JMS, Vol. 46, No. 6, 2010
GEOMECHANICS
ROCK MECHANICS ASPECTS IN DEEP WELL DRILLING
L. A. Nazarova, L. A. Nazarov, I. N. El’tsov, and V. A. Kindyuk
Based on the proposed modeling approach to deep well drilling with the use of equations of state of an elastoplastic medium with dilatancy, the authors have found nonlinear relationship between dimension of probable failure zones in the wellbore vicinity and the value of lateral thrust coefficient, as well as they explain the causes of rise in speed of drilling at the depth of 3 — 4 kilometers.
Rock mass, vertical well, drilling, elastoplastic medium with dilatancy, irreversible strains, finite element method
REFERENCES
1. A. G. Kalinin, Oil and Gas Well Drilling [in Russian], TsentrLitNefteGaz, Moscow (2008).
2. A. M. Svalov, Mechanics of Drilling and Oil-and-Gas Production Processes [in Russian], «Librokom» Books House, Moscow (2009).
3. L. V. Budyko, «Alignment of logging instruments in an uncased well,» Karotazhnik, No. 95 (2002).
4. M. D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge (2007).
5. A. Settari and V. Sen, «The role of geomechanics in integrated reservoir modeling,» The Leading Edge, 26, No. 5 (2007).
6. N. Barton, Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor and Francis Group, London, UK (2007).
7. V. N. Oparin, B. F. Simonov, L. A. Nazarov, et al., Geomechanics and Geotechnics Foundations to Oil Production Enhancement with Vibro-Wave Technologies [in Russian], Nauka, Novosibirsk (2010).
8. J. M. Carcione, H. B. Helle, and A. F. Gangi, «Theory of borehole stability when drilling through salt formations,» Geophysics, 71, F31 (2006).
9. A. N. Papusha and D. P. Gontarev, «Assessment of stress-strain state in rocks in the vicinity of a super deep vertical well,» Gorn. Inform.-Analit. Byull., No. 5 (2010).
10. J. Tronvoll, I. Larsen, L. Li, et al., «Rock mechanics aspects of well productivity in marginal sandstone reservoirs: Problems, analysis methods, and remedial actions,» in: Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana (2004).
11. R. T. Ewy, «Wellbore-stability by use of a modified Lade criterion,» SPE Drill&Compl., 14, No. 2 (1999).
12. J. Wang, R. G. Wan, A. Settari, and D. Walters, «Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes,» in: Alaska Rocks 2005 Proceedings of the 40th U. S. Symposium on Rock Mechanics, Anchorage (2005).
13. M. J. Kennedy, I. D. Moore, M. Asce, and G. D. Skinner, «Development of tensile hoop stress during horizontal directional drilling through sand,» International Journal of Geomechanics,6, No. 5 (2006).
14. A. White, B. McIntyre, D. Castillo, et al., «Updating the geomechanical model and calibrating pore pressure from 3D seismic data from the Gnu-1 Well, Dampier, Subbasin, Australia,» SPE Reservoir Evaluation&Engineering, June(2009).
15. V. N. Nikolaevsky, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).
16. O. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).
17. L. A. Nazarova and L. A. Nazarov, «Dilatancy and the formation and evolution of disintegration zones in the vicinity of heterogeneities in a rock mass,» Journal of Mining Science, No. 5 (2009).
18. S. V. Kuznetsov, V. N. Odintsev, M. E. Slonim, and V. A. Trofimov, Methodology for Rock Pressure Calculation [in Russian], Nauka, Moscow (1981).
19. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1982).
20. Yu. P. Stefanov and M. Tierselen, «Modeling of the high-porous material behavior during origination of the localized compression strips,» Fiz. Mezomekh., 10, No. 1 (2007).
21. V. V. Rzhevsky and G. Ya. Novik, Fundamentals of Physics of Rocks [in Russian], Nedra, Moscow (1973).
22. M. L. Zoback, «First- and second-order patterns of stress in the lithosphere: The world stress map project,» Journal of Geophysical Research, 97, Nо. B8 (1992).
23. T. Engelder, Stress Regimes in the Lithosphere, Princeton, New Jersey (1993).
24. L. A. Nazarova, «Estimating the stress and strain field of the Earth’s crust on the basis of seismotectonic data,» Journal of Mining Science, No. 1 (1999).
STICK-SLIP MECHANISM IN. A. GRANULAR MEDIUM
A. P. Bobryakov
The article describes experimental data on an unsteady slip of granular materials under soft shear loading. The common features are established between the obtained discontinuous slip of a granular material and the «stick-slip» model of solid bodies with a rigid contact. The mechanism is specified by reduction in the dry friction force during transition from the rest state to a slip. The author found the area of the shear-force drop depending on the particle slip velocity for quarts sand. The process refers to a slow-motion class and is an intermediate stage in transition from very slow to faster motion.
Shear, soft loading, granular medium, discontinuous slip, dry friction, interstitial pressure, slow motion
REFERENCES
1. W. F. Brace and J. D. Byerlee, «Stick-slip as a mechanism of earthquakes,» Science, 153, No. 3739 (1966).
2. A. Pervozvanski and C. Canudas-de-Wit, «Vibrational smoothing in systems with dynamic friction,» Preprints of the 4th IFAC Nonlinear Control Systems Design Symposium, 2 (1998).
3. A. P. Bobryakov and A. V. Lubyagin, «Experimental investigation into unsteady slippage,» Journal of Mining Science, No. 4 (2008).
4. V. P. Kosykh, «Displacement discontinuity distribution in granular materials under confined-space shearing,» Journal of Mining Science, No. 3 (2010).
5. V. D. Kazarnovsky, «Dynamic soil rheology,» Transaction of the «SoyuzdorNII» [in Russian]
Issue 194 (1997).
6. V. D. Kazarnovsky, «Mechanism for residual strain accumulation in compacted sand soil under short-time loads,» Osn., Fund. Mekh. Grunt., No. 5 (2008).
7. N. N. Maslov, Conditions for Stability of Water-Saturated Sands [in Russian], Gosenergoizdat,
Leningrad (1959).
8. V. N. Oparin and B. F. Simonov, «Nonlinear deformation-wave processes in the vibrational oil geotechnologies,» Journal of Mining Science, No. 2 (2010).
9. S. N. Bagaev, V. N. Oparin, V. A. Orlov, et al., «Pendulum waves and their singling out in the laser deformograph records of the large earthquakes,» Journal of Mining Science, No. 3 (2010).
10. V. N. Rodionov and I. A. Sizov, «Dynamics of slow slip of rock blocks,» Geoekol., No. 4 (1999).
11. G. G. Kocharyan, A. A. Kalyukin, and D. V. Pavlov, «Specific features of dynamics of interblock deformation in the crust,» Geol. Geofiz., 47, No. 5 (2006).
12. S. V. Gol’din, «Disruption of the lithosphere and physical mesomechanics,» Fiz. Mezomekh., 5,
No. 5 (2002).
13. A. I. Chanyshev and O. E. Belousova, «Interpretation of zonal rock mass disintegration in the surrounding rocks of mine workings,» Fiz. Mezomekh., 12, No.1 (2009).
14. Chris J. Marone, C. H. Scholz, and R. Bilham, «On the mechanics of earthquake afterslip,» J. Geophys. Res., 96, Nо. B 51 (1991).
THE INCLUSION OF RHEOLOGICAL PROPERTIES OF ROCKS
TO CALCULATION OF STRESS-STRAIN STATE OF
AN UNDERMINED ROCK MASS
V. M. Seryakov
The procedure proposed for calculation of deformation and collapse of underworked strata is based on using the stiffness calculation matrix, representing the pre-mining state of rocks. The initial stress method is employed to account for variations in elastic constants in the deformation area in terms of the linear viscosity-elasticity. Potentialities of the described approach are considered. A number of solutions to the research problems are presented.
Rock mass, goaf, stress, strain, stiffness matrix, modeling, initial stress method, rheological model
REFERENCES
1. S. D. Viktorov, M. A. Iophis, and S. A. Goncharov, Convergence and Failure of Rocks [in Russian], Nauka, Moscow (2005).
2. V. M. Seryakov, «Calculation of stress-strain state of an over-goaf rock mass,» Journal of Mining Science, No. 5 (2009).
3. I. A. Turchaninov, M. A. Iophis, and E. V. Kasparyan, Fundamentals of Rock Mechanics [in Russian], Nedra, Leningrad (1989).
4. O. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).
5. A. B. Fadeev, Finite Element Method in Geomechanics [in Russian], Nedra, Moscow (1987).
6. N. A. Samodelkina, «On method to take into account the rheological properties of rocks in finite-element analysis of geomechanical processes,» Journal of Mining Science, No. 6 (2003).
7. V. M. Pestrenin and N. V. Pestrenina, «Nonlinear hereditary model for the prestressed salt rocks,» Journal of Mining Science, No. 1 (2010).
8. N. N. Malinin, Applied Plasticity and Creep Theory [in Russian], Mashinostroenie, Moscow (1975).
9. H. Bock (Ed.), An Introduction to Rock Mechanics, James Cook University of North Queensland, Townsville, Australia (1978).
10. A. A. Borisov, Mechanics of Rocks and Rock Masses [in Russian], Nedra, Moscow (1980).
11. Ya. Farmer, Coal Mine Workings [in Russian], Nedra, Moscow (1990).
TRACING OF STRESS CIRCLE ENVELOPE BASED ON THE
CALCULATION AND EXPERIMENT DATA
V. M. Zhigalkin, T. A. Luzhanskaya*, B. A. Rychkov*,
O. M. Usol’tseva, and P. A. Tsoi
The article describes theoretical determination approach to strength limits in rocks exposed to triaxial compression (von Karman scheme). This approach involves experimental results of uniaxial compression or tension strength limits, or one of them, as the input information. Agreement of the calculated and experimental values for different hardness rocks has been achieved, which is displayed in forecasting positions of stress circles under different stress states.
Stress, strain, strength limits, stress circles, shear plane, stress circle envelope
REFERENCES
1. A. B. Fadeev (Ed.), Strength and the Deformation Ability of Rocks [in Russian], Nedra, Moscow (1979).
2. Yu. N. Rabotnov, Mechanics of the Deformable Solid [in Russian], Nauka, Moscow (1979).
3. T. B. Duishenaliev, K. R. Koichumanov, R. M. Sultanaliev, and M. Chynybaev, «The quantitative description of Mohr’s theory of failure,» in: Deformation and Failure of Materials with Defects and the Dynamic Phenomena in Rocks and Mine Workings. Transactions of the XVII International Scientific School of Academician S. A. Khristianovich [in Russian], Alushta (2007).
4. B. A. Rychkov, Zh. Y. Mamatov, and E. I. Kondrat’eva, «Determination of the ultimate tensile strength of rocks by the uniaxial compression test data,» Journal of Mining Science, No. 3 (2009).
5. A. V. Pogorelov, Differential Geometry [in Russian], Nauka, Moscow (1974).
6. B. A. Rychkov, «Yield criterion, dilatation, and rock failure,» Journal of Mining Science, No. 1 (2001).
7. A. N. Stavrogin and A. G. Protosenya, Plasticity of Rocks [in Russian], Nedra, Moscow (1979).
8. H. Bock (Ed.), An Introduction to Rock Mechanics, James Cook University of North Queensland, Townsville, Australia (1978).
9. R. E. Goodman, Introduction to Rock Mechanics, Wiley, New York (1980).
10. V. A. Asanov, A. A. Baryakh, I. L. Pan’kov, et al., «Deformation tests of salt rocks,» Gorn. Inform.-Analit. Byull., No. 5 (2007).
11. V. M. Zhigalkin, V. N. Semenov, O. M. Usol’tseva, et al., «Deformation of quasi-plastic salt rocks under different conditions of loading. Report II: Regularities of salt rock deformation under triaxial compression,» Journal of Mining Science, No. 1 (2008).
SEISMIC APPROACH TO LOCATION OF METHANE ACCUMULATION ZONES
IN. A. COAL SEAM
M. V. Kurlenya, A. S. Serdyukov*, S. V. Serdyukov, and
V. A. Cheverda**
A new approach offered by authors to detecting accumulation and circulation sites of free methane is based on seismic sounding of a zone in the course of its stress-strain state alteration, which provides selective detection of anisotropic zones highly sensitive to geomechanical impact. The article describes numerical experiments and the experience of using the modern seismic-tomography algorithm of data processing.
Coal seam, methane, gasdynamic events, conjugated fractures, seismic sounding, transversal-isotropic medium, inverse kinematic problem
REFERENCES
1. N. Ya. Azarov and D. V. Yakovlev, Seismoacoustic Predication of Geological Factors in Coal Mining
[in Russian], Nedra, Moscow (1988).
2. M. V. Kurlenya and S. V. Serdyukov, «Methane desorption and migration in thermodynamic disequilibrium coal beds,» Journal of Mining Science, No. 1 (2010).
3. S. R. Nogikh, V. A. Ashurkov, and M. K. Durnin, «Underground degassing and coal extraction safety issues in Kuzbass,» Sibir. Ugol XXI Vek., Nos. 6 and 7 (2009).
4. T. P. Zhuze, Hydrocarbon Migration in Sedimentary Strata [in Russian], Nedra, Moscow (1986).
5. I. V. Vysotsky, Geology of Natural Gas [in Russian], Nedra, Moscow (1979).
6. Problems and Prospects of Comprehensive Mineral Development in the Eastern Donetsk Coal Basin
[in Russian], YUNTS RAN, Rostov-on-Don (2005).
7. V. Grechka, Applications of Seismic Anisotropy in the Oil and Gas Industry, EAGE, Netherlands (2009).
8. V. V. Grechukhin, Geophysical Research of the Coal-Bearing Formations [in Russian], Nedra,
Moscow (1980).
9. S. V. Serdyukov, I. Yu. Sil’vestrov, and V. A. Cheverda, «Downhole seismic monitoring system for variable elasticity of a seam: resolving capacity and information content,» Tekhnol. Seismorazv., No. 2 (2010).
10. L. Thomsen, «Weak elastic anisotropy,» Geophysics, 51, No. 10 (1986).
11. M. Schoenberg and C. Sayers, «Seismic anisotropy of fractured rock,» Geophysics, 60 (1995).
12. M. I. Protasov, A. S. Serdyukov, and V. A. Cheverda, «Optimized transversal-isotropic medium parametrization to transform the first wave arrivals for the vertical seismic profiling system with remote sources,» Tekhnol. Seismorazv., No. 3 (2010).
GEOMEDIUM DEFORMATION IN CONCURRENT RECOVERY
OF TWO PRODUCTIVE STRATA AT THE SHTOKMANOVSKY DEPOSIT
S. N. Savchenko
Analytical relationship between variations in the equivalent Young modulus for rocks of productive strata and the magnitude of pore-pressure drop and porosity of collector rocks is proposed for the numerical modeling of geomedium deformation in hydrocarbon deposits. The substantiation of the new method is laid out. The research subject is specific features of deformation of the sea bottom, roof and floor of productive strata under concurrent recovery of more than one stratum.
Rock, productive stratum, pore fluid pressure, strain
REFERENCES
1. S. N. Savchenko and A. I. Kalashnik, «Investigation into strains of the Shtokmanovsky geological medium under mining,» in: Proceedings of All-Russian Scientific Conference on Computer Processes for Mine Design and Planning [in Russian], Apatity, Saint Petersburg (2009).
2. Yu. O. Kuz’min, Modern Geodynamics and Evaluation of Geodynamic Risk in Exploitation of Mineral Resources [in Russian], Agent. Ekonom. Novostei, Moscow (1999).
3. Yu A. Kashnikov and S. G. Ashikhmin, Rock Mechanics in Hydrocarbon Deposit Development
[in Russian], Nedra, Moscow (2007).
4. M. V. Kurlenya, A. A. Krasnovsky, and V. E. Mirenkov, «Math modeling of deformation of a rock mass with an oil-bearing bed,» Journal of Mining Science, No. 5 (2007).
5. A. A. Krasnovsky and V. E. Mirenkov, «Calculation of stress-strain state in a rock mass with an oil formation,» Journal of Mining Science, No. 2 (2008).
6. M. V. Kurlenya, A. A. Krasnovsky, and V. E. Mirenkov, «Stresses and displacements of rocks hosting a mineral-bearing bed,» Journal of Mining Science, No. 4 (2008).
7. U. H. Fertl’, Abnormal Formation Pressures. Their Role in Exploration and Exploitation of Oil and Gas Fields [in Russian], Moscow (1980).
ROCK FAILURE
WAVE PROPAGATION IN THE 2D PERIODICAL MODEL OF A
BLOCK-STRUCTURED MEDIUM. PART I: CHARACTERISTICS
OF WAVES UNDER IMPULSIVE IMPACT
N. I. Aleksandrova and E. N. Sher
The authors use a two-dimension plane model to analyze seismic wave propagation in block-structured media under impulse loading. Dynamics of the medium is described by means of pendulum approximation, where blocks are considered incompressible and deformation and displacement occur via compressible intermediate layers. The simplest calculation model of a square lattice composed of masses and springs connected in axial and diagonal directions is under discussion in the article.
Block-structured medium, seismic waves, two-dimension lattice of masses, impulse loading, point source
REFERENCES
1. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl. Akad. Nauk SSSR, 247, No. 4 (1979).
2. M. V. Kurlenya, V. V. Adushkin, and V. N. Oparin, «Alternating response of rocks to the dynamic impact,» Dokl. Akad. Nauk SSSR, 323, No. 2 (1992).
3. M. V. Kurlenya, V. N. Oparin, P. F. Morozov, et al., «Phenomenon of self-organization in artificial masses with the formation of cellular structure consisted of cells with a passive core and active shell,» Dokl. Akad. Nauk SSSR, 323, No. 6 (1992).
4. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Formation of elastic wave packages in the block-structured medium under impulse loading. Pendulum type waves,» Dokl. Akad. Nauk SSSR, 333, No. 4 (1993).
5. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum-type waves. Part II: Experimental methods and main results of physical modeling,» Journal of Mining Science, No. 4 (1996).
6. M. V. Kurlenya, V. N. Oparin, V. I. Vostrikov, et al., «Pendulum-type waves. Part III: Data of on-site observations,» Journal of Mining Science, No. 5 (1996).
7. N. I. Aleksandrova, «Elastic wave propagation in block medium under impulse loading,» Journal of Mining Science, No. 6 (2003).
8. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Journal of Mining Science, No. 6 (2004).
9. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «Experimental investigation into the one-dimensional calculated model of wave propagation in block medium,» Journal of Mining Science, No. 3 (2005).
10. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, «Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,» Journal of Mining Science, No. 6 (2007).
11. N. I. Aleksandrova, E. N. Sher, and A. G. Chernikov, «Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves,» Journal of Mining Science, No. 3 (2008).
12. V. A. Saraikin, «Calculation of wave propagation in the two-dimensional assembly of rectangular blocks,» Journal of Mining Science, No. 4 (2008).
13. V. A. Saraikin, «Elastic properties of blocks in the low-frequency component of waves in a 2D medium,» Journal of Mining Science, No. 3 (2009).
14. V. A. Saraikin, «Low-frequency wave propagation in a block structured model,» Prikl. Mekh. Tekh. Fiz., No. 6 (2009).
15. С. Lord Rayleigh, «On the maintenance of vibrations by forces of double frequency, and the propagation of waves through a medium endowed with periodic structure,» Phil. Mag., 145 (1887).
16. L. Brillouin, Wave Propagation in Periodic Structures, Dover Publication, New York (1953).
17. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic
Approximation, Academic Press, New York (1963).
18. D. J. Mead, «Vibration response and wave propagation in periodic structures,» J. Eng. in Industry, 93 (1971).
19. L. I. Slepyan, Nonstationary Elastic Waves [in Russian], Sudostroenie, Leningrad (1972).
20. M. Ayzenberg-Stepanenko and L. Slepyan, «Resonant-frequency primitive waveforms and star waves in lattices,» Journal of Sound and Vibration, 313 (2008).
21. N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and E. N. Sher, «Modeling the elastic wave propagation in a block medium under the impulse loading,» Journal of Mining Science, No. 5 (2009).
22. J. S. Jensen, «Phononic band gaps and vibrations in one- and two-dimensional mass — spring structures,» Journal of Sound and Vibration, 266 (2003).
PRE-STRESSING OF AN OPEN PIT BENCH DURING LARGE-SCALE BLASTING
S. V. Muchnik
Large-scale blasting induces Rayleigh waves. It is possible to make these waves interfere and to form their crest by choosing a proper range of blast delays. The positive half-wave propagation over a projected loosening zone of every next detonated shot hole will generate tensile stresses, which will enhance blasting effect.
Open pit, large-scale blast, Rayleigh waves, interference
REFERENCES
1. V. I. Andreev and A. G. Ignat’ev, «Modern explosion systems,» Vzryv. Delo, No. 102/59 (2009).
2. D. E. Safiullin, et al., «Safe and efficient stone quarrying with the intelligent electronic explosion systems in Novosibirsk Region,» Bezop. Truda Prom., No. 6 (2007).
3. V. V. Andreev, E. N. Sher, and A. N. Grishin, «Seismic vibrations to be used in new, pyrotechnic and electronic explosion systems,» in: Proceedings of the Conference on Fundamental Problems in the Formation of Human-Induced Geo-Environment [in Russian], Volume I, IGD SO RAN,
Novosibirsk (2009).
4. V. D. Vorob’ev and V. V. Peregudov, Hard Rock Blasting [in Russian], Naukova Dumka, Kiev (1984).
5. S. V. Muchnik, «Higher effect of the surface waves during massive blasting with nonelectric initiation at open pits,» Journal of Mining Science, No. 5 (2009).
SCIENCE OF MINING MACHINES
THE SUPEREXCITATION AND EFFICIENCY RELATION
IN. A. SHORT-STROKE PULSED ELECTROMAGNETIC
MOTOR OF. A. SEISMIC SOURCE
V. P. Pevchev
The article analyzes the influence exerted by the shape of excitation current pulse in a short-stroke pulsed electromagnetic motor of a seismic source on the mechanical energy, energy loss and efficiency of the electromagnet, with regard to a drop in magnetomotive force in magnetic circuit and effect of the current displacement in conductive tracks in the magnet winding.
Pulsed electromagnet, short-stroke electromagnetic motor, pulse shape, efficiency
REFERENCES
1. V. P. Pevchev, «Characteristics of a pulsed power system for the electromagnetic motor of a seismic source,» Vestnik KGTU, No. 3 (2009).
2. V. V. Ivashin, «Influence of the magnetic field superexcitation in an electromagnet on its response time and energy conversion efficiency,» Izv. Vuzov, Elektromekh., No. 2 (1986).
3. V. V. Pevchev, «Principal dimensions of the short-stroke electromagnet motor for a seismic wave generator,» Journal of Mining Science, No. 4 (2009).
4. G. G. Ugarov, «Pulsed linear electromagnetic motors with enhanced force and energy performance,» Dr. Eng. Synopsis of Thesis [in Russian], Novosibirsk (1992).
5. V. V. Ivashin, «Circuits of current rise in capacitive storages and their use in independent electric power sources,» in: Education, Science and Production: Pedagogical, Economical and Social Aspects. Collected Works [in Russian], TPI, Tolyatti (1998).
6. I. P. Kopylov, Electrical Engineering. Higher Education Guidance [in Russian], Energia, Moscow (1980).
GEOINFORMATICS
DEVELOPMENT OF DISTRIBUTED GIS CAPACITIES TO MONITOR
MIGRATION OF SEISMIC EVENTS
V. N. Oparin, V. P. Potapov*, S. E. Popov*, R. Yu. Zamaraev*, and
E. I. Kharlampenkov*
There is a description of the GIS development experience to analyze regional seismic energy liberation, based on distributed web-technologies and mathematical methods of scanning of underground seismic information. The authors consider theoretical issues and practical approaches in the field of available international standards and formats for acquiring, processing and storing of seismic data.
Seismic events, migration, seismic activity analysis, geo-information system, cartographical web-service
REFERENCES
1. V. N. Oparin, A. D. Sashurin, G. I. Kulakov, et al., Contemporary Geodynamics of the Upper Lithosphere: Sources, Parameters, Impacts [in Russian], SO RAN, Novosibirsk (2008).
2. Web page: Neogeography. Technologies of the Time and Space [in Russian]. Available at: http://www.neogeography.ru.
3. Official site of the Kazakhstan Institute of Geophysical Research, Nation Data Center. Available in English at: http://www.kndc.kz.
4. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «A method of scanning of underground seismic information,» Dokl. Akad. Nauk SSSR, 333, No. 6 (1993).
MINERAL DRESSING
EFFECT OF THE HYPERGENESIS OXIDATION ON THE PROCESSING
BEHAVIOR AND PREPARATION CHARACTERISTICS
OF COPPER-ZINC PYRITIC ORE
V. E. Vigdergauz, D. V. Makarov*, E. V. Belogub**, E. A. Shrader,
I. N. Kuznetsova, I. V. Zorenko*, and L. M. Sarkisova
The paper presents the modeling and analysis of oxidation of copper-zinc pyritic ore sampled from the Valentorsky orebody. It is found that the oxidized samples contain copper and zinc sulfates that are leached under the sample and water contact. It is shown that sulfide floatability is decreased by the longer-term oxidation. The authors advise to improve nonferrous metals extraction by the joint leaching and ultrasonic treatment of oxidized compounds.
Copper-zinc pyritic ore, oxidation, flotation
REFERENCES
1. V. A. Chanturia, V. N. Makarov, and D. V. Makarov, Ecology and Technology Issues in Processing the Sulfide-Bearing Tailings and Reject Materials [in Russian], KNTS RAN, Apatity (2005).
2. V. E. Vigdergauz, D. V. Makarov, I. V. Zorenko, et al., «Effect exerted by structural features of copper-zinc ores on their oxidation and technological properties,» Journal of Mining Science, No. 4 (2008).
3. E. V. Belogub, «Sulfide deposits hypergenesis in the South Urals,» Synopsis of the Dr. Geol.-Min. Sci. Thesis [in Russian], Saint Petersburg (2009).
4. E. V. Belogub, E. P. Shcherbakova, and N. K. Nikandrova, Sulfates of the Urals [in Russian], Nauka, Moscow (2007).
5. B. D. Khalezov, «Research and development of a heap leaching technology for copper and copper-zinc ores,» Synopsis of the Dr. Eng. Thesis [in Russian], Ekaterinburg (2009).
6. M. Aneesuddin, P. N. Char, M. Raza Hussain, and E. R. Saxena, «Studies on thermal oxidation of chalcopyrite from Chitradurga, Karnataka State, India,» Journal of Thermal Analysis, 26 (1983).
7. B. S. Boyanov, R. I. Dimitrov, and ?. D. ?ivkovi?, «Thermal behaviour of low-quality zinc sulphide concentrate,» Thermochimica Acta, 296 (1997).
ELECTROCHEMISTRY OF GALENA OXIDATION AS
THE BASIS FOR OPTIMIZATION OF AGENT MODES
IN FLOTATION OF POLYMETALLIC ORES
B. E. Goryachev, A. A. Nikolaev, and L. N. Lyakisheva
The authors studied electrochemical oxidation of a galena electrode in aqueous alkaline solutions and established the limiting stage of galena oxidation and its kinetic characteristics. IR-spectroscopy analysis of oxidation products showed that complex chemical compounds were formed on the surface of the galena electrode under controllable oxidation.
Galena electrode, cathode and anode polarization, alkaline solutions, kinetic characteristics of galena oxidation, Tafel areas, surface passivation, IR-spectroscopy
REFERENCES
1. V. M. Avdokhin and A. A. Abramov, Oxidation of Sulfide Minerals in Beneficiation Stage [in Russian], Nedra, Moscow (1989).
2. V. A. Chanturia and V. E. Vigdergauz, Sulfide Electrochemistry. Flotation Theory and Practice
[in Russian], Ruda Metally, Moscow (2008).
3. H. Hagihara, «Surface oxidation of galena in relation to its flotation as revealed by electron diffraction,» J. Phys. Chem., 56 (1952).
4. R. L. Paul, M. J. Nicol, and J. W. Diggle, «The electrochemical behavior of galena (lead sulphide). 1. Anodic dissolution,» Electrochim. Acta, 23, No. 7 (1978).
5. P. AI. Rand and R. Woods, «Eh measurement in sulphide mineral slurriеs,» J. Miner. Process., No. 13 (1984).
6. M. Sato, «Oxidation mechanisms of sulphide minerals at 25 C. Oxidation of sulphide ore bodies, II,» Econ. Geol., 55, No. 6 (1960).
7. V. E. Vigdergauz and S. A. Kondrat’ev, «Role of dixantogen in froth flotation,» J. Min. Sci., No. 4 (2009).
8. V. S. Strizhko, B. E. Goryachev, and S. M. Ulasyuk, «Main kinetic parameters of electrochemical galena oxidation in alkaline solutions,» Izv. Vuzov, Tsvet Metally, No. 6 (1986).
9. A. L. Rotinyan, K. I. Tikhonov, and I. A. Shoshina, Theoretical Electrochemistry [in Russian], Khimia, Leningrad (1981).
10. V. V. Scorcelletti, Theoretical Fundamentals of Corrosion in Metals [in Russian], Khimia, Leningrad (1973).
11. B. B. Damaskin and O. E. Petrii, Introduction to Electrochemical Kinetics, Vyssh. Sh., Moscow (1975).
12. L. Litl, Infrared Spectra of Adsorbed Species, Academic Press, New York (1966).
13. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Willey-Interscience, New York (2008).
14. I. I. Plyusnina, Infra-Red Mineral Spectra [in Russian], MGU, Moscow (1977).
DIRECT SELECTIVE LEAD, COPPER AND ZINC MINERALS FLOTATION
FROM POLYMETALLIC ORE «PODVIROVI»
P. Lazić, D. Vučinić, J. Stanojev*, and B. Micović
The laboratory tests to find out the possibility of direct selective flotation of lead, copper and zinc minerals from the ore deposit «Podvirovi» were submitted to the Mineral Processing Department of the Faculty of Mining and geology, University of Belgrade. Based on thus gained results, it has been concluded that it is possible to obtain selective concentrate of lead copper and zinc of suitable quality, with satisfactory recovery.
Selective flotation, quality of concentrate, recovery
REFERENCES
1. Tehnoekonomska Studija Eksploatacije Ležišta Blagodat — Bare i Podvirovi [in Serbian], Rudarski Institut (1962).
2. D. Draškić and F. Šer, Ispitivanje Mogućnosti Koncentracije Olovo-Cinkovih Ruda Ležišta Blagodat i Podvirovi [in Serbian], Rudarski Glasnik, Ri Beograd.
3. Laboratorijska Istraživanja Mogućnosti Selektivnog Flotiranja Minerala Olova, Bakra i Cinka iz Rude Ležišta «Podvirovi» [in Serbian], RGF Beograd (2007).
EFFECT OF SILICATE MINERAL PROPERTIES ON UP-GRADING
OF FERRUGINOUS QUARTZITES
T. N. Gzogyan and S. R. Gzogyan
Morphological, optic, magnetic, gravity and flotation properties of monomineral silicate fractions (green mica and aegirine) from the Mikhailovsky deposit were studied in details. Their efficient separation from ore minerals was gained under laboratory conditions.
Silicate complex, form and size of grains, deflection parameter, elementary cell parameters, specific magnetic susceptibility, microhardness
REFERENCES
1. M. D. Foster, «Green mica in the iron ore stratum at the Kursk Magnetic Anomaly,» Zap. Vsesoyuz. Mineralog. Obshch., Issue 6 (1959).
2. V. I. Molchanov and T. S. Yusupov, Physical and Chemical Properties of Finely Dispersed Minerals
[in Russian], Nedra, Moscow (1981).
3. T. N. Gzogyan and S. L. Gubin, «Effect of physical-chemical factors on flotation perfection of magnetite concentrates,» Journal of Mining Science, No. 1 (2008).
4. T. N. Gzogyan, S. L. Gubin, S. R. Gzogyan, and N. D. Mel’nikova, «Iron losses in processing tailings,» Journal of Mining Science, No. 6 (2005).
Версия для печати (откроется в новом окне)
|