chem. Soc. Faraday Trans., 87, No. 24, (1991).
26. R. J. Davey, S. N. Black, L. A. Bromley et al., «Molecular design based on recognition at inorganic surfaces,» Nature, 353 (1991).
27. S. N. Black, L. A. Bromley, D. Cottier et al., «Interactions at the organic-anorganic interface: Binding motifs for phosphonates at the surface of barite crystals,» J. Chem. Soc. Faraday Trans., 87, No. 20 (1991).
28. L. A. Bromley, D. Cottier, R. J. Davey et al., «Interactions at the organic, inorganic interface: Molecular design of crystallization inhibitors for barite,» Langmuir, 9 (1993).
29. F. Grases, A. Garcia-Raso, J. Palou et al., «A study of the relationship between the chemical structure of some carboxylic acids and their capacity to inhibit the crystal growth of calcium fluoride,» Colloids Surfaces, 54 (1991).
30. D. Arad, M. Kaftory, A. B. Zolotoy et al., «Molecular modeling for oxidative cross-linking of oleates adsorbed on surfaces of minerals,» Langmuir, 9 (1993).
31. H. Baldauf, H. Schubert, and W. Kramer, «A new reagent regime for the flotation separation of fluorite and calcite,» in: Proceedings of the International Mineral Processing Congress, Cannes (1985).
32. D. N. Collins, R. Wright, and D. Watson, «Use of alkyl imino-bis-methylene phosphonic acids as collectors for oxide and salt-type minerals,» in: Reagents in the Minerals Industry, M. R. Jones and R. Oblatt (Eds.), IMM Publication, London (1984).
33. I. L. Kotlyarevsky, E. S. Alferov, A. V. Krasnukhina et al., «New phosphoro-organic collectors for flotation of non-sulfide minerals,» in: Reagents in the Minerals Industry, M. R. Jones and R. Oblatt (Eds.), IMM Publication, London (1984).
34. S. Mann, «Molecular tectonics in biomineralization and biomimetic materials chemistry,» Nature,
365 (1993).
35. S. Mann, D. D. Archibald, Т. Douglas et al., «Crystallization at inorganic-organic interfaces: Biominerals and biomimetic synthesis,» Science, 261 (1993).
36. B. R. Heywood and S. Mann, «Crystal recognition at inorganic-organic interfaces: Nucleation and growth of oriented BaS04 under compressed Langmuir monolayers,» Adv. Mater., 4, No. 4 (1992).
37. L. D. Ratobyl’skaya, B. M. Maslennikov, N. N. Bushuev et al., «Relationship between csrystal-chemical and structural characteristics of minerals and reagents under flotation,» in: Theory of Flotation: State-of-the-Art and Future Considerations [in Russian], Nauka, Moscow (1979).
38. R. Bachman, «Aufbereitungsprobleme der deutschen Kaliindustrie,» Erzmetall, Bd. 8, Beih (1955).
39. V. Petrovich, «US Patent No. 4220525 (US). Benefication of metallic ores by froth flotation using polyhydro-xy amine depressants,» Appl. 28. 12.78; Publ. 2.09.80; MKI с1ВОЗ D 1/06.
40. M. M. Sorokin, E. L. Raukhvarger, and V. A. Glembotsky, «Naphthenic acids to floating ferrous oxides,» in: A. A. Skochinsky IGD Scientific Reports [in Russian], Nedra, Moscow (1965).
41. V. I. Melik-Gaikazyan, A. A. Abramov, Yu. B. Rubinshtein et al., Flotation Analysis [in Russian], Nedra, Moscow (1990).
42. M. M. Sorokin, Influence of Structure of Oxyhydryl Collectors on Their Flotation Properties [in Russian], Inst. Fiz. Zemli AN SSSR, Moscow (1972).
43. L. Ya. Kremnev, «Gelate emulsions,» Kolloid. Zh., No. 5 (1958).
44. O. S. Bogdanov, I. I. Maksimov, A. K. Podnek, and N. A. Yanis, Theory and Technology of Ore Flotation [in Russian], Nedra, Moscow (1990).
PRODUCTION OF APATITE CONCENTRATE FROM FINE-GRAIN CARBONATE-SILICATE TECHNOGENIC SANDS
V. I. Beloborodov, I. B. Zakharova, G. P. Andronov, and N. M. Filimonova
The Kovdorsky GOK JSC increases the production of apatite concentrates by involving fine-grain sands with 10.3 — 10.5 % Р2О5 content from waste piles into the processing flow. The new process and flotation-agent mode were developed to produce apatite concentrate with 38.3 % Р2О5 content from fine sands with 60 — 70 % content of — 0.071 mm fraction at the recovery as high as 60% Р2О5.
Apatite concentrate, Kovdorsky GOK, technogenic formation, fine-grain sands, agent mode, flotation
REFERENCES
1. G. E. Tarasov, A. N. Bykhovets, A. P. Sidorenkov, and V. V. Novozhilova, «Mining and processing of old watered tailings,» Gorny Zh., Special Issue (2002).
2. V. I. Bragina, V. P. Butyrina, V. I. Bragin et al., «Russian Federation Patent No. 2176161. Process for flotation of apatite,» Byull. Izobret., No. 33 (2001).
3. V. I. Bragina, V. P. Butyrina, V. I. Bragin et al, «Russian Federation Patent No. 2174451. Process for flotation of apatite ores,» Byull. Izobret., No. 28 (2001).
4. Yu. Z. Zinov’ev, A. D. Maslov, E. E. Kameneva et al., «Russian Federation Patent No. 2047392. Process for beneficiation of forsterite-bearing ores,» Byull. Izobret., No. 31 (1995).
5. S. N. Titikov, A. M. Vakhrushev, A. A. Chistyakov et al., «Russian Federation Patent No. 2165798. Process for flotation of potassium ores,» Byull. Izobret., No. 12 (2001).
6. L. Ya. Shubov, S. I. Ivankov, and N. K. Shcheglova, Flotation Agents in Mineral Processing [in Russian], Nedra, Moscow (1990).
7. S. N. Titkov, A. I. Mamedov, and E. I. Solov’ev, Dressing of Potassium Ores [in Russian], Nedra,
Moscow (1982).
8. V. I. Beloborodov, I. B. Zakharova, G. P. Andronov et al., «Russian Federation Patent No. 2342199. Process for beneficiation of apatite ores,» Byull. Izobret., No. 36 (2008).
NEW METHODS AND INSTRUMENTS IN MINING
MONITORING SYSTEM FOR LATERAL STRAINS AND SEISMIC PROCESSES IN BORE-HOLES AND UNDERGROUND MINE WORKINGS
V. M. Semibalamut, A. Yu. Rybushkin, V. F. Yushkin, V. N. Fedorinin, and V. I. Sidorov
The article describes a seismic deformation monitoring system composed of the seismic station «Baykal-7HR» and a strain gauge station with optico-polarization sensors for lateral strains in relief bore-holes. The presented monitoring system is equipped with a GPS-receiver and a self-contained data pickup device for real-time measurement and data coordination, which is very important in controlling stress conditions of rocks in underground rooms and pillars.
Rocks, destruction, sensor, seismic measurement, dynamic strains
REFERENCES
1. R. L. Salganik, «Mechanics in bodies with many cracks,» Mekh. Tverd. Tela, No. 4 (1973).
2. V. M. Baranov, Acoustic Measurements in Nuclear Engineering [in Russian], Energoatomizdat,
Moscow (1990).
3. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relations of linear block dimensions of rock to crack opening in the structural hierarchy of masses,» Journal of Mining Science, No. 3 (1993).
4. M. V. Kurlenya, V. N. Oparin, A. P. Tapsiev, and V. V. Arshavsky, Geomechanical Interaction Processes in Rock Masses and Backfills in Underground Ore Mining [in Russian], Nauka, Novosibirsk (1997).
5. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part I,» Journal of Mining Science, No. 3 (1999).
6. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part II,» Journal of Mining Science, No. 4 (2000).
7. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum et al., Zonal Disintegration of Rocks and the Stability of Underground Openings [in Russian], SO RAN, Novosibirsk (2008).
8. V. N. Oparin, A. D. Sashurin, A. V. Leont’ev et al., Contemporary Geodynamics in the Upper Lithosphere: Source, Parameters, Subsoil Impact [in Russian], SO RAN, Novosibirsk (2008).
9. V. N. Oparin, B. F. Simonov, V. F. Yushkin et al., Geomechanical and Technical Basics of Enhanced Oil Recovery by Vibration Treatment [in Russian], Nauka, Novosibirsk (2010).
10. V. N. Oparin, V. N. Fedorinin, V. M. Zhigalkin et al., «Devices for continuous recording of the parameters of deformation-wave processes in rock mass. Part III: Probe for measuring lateral borehole strains and its design,» Journal of Mining Science, No. 5 (2005).
11. V. N. Oparin, B. D. Annin, Yu. V. Chugui et al., Modeling and Field Research Methods and Instruments for Nonlinear Deformation-Wave Processes in Block-Structured Rock Masses [in Russian], SO RAN, Novosibirsk (2007).
12. V. F. Yushkin, A. S. Izotov, V. N. Fedorinin et al., «Strain gauge station composed of measurement probes and optico-polarization sensors to estimate cross-section strains in bore-holes,» in: «Fundamental Problems in the Formation of Human-Induced Geo-Environment» Conference Proceedings [in Russian], IGD SO RAN, Novosibirsk (2010).
13. V. N. Oparin, S. N. Bagaev, Yu. V. Chugui et al., Seismic Deformation Monitoring Methods and Systems for Mining-Induced Earthquakes and Rock Bursts [in Russian], Vol. I, N. N. Mel’nikov (ed.), SO RAN, Novosibirsk (2009).
14. V. I. Yushin, N. I. Geza, V. F. Yushkin, and S. S. Polozov, «Measurement of rock movement under blasting in surface mines,» Journal of Mining Science, No. 5 (2010).
15. V. P. Potapov, Yu. V. Chugui, V. F. Yushkin et al., «Development of stations of deep-seated benchmarks with optoelectronic sensors to monitor roof rock movements in underground workings,» in: «Fundamental Problems in the Formation of Human-Induced Geo-Environment» Conference Proceedings [in Russian], IGD SO RAN, Novosibirsk (2010).
16. V. N. Fedorinin and V. I. Sidorov, «Polarization optical sensors for physical values,» Zh. Analit. Khim., 55, No. 7 (2005).
Версия для печати (откроется в новом окне)
|