JMS, Vol. 46, No. 5, 2010
GEOMECHANICS
NUMERICAL MODELING OF THE COAL-AND-GAS OUTBURST GASDYNAMICS
A. V. Fedorov and I. A. Fedorchenko
The article discusses the problem of coal outbursts into mined-out space based on the no stationary and nonequilibrium velocity and temperature approach of the mechanics of inhomogeneous media, presents math models with and without taking account of intergranular pressure of solid particles, and compares the new assessment with the available calculation and experimental references. Based on the analysis of the mixture flow behavior, the authors have found some rules in the relationships of the depression waves, shock waves, initial concentration and diameter of particles in coal-and-gas mixtures.
Many-phase media, outbursts, intergranular pressure
REFERENCES
1. S. A. Khristianovich, "," Journal of Mining Science, No. 5 (1989).
2. S. A. Khristianovich, «An outburst wave,» Izvest. AN SSSR. ONT, No. 12 (1953).
3. A. A. Nikol’sky, «Gas-cut rock outburst waves,» Dokl. AN SSSR, LXXXVIII, No. 4 (1953).
4. E. V. Vorozhtsov, A. V. Fedorov, and V. M. Fomin, «Gas and coal mix movement in mines, considering desorption,» in: Aeromechanics. Collected Works [in Russian], Nauka, Moscow (1976).
5. A. V. Fedorov, «Analysis of equation of the coal and gas outburst processes,» CHMMSS, 11, No. 4 (1980).
6. A. V. Fedorov and I. A. Fedorchenko, "," Journal of Mining Science, No. 1 (2009).
7. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, «Calculation of spread for a compressed cloud of a suspension of matter in gas,» Prikl. Mekh. Tekh. Fiz., No. 5 (1987).
8. T. Yabe, «A universal solver for hyperbolic equations for cubic-polynomial interpolation. Part I: One-dimensional solver,» Computer Physics Communication, 66 (1991).
9. A. V. Fedorov and I. V. Fedorchenko, «Calculations for dust kicked up behind a shock wave. Verification of a model,» Fiz. Goren. Vzryva, 41, No. 3 (2005).
10. A. V. Fedorov and I. V. Fedorchenko, «Numerical model of a shock wave propagating in the mixture of gas and solid particles,» Fiz. Goren. Vzryva, 46, No. 5 (2010).
11. B. E. Gel’fand, A. V. Gubanov, et al., «Shock waves in spreading of a compressed solid suspension matter in gas,» Dokl. A SSSR, 281, No. 5 (1985).
CALCULATION OF THE GEOMATERIAL FLOW IN CONVERGENT CHANNELS
WITH ACCOUNT FOR INTERNAL FRICTION AND DILATANCY
S. V. Lavrikov
The flat closed mathematical model of a geomaterial with account for internal friction, dilatancy, and anisotropy of properties is formulated to solve the problem of the geomaterial flow in a convergent radial channel in terms of the general conception of rocks as a medium with internal sources and outflows of energy. The developed finite-element algorithm and a software enable to construct solution to boundary problems of deformation in the quasistatic statement. Numerical solutions to the problem of the geomaterial flow in a convergent radial channel are obtained. The patterns are reported for the stress-strain state for different values of parameters of the problem.
Geomedium, internal friction, dilatancy, non-linearity, constitutive law, convergent channel, release, calculation, pressure
REFERENCES
1. А. F. Revuzhenko, S. B. Stazhevskii, E. I. Shemyakin, «Unsymmetry of a plastic flow in convergent axisymmetrical channels,» DAN SSSR, 243,No. 3 (1979).
2. G. Haken, Synergy. Hierarchies of Instability in Self-organizing Systems and Devices [in Russian], Mir, Moscow (1985).
3. S. V. Lavrikov and А. F. Revuzhenko. «Calculation of localized flows of granular medium in radial channels,» Journal of Mining Science, No. 1 (1990).
4. O. P. Bushmanova and S. B. Bushmanov, «Numerical Modeling of localized shear deformation in a convergent channel,» Journal of Mining Science, No. 4 (2009).
5. V. A. Osinov, «Model of discrete stochastic medium in the deformation and flow of friable materials,» Journal of Mining Science, No. 5 (1992).
6. S. V. Lavrikov and А. F. Revuzhenko, «Stochastic models in problems of the local deformation of flowing media in radial channels,» Journal of Mining Science, No. 1 (2000).
7. S. V. Klishin, «Discrete-element method for the analysis of the gravity granular-material motion in a convergent flow,» Gorny Inf-Analyt. Bul., No. 12 (2009).
8. А. F. Revuzhenko, Mechanics of Elastic-Plastic Media and Nonstandard Analysis [in Russian], Izd. NGU, Novosibirsk (2000).
9. V. V. Novozhilov and Yu. I. Kadashevich, Microstresses in Constructional Materials [in Russian], Mashinostroenie, Leningrad (1990).
ROCK FAILURE
DEVELOPMENT OF. A. CRACK CREATED BY HYDRAULIC FRACTIRNG
IN. A. COMPRESSED BLOCK STRUCTURE ROCK
P. A. Martynyuk and E. N. Sher
The authors estimated development trajectory of a created crack in a block-structured rock mass during hydraulic fracturing, and analyzed effect of the parameters of the block medium and two-axis compression field on the main crack trajectory and on the opening of lineal segments of the crack.
Hydraulic fracturing, compression field, main crack, crack opening, block structure rock mass
REFERENCES
1. P. A. Martynyuk, «Features of hydraulic fracture growth in the compression field,» Journal of Mining Science, No. 6 (2008).
2. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl. AN SSSR, 247, No. 4(1979).
3. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum, et al., Zonal Disintegration of Rocks and the Stability of Underground Openings [in Russian], SO RAN, Novosibirsk (2008).
4. P. N. Osiv and M. P. Savruk, «Stress assessment in an infinite plate with a broken or branching crack,» Prikl. Mekh. Tekh. Fiz., No. 2 (1983).
5. M. P. Savruk, Two-Dimensional Elastic Problems for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981).
6. M. P. Savruk, P. N. Osiv, and I. V. Prokopchuk, Numerical Analysis in the Plane Problems of the Theory of Cracks [in Russian], Naukova Dumka, Kiev
7. P. A. Martynyuk and E. A. Sher, «Features of normal tension cracks forming in rocks under compression,» Journal of Mining Science, No. 6 (2004).
SEISMIC SENSING OF THE DYNAMIC STRAINS AND
ABSOLUTE MOTION NEAR BY. A. BLASTING SITE
IN SURFACE MINING OF HARD ROCKS
V. I. Yushin, N. I. Geza, V. F. Yushkin, and S. S. Polozov
A seismic sensing method has been tested in the conditions of a surfaced mine. As a result, dynamic strains of rocks exposed to different strength blasting were measured with seismic equipment and the prevailing vibro-frequency range was determined for blasting in rocks and in the dump area with the difference specified. The authors have proposed an approach to choosing the basic parameters of a borehole longitudinal multichannel deformometers intended for displacement and deformation control depth-wise a rock mass.
Rock mass, sensor, deformometer, seismic measurements, dynamic strains
REFERENCES
1. V. N. Oparin, B. D. Annin, Yu. V. Chugui, et al., Nonlinear Deformation-Wave processes in Block-Structured Rocks: Modeling Methods and In Situ Measurement Equipment [in Russian], SO RAN, Novosibirsk (2007).
2. V. N. Oparin, A. D. Sashurin, A. V. Leont’ev, et al., Recent Geodynamics in the Top Rock Sphere: Origin, Parameters and Surrounding Impact [in Russian], SO RAN, Novosibirsk (2008).
3. V. N. Oparin, S. N. Bagaev, A. A. Malovichko, et al., Mining-Induced Earthquakes and Rockbusrts: Seismic Deformation Monitoring Methods and Techniques [in Russian], N. N. Mel’niov (Ed.), SO RAN, Novosibirsk (2009).
5. V. N. Oparn, B. F. Simonov, V. F. Yushkin, et al., Geomechanical and Engineering Sources in Vibro-Wave Technologies for Enhanced Oil Recovery [in Russian], Nauka, Novosibirsk (2009).
6. V. N. Oparin, M. V. Kurlenya, A. A. Akinin, et al., «Russian Federation Patent No. 2097558. Stress-strain state control in the geosphere block structures, base support, deformometer and recorded,» Byull. Izobret., No. 33 (1997).
7. M. V. Kurlenya, V. N. Oparin, A. A. Akinin, et al., «Longitudinal multichannel optoelectronic deformometer,» Journal of Mining Science, No. 3 (1997).
8. V. N. Oparin, V. F. Yushkin, A. A. Akinin, et al., «Experimental tests of a multichannel optoelectronic longitudinal deformometer,» Journal of Mining Science, No. 6 (2000).
9. V. N. Oparin, Yu. V. Chugui, V. M. Zhigalkin, et al., «Devices for continuous recording of the parameters of deformation-wave processes in rock mass. Part I: Measurement of longitudinal movements of rocks in a borehole and design of the position sensor,» Journal of Mining Science, No. 3 (2005).
10. V. N. Oaprin, V. N. Fedorinin, V. M. Zhigalkin, et al., «Devices for continuous recording of the parameters of deformation-wave processes in rock mass. Part III: Probe for measuring lateral borehole strains and its design,» Journal of Mining Science, No. 5 (2005).
11. E. F. Savarensky, Seismic Waves [in Russian], Nedra, Moscow (1972).
12. V. N. Oparin, V. F. Yushkin, V. A. Seredovich, et al., «Application of laser scanning for developing a 3D digital model of an open-pit side surface,» Journal of Mining Science, No. 5 (2007).
13. www.lava.ru [in Russian].
14. Rocks Physical Properties Guide-Cadastre [in Russian], Nedra, Moscow (1975).
15. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimension of rock to crack opening in the structural hierarchy of masses,» Journal of Mining Science, No. 3 (1993).
16. V. N. Oparin, V. F. Yushkin, A. A. Akinin, and E. G. Balmashnova, «A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium,» Journal of Mining Science, No. 5 (1998).
17. V. N. Oparin, V. P. Potapov, V. F. Yushkin, et al., «An approach to forming an informational geomechanical structural model of the Kuznetsk Cola Basin,» Journal of Mining Science, No. 3 (2006).
SCIENCE OF MINING MACHINES
JUSTIFICATION OF PRINCIPLES FOR «UNDERGROUND ROCKET»
DESIGN OUTLINING
V. N. Oparin, B. B. Danilov, and B. N. Smolyanitsky
The authors analyze briefly the known engineering solutions and designs of drilling machines used for long tunneling in rock masses, as well as validate rock destruction methods and broken rock utilization techniques, and discuss potential assembly of an «underground rocket» and its bassboard intended to check and test different engineering designs.
Геосреда, протяженная скважина, сверхглубокое бурение, «подземная ракета», энергоемкость, траектория
REFERENCES
1. V. N. Zhuravleva, Dream-Called Discoveries [in Russian], Knizh. Izd., Tambov (1964).
2. Official G. S. Altshuller Foundation. Available at: www.altshuller.ru.
3. G. Kyun, L. Shoible, and Kh. Shlik, Underground No-Go Pipeline Laying [in Russian], Stroyizdat,
Moscow (1983).
4. A. D. Kostylev, K. S. Gurkov, K. K. Tupitsyn, et al., Pneumatic Punchers and Light-Material Driving Machines [in Russian], Nauka, Novosibirsk (1980).
5. N. N. Esin, A. D. Kostylev, K. S. Gurkov, and B. N. Smolyanitsky, Air Hammer Machines for Borehole and Blasthole Making [in Russian], Nauka, Novosibirsk (1986).
6. A. V. Voinilovich and B. M. Bychkov, «USSR Author’s Certificate No. 72531. Device for automatic feed of rock boring machine in a borehole or well,» Byull. Izobret., No. 9 (1948).
7. V. I. Malyshev, A. I. Vasil’ev, and V. I. Pogodaev, «USSR Author’s Certificate No. 115474. Downhole rock boring machine,» Byull. Izobret., No. 10 (1958).
8. E. P. Varnello and V. V. Kamensky, «Schemes and designs of rodless drilling assemblies for hole making in rocks. Pneumatic percussion machines,» in: Collection of Scientific Papers [in Russian], IGD SO AN SSSR, Novosibirsk (1980).
9. B. V. Sudnishnikov and N. N. Esin, «Experimental studies of the operation procedures of pair hammers,» in: Percussive Machines [in Russian], GGI ZSFBAN SSSR, Novosibirsk (1953).
10. G. I. Suksov, «Analaysis of the buffer-cycle downhole air hammers,» in: Institute of Mining’s Transactions [in Russian], Issue 6, IGD SO AN SSSR, Novosibirsk (1961).
11. B. V. Sudnishnikov and N. N. Esin, Elements of Dynamics of the Percussive Machines [in Russian], Nauka, Novosibirsk (1965).
12. A. D. Kostylev, «Design of remote-controlled pneumatic drilling machines,» Journal of Mining Science,
No. 6 (1996).
13. A. D. Kostylev, P. A. Maslakov, and B. N. Smolyanitsky, «Controlled pneumatic puncher,» Journal of Mining Science, No. 3 (2001).
14. V. P. Syrskii, E. A. Nesterov, and A. D. Pakhomov, «Device determining depth and space orientation of controlled pneumatic puncher in soil,» Journal of Mining Science, No. 3 (2001).
15. V. P. Syrskii, E. A. Nesterov, and A. D. Pakhomov, «Russian Federation Patent No. 2132428. Technique and device for puncher positioning in soil,» Byull. Izobret., No. 6 (1999).
16. A. A. Lipin, «Promising pneumatic punchers for borehole drilling,» Journal of Mining Science,
No. 2 (2005).
17. B. N. Smolyanitsky, V. V. Chervov, V. V. Trubitsyn, et al., «New air percussion machines «Typhoon» for special construction works,» Mekhaniz. Stroit., No. 18 (1997).
18. B. N. Smolyanitsky, A. Ya. Tishkov, V. M. Sboev, and Kh. B. Tkach, «New driving technology for long rod-like elements,» Izv. Vuzov, Stroit., No. 9 (1996).
19. V. V. Timonin, «Rock failure assessment under dynamic forcing a group of indenters from the standpoint of nonlinear geomechanics,» in: «Geodynamics and Stress State of the Earth’s Interior» Conference Proceedings [in Russian], IGD SO RAN, Novosibirsk (2007).
20. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Geomechanical conditions for quasi-resonances in geomateials and block media,» Journal of Mining Science, No. 5 (1998).
21. V. N. Oparin and B. F. Simonov, «Nonlinear deformation wave process in the vibrational oil geotechnologies,» Journal of Mining Science, No. 2 (2010).
22. B. B. Danilov and B. N. Smolyanitsky, «Exploratioon downhole air hammers with a central drilling returns removal duct,» Gorn. Mash. Avtomatika, No. 5 (2002).
23. A. D. Kostylev, B. B. Danilov, B. N. Smolyanitsky, et al., «A new circular pneumatic punch for geological exploration well drilling,» Journal of Mining Science, No. 2 (1985).
24. B. B. Danilov and B. N. Smolyanitsky, «Relative denseness of borehole walls driven in soil by combined procedure,» Isv. Vuzov, Stroit., No. 1 (2004).
25. B. B. Danilov, «Increase in efficiency of the trenchless underground construction methods y using the compressed air transfer,» Journal of Mining Science, No. 5 (2007).
27. A. F. Eller, V. F. Gorbunov, and V. V. Aksenov, Worm Rotatable Tunneling Machines [in Russian], Nauka, Novosibirsk (1992).
28. V. V. Aksenov, A. B. Efremenkov, M. Yu. Blashchuk, V. Yu. Timofeev, «Requirements for transmission of geo-rovers,» Izv. Vuzov, Gorny Zh., No. 8 (2009).
29. V. V. Aksenov and A. B. Efremenkov, «Geo-winchester technology and geo-rovers as a high-technology and innovative approach to mineral wealth development and underground space formation,» Ugol, No. 2 (2009).
30. E. V. Pleshakova and S. Yu. Gavrilov, «Russian Federation Patent No. 2338876. Method for determination of pneumatic puncher deviation from a pre-set trajectory,» Byull. Izobret., No. 32 (2008).
31. E. V. Pleshakova, «Underground navigation of a drilling machine,» in: Proceedings of the 15th Anniversary Saint-Petersburg International Conference on Integrated Navigation Systems [in Russian],
Saint-Petersburg (2008).
32. E. V. Pleshakova and I. V. Tishchenko, «Radio-location positioning of an underground drilling machine,» in: The 2nd All-Russian Youth Science-and-Practice Conference Proceedings on the Subsoil Use Issues 2008 [in Russian], IGD UrO RAN, Ekaterinburg (2008).
33. A. Ya. Tishkov, N. N. Labuzov, L. I. Gendlinba, et al., Pneumatic Motors and Vibration Generators with Alternating Motion Rotors [in Russian], Nauka, Novosibirsk (2004).
34. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part I,» Journal of Mining Science, No. 3 (1999).
35. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part II,» Journal of Mining Science, No. 4 (2000).
36. M. V. Kurlenya, V. N. Oparin, A. F. Revuzhenko, and E. I. Shemyakin, «Some features of the near-zone explosion response of rocks,» in: Dokl. AN SSSR, 273, No. 1 (1992).
37. M. V. Kurlenya, V. V. Adushkin, V. N. Oparin, et al., «Alternating response to a dynamic action in rocks,» Dokl. AN SSSR, 323, No. 2 (1992).
38. V. N. Oparin, et al., Methods and Measurement Equipment for Modeling and In-Situ Research of Nonlinear Deformation Waves in Block Structure Rocks [in Russian], SO RAN, Novosibirsk (2007).
QUASISTATIC BIFURCATION STATES OF VERTICAL DRILL STRINGS
FOR SUPER-DEEP DRILLING
V. I. Gulyaev, V. V. Gaidaichuk, I. L. Soloviev, and I. V. Gorbunovich
The problem of buckling of a super-long compressed-tensile twisted rotary rod, containing an internal flow of a homogeneous liquid is considered in the paper. The authors derive the resulting equations to model the stability of drill strings of deep drilling according to the federated calculation scheme, involving the string body and its lower section. The problem-solving procedure is proposed. Typical examples are discussed. The critical values of parameters, constitutive for the elastic equilibrium of the system, are found. The stability loss forms are plotted.
Drill string, integrated calculation scheme, torsion, rotation, stability loss, forms of buckling
REFERENCES
1. R. A. Kerr, «Bumpy road ahead for world’s oil,» Science, 18 Nov. 2005, Vol. 310. International Energy Annual 2001 Edition, EIA, U. S. Department of Energy, Washington, DS (2003).
2. W. R. Tucker and C. Wang, «An integrated model for drill-string dynamics,» Journal of Sound and Vibrations, 224, No. 1 (1999).
3. C. Sun and S. Lukasiewicz, «A new model on the buckling of a rod in tubing,» Journal of Petroleum Science and Engineering, 50 (2006).
4. J. C. Cunha, «Buckling of tubulars inside wellbores: a review on recent theoretical and experimental works,» SPE Drilling & Completion, 19, No. 1 (2004).
5. K. W. Young, «Analysis of helical buckling,» SPE Drilling Engineering, June (1988).
6. A. Lubinski, Developments in Petroleum Engineering, Vol. 1, USA: Gulf Publishing Company, Houston, TX, (1987).
7. R. F. Mitchell, «The twist and shear of helically buckled pipe,» SPE Drilling & Completion, 19, No. 1 (2004).
8. R. F. Mitchell and S. Miska, «Helical buckling of pipe with connectors and torque,» SPE Drilling & Completion, 21, No. 2 (2006).
9. X. C. Tan and P. J. Digby, «Buckling of drill string under the action of gravity and axial thrust,» International Journal of Solids and Structures, 30, No. 19 (1993).
10. V. I. Fedociev, Selected Problems and Issues on Material Resistance [in Russian], Nauka, Moscow (1967).
11. H. Ziegler, Principles of Structural Stability, Blaisdell Publishing Company, Waltham- Massachusetts-Toronto-London (1968).
12. V. I. Gulyaev, V. V. Gaidaichuk, and V. L. Koshkin, Elastic Deformation and Oscillations of Flexible Curved Rods [in Russian], Naukova Dumka, Kiev (1992).
OPTIMAL DYNAMIC MANAGEMENT OF EXPLOITATION LIFE
OF THE MINING MACHINERY: MODELS WITH LIMITED INTERVAL
S. Vujic, I. Miljanovic, S. Boshevski, T. Benovic, A. Milutinovic, and M. J. Pejovic
A theoretical concept and an illustrated practical example of the limited interval dynamic model, aimed for application in optimizing the exploitation life of the mining machinery with shorter life cycle such as bulldozers, scrapers, haul trucks, excavators with one working element and smaller capacity, etc., is presented in this paper.
Operations research, dynamic programming, exploitation life of the machine, management, decision making, optimization, bulldozer, haul trucks, scraper, excavator
REFERENCES
1. J. Bather, Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions, John Wiley&Sons (2000).
2. R. Belman and R. Kalaba, Dynamic Programming and Modern Management Theory [in Russian], Nauka, Moscow (1969).
3. R. Stanojevic, Dynamic Programming [in Serbian], Belgrade (2004).
4. S. Vujic and G. Cirovic, «Production planning in mines using fuzzy linear programming,» Yugoslav Journal of Operations Research YUJOR, 6, No. 2 (1996).
5. S. Vujic, et. al., The Study on Establishing the Exploitation Life of Capital Mining Equipment at Coal Open Pit Mines of the Electric Power Industry of Serbia, Faculty of Mining and Geology University of Belgrade [in Serbian] Belgrade (2002).
6. S. Vujic, et al., «Estimation of optimum exploitation life of bucket wheel excavator: Through the prism of dynamic programming,» in: Proceedings of the 31st International Symposium on Computer Applications in the Minerals Industry, The South African Institute of Mining and Metallurgy, Cape Town (2003).
7. S. Vujic, R. Stanojevic, et al., Methods for Optimization of Mining Machinery Exploitation Life [in Serbian], Academy of Engineering Sciences of Serbia and Montenegro, Belgrade (2004).
8. D. A. Wismer and R. Chattergy, Introduction to Nonlinear Optimization, a Problem Solving Approach, North-Holland, New York, Amsterdam (1978).
MINERAL DRESSING
NUMERICAL MODELING OF THE COAL-AND-GAS OUTBURST GASDYNAMICS
V. A. Chanturia, V. G. Minenko, and A. I. Kaplin
The author consider influence of different oxidizing agents on sulfur leaching from the magnetite concentrate. The use of the active chlorine solutions, produced by electrolysis, to manufacture magnetite concentrates of the world standard grade with 0.011 — 0.07 % sulfur content is substantiated theoretically and experimentally. The magnetite loss does not exceed 1 % in the process under consideration.
Magnetite concentrate, pyrite, active chlorine solution, electrochemical treatment, sulfur leaching
REFERENCES
1. Patent No. RU 2189867. «Process for final concentration of magnetite concentrates,» E. E. Kameneva,
N. M. Filimonova, G. P. Andronov, and V. A. Ivanova, publ. in Bul. Izobr., No. 27 (2002).
2. Patent No. RU 2313400. «Process for flotation of magnetite concentrates to remove sulfur,» S. A. Shchelkunov and O. A. Malyshev, publ. in Bul. Izobr., No. 36 (2007).
3. S. L. Gubin, Development and Substantiation of Magnetite Quartzite Beneficiation in the Reverse Cation Flotation Using Modified Amines at Column Flotation Machines, Thesis of Cand. Tech Sci., Moscow (2007).
4. E. L. Chanturia and S. L. Gzogyan, «Features of sulfide ferrugineous quarzite mineralization,» Journal of Mining Science, No. 5 (2009).
5. V. G. Minenko and E. A. Trofimova, «How to intensify a fine cleaning process for diamond concentrates by using the products of aqueous environment electrolysis,» Journal of Mining Science, No. 2 (2006).
6. R. M. Garrels and Ch. L. Krist, Solutions, Minerals, Equilibriums [in Russian], Mir, Moscow (1968).
7. G. Valensy, «Contribution au diagramme potential-pH du soufre,» Compt. rend. 2eme Reunion, Cornito intern, thermo, kinetics electrochim, Milan (1950).
FLUORINATED XANTHATES USED AS COLELCTING AGENTS
IN COPPER-NICKEL ORE FLOTATION
S. A. Kondrat’ev, V. I. Rostovtsev, V. V. Fomenko, and Yu. S. Kargapolov
Research data on intensification of the copper-nickel ore flotation by applying the fluorinated xanthates are reported. Introduction of fluorinated agents at 3 — 50 % rate of the total collecting -agent consumption provides the more complete recovery of valuable components. It is established experimentally that the growth of copper and nickel recovery into the flotation concentrate reaches more than 10 %.
Copper-nickel ore, fluorinated xanthates, flotation
REFERENCES
1. V. A. Chanturia, «Contemporary problems of mineral raw material beneficiation in Russia,» Journal of Mining Science, No. 3 (1999).
2. S. A. Kondrat’ev, «Physically sorbed collectors in froth flotation and their activity,» Part I, Journal of Mining Science, No. 6 (2008).
3. S. A. Kondrat’ev, «Physically sorbed collectors in froth flotation and their activity,» Part II, Journal of Mining Science, No. 2 (2009).
4. Russian Federation Patent No. 2347620. Process for Grinding of Mineral Raw Materials, S. A. Kondrat’ev, Yu. S. Kargapolov, V. V. Fomenko, and V. I. Rostovtsev, publ. in Bul. Izobr., No. 6 (2009).
5. E. Preg, F. Bulmann, A. Affoldger, Determination of Organic Compounds Structure. Spectral Line Tables (in Russian), Mir. BINOM, Moscow (2006).
6. L. Little, Infra-Red Spectra of Adsorbed Molecules (in Russian), Mir, Moscow (1969).
7. L. Bellami, Infra-Red Spectra of Complex Molecules (in Russian), IL, Moscow (1969).
8. L. Bellami, New Data on IR-spectra of Complex Molecules (in Russian), Mir, Moscow (1971).
GOLD CONTENT OF THE GOLD PRODUCTION-GENERATED
SILT-AND-CLAYEY FORMATIONS IN THE FAR EAST OF RUSSIA
V. S. Litvintsev, G. P. Ponomarchuk, and T. S. Banchshikova
The article characterizes morphology and grain sizes of gold containing in silt-clayey tailing dumps formed in the course of mining of natural placers in the Far East territory of Russia. The authors gold distribution in micros size fractions, from 100 μm to 2 μm, and illustrate efficiency of application of a reagent technology to fine and very fine gold recovery.
Silt-and-clayey formations, tailing storages, sedimentation analysis, grain size distribution, morphology, find and very fine gold, reagent technology
REFERENCES
1. V. M. Galich, V. V. Sychev, and Vl. V. Sychev, «Raise in the throughout recovery of fine gold from pebble and crused gold ore dumps,» Obog. Rud, No. 6 (2000).
2. V. I. Zelenov, Gold-Bearing Ore Analysis Procedure [in Russian], Nauka, Moscow (1973).
3. Yu. A. Mamaev, V. S. Litvintsev, G. P. Ponomarchuk, et al., «Prospects of the rebellious gold recovery from the gold production-generated deposits,» Obog. Rud, No. 5 (2005).
4. V. S. Litvintsev, N. G. Yatlukova, G. P. Ponomarchuk et al., «Specific morphology of difficult gold and prospects for its recovery from high-clayey placers by physico-mechanical extraction methods,» Gorn. Inform.-Analit. Buyll. Spets. Vypusk [in Russian], Far East (2005).
5. V. S. Litvintsev, G. P. Ponomarchuk, N. G. Yatlukova, et al., «Fine gold extraction from high-clayey placers with the help of a physicochemical method,» Gorny Zh., No. 4 (2006).
6. Yu. A. Mamaev, V. S. Litvintsev, G. P. Ponomarchuk, et al., «Russian Federation Patent No. 2235796. Fine gold recovery method,» Byull. Izobret., No. 25 (2005).
7. V. S. Litvintsev, G. P. Ponomarchuk, T. S. Banchshikova, and L. N. Shokina, «Russian Federation Patent No. 2340689. Method for gold extraction from gold mining-generated silt detention basins,» Byull. Izobret., No. 34 (2008).
8. V. S. Litvintsev, T. S. Banchshikova, N. A. Leonenko, and L. N. Shokina, «Development of new non-conventional technologies for difficult gold recovery from the production generated mineral formation,» Obog. Rud, No. 3 (2009).
SURFACTANTS IN FINE ORE GRINDING
T. S. Yusupov and E. A. Kirillova
Research data are presented on modifying the fine grinding in beneficiation processes. New aspects of a surfactant action are studied on oleic acid added in the grinding circuit for Noril’sk ore, 90 % of its composition being silicate minerals. The feasibility to lower the sliming and amorphisation (defect-free grinding) of the crystal mineral structure is established.
Grinding, surfactant, amorphisation, minerals, mineral processing, surface
REFERENCES
1. P. A. Rebinder, «Physicochemical mechanics as a new field of knowledge,» Vestnik AN SSSR, No. 10 (1957).
2. P. A. Rebinder, Selected Works. Physicochemical Mechanics [in Russian], Nauka, Moscow (1979).
3. V. I. Revnivtsev, Selective Failure of Minerals [in Russian], Nedra, Moscow (1988).
4. G. S. Khodakov, Physics of Grinding [in Russian], Nauka, Moscow (1972).
5. T. S. Yusupov and E. A. Kirillova, «Effect of surfactants on structural-chemical properties of minerals in fine grinding,» Khimiya v interesakh ustoichivogo razvitiya, No. 17 (2009).
6. T. S. Yusupov and E. A. Kirillova, «Mechanochemical aspect in sulfide mineral flotation,» Khimiya v interesakh ustoichivogo razvitiya, No. 15 (2007).
Версия для печати (откроется в новом окне)
|