Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2010 год » JMS, Vol. 46, No. 3, 2010

JMS, Vol. 46, No. 3, 2010


GEOMECHANICS


PENDULUM WAVES AND THEIR SINGLING OUT IN THE LASER DEFORMOGRAPH RECORDS OF THE LARGE EARTHQUAKES
S. N. Bagaev, V. N. Oparin, V. A. Orlov, S. V. Panov, and M. D. Parushkin

The paper discusses singling out of a slow deformation wave of pendulum type as an after-effect of a close-spaced strong earthquake. Based on the analysis of the laser records of the deformation process and after-shocks of several strong seismic events in the Baikal Rift Zone, the authors have detected the wanted slow deformation wave with the velocity range from 0.43 m/s to 1.76 m/s.

Pendulum waves, earthquake, aftershock, slow deformation wave detection, laser deformograph, Baikal rift zone

REFERENCES
1. M. V. Kurlenya and V. N. Oparin, «Sign-variable reaction of rock to dynamic impacts,» Journal of Mining Science, No. 4 (1990).
2. M. V. Kurlenya, V. N. Oparin, A. F. Revuzhenko, and E. I. Shemyakin, «Features of the explosion response of rocks in the vicinity of a blast source,» Dokl. Akad. Nauk, 293, No. 1 (1987).
3. M. V. Kurlenya and V. N. Oparin, Features of Explosion Response of Rocks in the Reactive Near Zone [in Russian], Preprint No. 10, IGD SO RAN, Novosibirsk (1984).
4. V. V. Adushkin and A. A. Spivak, Irreversible Manifestations of a Large Underground Explosion in an Inhomogeneous Medium [in Russian], Preprint, IFZ AN SSSR, Moscow (1989).
5. M. V. Kurlenya, V. V. Adushkin, V. V. Garnov, V. N. Oparin, et al., «Alternating dynamic response of rocks,» Dokl. Akad. Nauk, 323, No. 2 (1992).
6. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Generation of elastic wave packets in block media under impulse excitation. Pendulum waves ,» Dokl. Akad. Nauk, 333, No. 4 (1993).
7. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum-type waves. Part I: State of the problem and measuring instrument and computer complexes,» Journal of Mining Science, No. 3 (1996).
8. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum-type waves. Part II: Experimental methods and main results of physical modeling,» Journal of Mining Science, No. 4 (1996).
9. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, et al., «Pendulum waves. Part III: Data of on-site observations,» Journal of Mining Science, No. 5 (1996).
10. M. V. Kurlenya, V. N. Oparin, E. G. Balmashnova, and V. I. Vostrikov, «On dynamic behavior of «self-stressed» block media. Part I: One-dimensional mechanical-mathematical model,» Journal of Mining Science, No. 1 (2001).
11. V. N. Oparin, E. G. Balmashnova, and V. I. Vostrikov, «On dynamic behavior of «self-stressed» block media. Part II: Comparison of theoretical and experimental data,» Journal of Mining Science, No. 3 (2001).
12. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part II,» Journal of Mining Science, No. 4 (2000).
13. N. I. Aleksandrova, «Elastic wave propagation in block medium under impulse loading,» Journal of Mining Science, No. 6 (2003).
14. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Journal of Mining Science, No. 6 (2004).
15. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «Experimental investigation into the one-dimensional calculated model of wave propagation in bock medium,» Journal of Mining Science, No. 3 (2005).
16. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «On attenuation of pendulum-type wave in a block rock mass,» Journal of Mining Science, No. 5 (2006).
17. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, «Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,» Journal of Mining Science, No. 6 (2007).
18. V. A. Saraikin, «Calculation of wave propagation in two-dimensional assembly of rectangular blocks,» Journal of Mining Science, No. 4 (2008).
19. V. A. Saraikin, «Elastic properties of blocks in the low-frequency component of waves in a 2D medium,» Journal of Mining Science, No. 3 (2009).
20. V. N. Oparin, B. D. Akinin, Yu. V. Chuguy, et al., Methods and Measuring Means for Modeling and In Situ Examination of Nonlinear Deformation-Wave Processes in Block Rock Masses [in Russian], SO RAN, Novosibirsk (2007).
21. V. N. Oparin, A. D. Sashurin, G. I. Kulakov, et al., Contemporary Geodynamics of the Upper Crust Rocks: Sources, Parameters and Influence [in Russian], SO RAN, Novosibirsk (2008).
22. V. N. Oparin and B. F. Simonov, «Nonlinear deformation-wave processes in the vibrational oil geotechnologies,» Journal of Mining Science, No. 2 (2010).
23. V. N. Oparin, B. F. Simonov, V. F. Yushkin, et al., Geomechanical and Engineering Basis Provided by Vibro-Wave Technologies for Oil Recovery Enhancement [in Russian], Nauka, Novosibirsk (2009).
24. S. V. Gol’din, «Lithosphere destruction and physical mesomechanics,» Fiz. Mezomekh., 5, No. 5 (2002).
25. S. V. Gol’din, V. I. Yushin, V. V. Ruzhich, and O. P. Smekalin, «Slow motions — a myth or reality?» in: Physical Basics for Rock Failure Forecasting [in Russian], SibGau, Krasnoyarsk (2002).
26. V. N. Oparin, et al., Methods and Means of Seismic-Deformation Monitoring of Man-Induced Earthquakes and Rockbursts [in Russian], SO RAN, Novosibirsk (2009).
27. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 7: Theory of Elasticity [in Russian], Nauka, Moscow (1987).
28. V. N. Oparin, «Energy criterion of volume rock destruction,» in: Workshop Proceedings «Miner’s Week — 2009» [in Russian], MGGU, Moscow (2009).
29. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimensions of rocks to crack opening in the structural hierarchy of masses,» Journal of Mining Science, No. 3 (1993).
30. V. A. Orlov, S. V. Panov, M. D. Parushkin, and Yu. N. Fomin, «Deformation properties of the Earth crust on the eve of a massive earthquake by high-output laser-based measurement data,» in: Conference Proceedings "Geodynamics and Stress State of the Earth’s Interior [in Russian], IGD SO RAN, Novosibirsk (2009).
31. V. A. Orlov, S. V. Panov, M. D. Parushkin, and Yu. N. Fomin, «Solar activity, vibrations of the inner core and all-planetary seismicity,» in: Proceedings of the 4th International Symposium on Geodynamics of the Intracontinental Orogens and the Problems of Geoecology [in Russian], Bishkek (2008).


KARST GENESIS AND MAN-MADE ENVIRONMENT
A. A. Baryakh, S. B. Stazhevsky, and G. N. Khan

The paper discusses results of numerical modeling of stress and strain filed evolution in underground areas with karst cavern under the action of external static load due constructions on the ground and the production-induced internal erosion.

Rock mass, karst genesis, discrete element method, production-induced impact, stress-strain state

REFERENCES
1. G. A. Maksimovich, Basics of the Karst Science. Karst Morphology, Caveology and Hydrogeology [in Russian], Perm. Kn. Izd., Perm (1963).
2. P. Williams and T. F. Yin, World Map of Carbonate Rock Outcrops V3.0, Geography and environmental Science, University of Auckland (2009). Available at: http://www.sges.auckland.ac.nz/sges_research/ karst.shtm.
3. Bret D. Tobin and David J. Weary, Digital Engineering Aspects of Karst Map: A GIS Version of W. E. Davies, J. H. Simpson, G. C. Ohlmacher, W. S. Kirk, and E. G. Newton, 1984, Engineering Aspects of Karst: U. S. Geological Survey, National Atlas of the United States of America, Scale 1:7,500,000. U. S. Geological Survey Open-File Report 2004–1352 (2004).
4. N. A. Gvozdetsky, Karst [in Russian], Mysl, Moscow (1981).
5. S. M. Govorushko, «Effect of karst on man’s activity,» Probl. Okr. Sredy Prirod. Resur., No. 6 (2008).
6. O. Yu. Shumilova and N. G. Maksimovich, «Karst distribution in districts of the Perm Region,» in: Proceedings of the All-Russian Science-Practical Conference: Goals and Tasks of Civil Engineering Explorations. Karst Geo-Engineering on Urban Lands and in Water Storage Basins [in Russian], Perm (2008).
7. Exogenetic Process Monitoring in the Area of the Perm Region [in Russian], GI UrO RAN, Perm (2004).
8. Exogenetic Process Monitoring in the Area of the Perm Region [in Russian], GI UrO RAN, Perm (2005).
9. E. P. Rusin, S. B. Stazhevsky, and G. N. Khan, «Geomechanical aspects of the genesis of exo- and endokarst,» Journal of Mining Science, No. 2 (2007).
10. A. A. Baryakh, S. B. Stazhevsky, E. A. Timofeev, and G. N. Khan, «Strain state of a rock mass above karst cavities,» Journal of Mining Science, No. 6 (2008).
11. A. A. Baryakh, E. P. Rusin, S. B. Stazhevsky, et al., «Stress-strain state of karst areas,» Journal of Mining Science, No. 6 (2009).
12. G. N. Khan, «Nonsymmetrical fracture regime in rock mass surrounding a cavity,» Fiz. Mezomekh., 11, No. 1 (2008).
13. Z. T. Bieniawski, Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering, John Wiley & Sons (1989).
14. D. C. Wyllie, Foundations on Rocks, E & FN Spon, London (1999).
15. J. Sjoeberg, «Estimating rock mass strength using the Hoek-Brown failure criterion and rock mass classification — a review and application to the Aznacollar open pit,» Internal Report BM 1997:02, Division of Rock Mechanics, Lulea University of Technology, Lulea, Sweden (1997).
16. Series 114–02. Frontal Ribbon Twin Unit Block for 30 Two-Room Apartments [in Russian], SibZNIIEP, Novosibirsk (1985).
17. S. B. Stazhevsky, «The second form of flow for loose materials in bunkers,» Journal of Mining Science, No. 5 (1985).
18. V. N. Nikolaevsky, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).
19. D. S. Agustawijaya, «The uniaxial compressive strength of soft rock,» Civil Engineering Dimension, 9, No. 1 (2007).


DISPLACEMENT DISCONTINUITY DISTRIBUTION IN GRANULAR MATERIALS UNDER CONFINED-SPACE SHEARING
V. P. Kosykh

The author presents the «force — displacement» diagrams for granular materials subjected to soft-loaded confined-space shearing. Unstable slippage along the shear surface is obtained. Variations in the displacement jump values obey the law of geometrical progression. It is shown that replication of tests on the same specimen results in greater steepness of the diagram and increased number of steps. The researcher established the power-series distribution of the shearing curve steps versus the shearing-spent work.

Test, granular material, shear, deformation diagram, displacement jumps, constant loading rate, power-series distribution

REFERENCES
1. A. F. Revuzhenko, Mechanics of Granular Media, Springer Berlin Heidelberg New York, New York (2006).
2. A. P. Bobryakov and A. V. Lubyagin, «Experimental investigation into unsteady slippage,» Journal of Mining Science, No. 4 (2008).
3. S. Flügge and C. Truesdell (Eds.), Encyclopedia of Physics, Springer-Verlag, Berlin-Heidelberg-New York (1973).
4. Yu. I. Golovin, V. I. Ivolgin, and M. A. Lebedkin, «Non-stationary plastic current in Al — 3 % Mg alloy in the continuous nanoindentation,» Fiz. Tverd. Tela, 44, No. 7 (2002).
5. G. G. Kocharyan, A. A. Kulyukin, and D. V. Pavlov, «Specific dynamic features of interblock in-crust deformation,» Geolog. Geofiz., 47, No. 5 (2006).
6. T. M. Poletika, V. I. Danilov, G. N. Narimanova, et al., «Localization of the plastic flow in Zr — 1 % Nb alloy under tension,» Zh. Tekh. Fiz., 72, No. (2002).
7. V. P. Kosykh, «Savart-Masson effect in granular media,» Journal of Mining Science, No. 6 (2008).
8. A. Yu. Loskutov and A. S. Mikhailov, Introduction to Synergetics [in Russian], Nauka, Moscow (1990).
9. A. I. Markushevich, Inverse Sequences [in Russian], Nauka, Moscow (1975).
10. V. A. Vladimirov, Yu. L. Vorob’ev, S. S. Salov, et al., Management of Risks [in Russian], Nauka, Moscow (2000).


DYNAMIC LOAD EFFECT IN THE VICINITY OF GOAFS WITHIN ROCK MASSES
M. A. Zhuravkov and A. V. Krupoderov

The problems of the concentrated-dynamic-load effect in an elastic isotropic space containing a spherical enclose in an elastic isotropic plane with a circular hole were solved.

Elastic space, elastic plane, concentrated force

REFERENCES
1. M. A. Zhuravkov, Fundamental Solutions of Elasticity Theory and their Application in Rock, Soil and Foundations Mechanics [in Russian], BGU, Minsk (2008).
2. A. G. Gorshkov, A. L. Medvedsky, L. N. Rabinsky, and D. V. Tarlakovsky, Waves in the Continuums [in Russian], Fizmatlit, Moscow (2004).
3. J. Abate, A Unified Framework for Numerically Inverting Laplace Transform (2006). Available at: http://www.columbia.edu/~ww2040/JoC.pdf.
4. S. A. Novikov, «Failure of materials under intensive impact loads,» Soros. Obraz. Zh., No. 8 (1999).


RESEARCHES ON FLOOR STRATUM FRACTURING INDUCED BY ANTIPROCEDURE MINING UNDERNEATH CLOSE-DISTANCE GOAF
Y. L. Tan, T. B. Zhao, and Y. X. Xiao

TComprehensive methods of numerical simulation, borehole inspection as well as the real-time floor bedding separation monitoring are employed to research the floor strata fractured zone and stress distribution affected by two fold mining action of pre-mining underneath in the Muchengjian Mine in China. By the experimental results obtained, there is the limit work-face length capable to maintain the floor strata stable. The floor strata can be divided into weakly fissured zone, slightly fissured zone, strongly fissured zone and a collapsed zone from upper to down layers. With advance in seam extraction, new separations can arise within the floor strata, thereto the strata collapse and abutment pressure distribution are symmetric. The experimental results are verified by the practical data on extraction of two mine faces.

Coal mine, floor strata, fissure zone, separation, close-distance, ascending extraction

REFERENCES
1. H. Ogasawara, S. Sato, S. Nishii, and N. Sumitomo, «Semi-controlled seismogenic experiments in South African deep gold mines,» J. of the South African Institute of Mining and Metallurgy, 102, No. 4 (2002).
2. F. X. Jiang, X. M. Zhang, S. H. Yang, and X. Luo, «Discussion on overlying strata spatial structures of long wall in coal mine,» Chinese J. Rock Mech. and Eng., 25, No. 5 (2006).
3. Y. J. Yang, S. J. Chen, X. M. Zhang, and H. D. Peng, «Forecasting study on fracturing of overburden strata of coal face by microseism monitoring technology,» J. of Rock and Soil Mechanics, 28, No. 7 (2007).
4. A. T. Iannacchione, P. R. Coyle., L. J. Prosser, et al., «The relationship of roof movement and strata-induced microseismic emissions to roof falls,» SME Annual Meeting Preprints, Denver, CO, United States (2004).
5. C. Srinivasan, C. Sivakumar, and R. N. Gupta, «Application of rock mechanics and microseismic investigation in coal mining in India,» J. of Mines, Metals and Fuels, 54, Nos. 8 — 9 (2006).
6. X. Q. He, B. S. Nie, J. He, and S. R. Zhai, «Study on electromagnetic emission characteristics in roof failure,» Chinese J. Rock Mech. and Eng., 26, No. 1 (2007).
7. X. B. Mao, X. X. Miao, and M. G. Qian, «Study on broken laws of key strata in mining overlying strata,» J. of China University of Mining &Technology, 27, No. 1 (1998).
8. J. L. Xu and M. G. Qian, «Study on influences of key stratum on mining-induced fractures distribution in overlying strata,» J. of Mines, Metals and Fuels, 54, No. 12 (2006).
9. M. Tu, M. M. Feng, and Z. G. Liu, «Dynamic principle of development of strata separation fracture of the roof in the coal seam mining,» in: Proceedings of the International Symposium on Progress in Safety Science and Technology, G. Feng (Ed.), Science Press (2004).
10. X. X. Miao, R. H. Chen, H. Pu, and M. G. Qian, «Analysis of breakage and collapse of thick key strata around coal face,» Chinese J. Rock Mech. and Eng., 24, No. 8 (2005).
11. X. Y. Li and P. H. Chen, «Study on regularity of structural behaviors around coal face under the shallow-buried loose roof,» Chinese J. Rock Mech. and Eng., 23, No. 19 (2004).
12. L. Holla and M, «Ground movement, strata fracturing and changes in permeability due to deep long wall mining», Int. J. Rock Mech. Min. Sci. & Geomech. Abstracts, 28, Nos. 2 — 3 (1991).
13. Vervoort Andre, Jack Bruce, Jackson Fred, and Prohaska Gary, «Detailed underground measurements of roof deflection and bed separation,» in: Proceedings of the 11th International Conference on Ground Control in Mining, Wollongong, Australasian (1992).
14. J. A. Nemcik., B. Indraratna, and W. Gale, «Floor failure analysis at a long wall mining face based on the multiple sliding block model,» Geotechnical and Geological Engineering, 18, No. 3 (2000).
15. F. G. Bell and C. A. Jermy, «An investigation of primary permeability in strata from a mine in the Eastern Transvaal Coalfield, South Africa,» Quarterly Journal of Engineering Geology and Hydrogeology, 35, No. 4 (2004).
16. B. Indraratna, J. A. Nemcik, and W. J. Gale, «Floor failure mechanism at a long wall coal mining face based on numerical analysis,» Geotechnique, 50, No. 5 (2000).
17. Y. J. Wang, L. J. Tao, and J. B. Xing, «Discrete element simulation of interaction between two contiguously mined seams,» Journal of Northeastern University (Natural Science), 18, No. 4 (1997).
18. J. Q. Feng, D. S. Zhang, and L. Q. Ma, «Numerical analysis on ascending mining in coal seam group with shallow burying and near interval,» Mining Science and Technology, 35, No. 9 (2007).
19. N. B. Huang and X. Y. Zhang, «Analog simulation of the law of overlying strata movement under close quarters goaf,» Mining Coal Technology, 25, No. 6 (2006).
20. X. Y. He and W. F. Dou, «Upward mining technology research and application of nearby coal seams,» Mining Technology, 11, No. 4 (2006).
21. Y. K. Shi and J. Mo, «Numerical analysis of road stress in ascending mining,» J. of Min. & Safety Eng., 24, No. 4 (2007).
22. W. L. Wu, Make further searching about returning procedure mining, Coal Technology, 25, No. 6 (2006).
23. R. Bhasin and K. H?eg, «Parametric study for a large cavern in jointed rock using a distinct element model (UDEC-BB),» Int. J. Rock Mech. Min. Sci., 35, No. 1 (1998).
24. S. G. Chen, and J. Zhao, «Technical note: A study of UDEC modeling for blast wave propagation in jointed rock masses,» Int. J. Rock Mech. Min. Sci., 35, No. 1 (1998).


ROCK FAILURE


SAFE STRESS ASSESSMENT IN THE STRENGTH CONCEPT BY ZHURKOV
V. P. Efimov and V. S. Nikiforovsky

The paper proposes an assessment method for safe stress in the kinetic concept of strength based on the warm-up drift technique in the model of a steady state with a broken bond. The authors added molecular interaction potential with a second potential energy minimum that corresponds to an excited molecule with broken bonds with its neighbors. The quasi-homogenous fracture model with using macro-values of a continuum has yielded that safe stress for metals and salts equals 10 — 20 % of their temporal tensile strength.

Strength, longevity, safe stress

REFERENCES
1. S. N. Zhurkov, «Kinetic concept of strength of solids,» Vestn. AN SSSR, No. 3 (1968).
2. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevsky, Kinetic Nature of Strength of Solids [in Russian], Nauka, Moscow (1974).
3. G. M. Bartenev, Superstrength and Strong Inorganic Glasses [in Russian], Stroyizdat, Moscow (1974).
4. B. Tsai, «Influence of thermal molecular motion on rock failure,» Izv. Vuzov, Gorny Zh., No. 10 (1982).
5. S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, et al., «Rock failure prediction.» Izv. AN SSSR. Fiz. Zemli, No. 6 (1977).
6. G. M. Bartenev, «Time and temperature dependence of strength of solids,» Izv. AN SSSR, Otd. Tekh. Nauk, No. 9 (1953).
7. G. P. Cherepanov, Brittle Fracture Mechanics [in Russian], Nauka, Moscow (1974).


MINERAL GRINDING TECHNOLOGY


IMPROVEMENT IN PRODUCTIVITY OF SURFACE STOWING FACILITIES FOR MINES OF THE TRANSPOLAR BRANCH OF THE NORILSK NICKEL JOINT-STOCK COMPANY
A. P. Tapsiev, A. N. Anushenkov, V. A. Uskov, Yu. V. Artemenko, and B. Z. Pliev

With the aim at improving the stowing performance in mines of the Norilsk Nickel JSC Transpolar Branch, the consolidating stowing mixing technology has been analyzed. The paper presents analysis results, the theory and technology aspects of higher productivity of surface stowing facilities, and describes structural modification of mills. The ball load optimization regimes and the full-scale testing of them are illustrated. Based on the offered modifications, the productivity of the mills now in force in grinding stowing components has been increased by 15 — 20%.

Technology, stowing facility, consolidating stowing, rheology, milling equipment, structural alteration, ball load regime, productivity

REFERENCES
1. V. N. Oparin, A. P. Tapsiev, and A. M. Freidin, «Working relationships of the Institute of Mining, Siberian Branch, Russian Academy of Sciences and the Norilsk Nickel JSC enterprises in the field of science and technology,» Tsvet. Metally, No. 10 (2005).
2. V. N. Oparin, A. P. Tapsiev, M. N. Bogdanov, et al., Norilsk Mining Practice: Contemporary State, Problems and Development Strategy [in Russian], SO RAN, Novosibirsk (2008).
3. V. A. Chanturia, «Contemporary problems of mineral raw material beneficiation in Russia,» Journal of Mining Science, No. 3 (1999).
4. A. P. Tapsiev, A. N. Anushenkov, V. A. Uskov, et al., «Development of the long-distance pipeline transport for backfill mixes in terms of Oktyabrsky Mine,» Journal of Mining Science, No. 3 (2009).
5. V. N. Oparin, I. I. Ainbinder, Yu. I. Rodionov, et al., «Concept of a mine of tomorrow for deep mining at gentle copper-and-nickel deposits,» Journal of Mining Science, No. 6 (2007).
6. A. N. Anushenkov, A. M. Freidin, and V. A. Shalaurov, «Preparation of molten solidifying fill from production wastes,» Journal of Mining Science, No. 1 (1998).
7. A. N. Anushenkov, «Russian Federation Patent No. 2013131. Method of consolidating stowing mixing in a ball mill,» Byull. Izobret., No. 9 (1994).
8. A. N. Anushenkov, Development of the Consolidating Stowing Mix and Transport Facilities [in Russian], GUTSMiZ, Krasnoyarsk (2006).


MINERAL MINING TECHNOLOGY


INTEGRATED MODEL OF THE COAL OUTLET STREAM IN SURFACE MINING OF COAL SEAMS
A. A. Botvinnik

The paper describes an algorithm for quality stabilization in coal outlet stream formed in coal seams mining. The desired quality indices become achievable due to rating face excavation in coal seams and owing to accumulating storages for low-quality and high-quality coals. The algorithm-based modeling is exemplified with a case history of the coal quality control on the Elginskoe Coalfield.

Quality index, coal seams, stabilization, accumulating storage, optimization

REFERENCES
1. Yu. E. Kaputin, Information Technologies in Mining Planning (for Mine Engineers) [in Russian], Nedra, Saint Petersburg (2004).
2. E. I. Ridel, Coal Quality Planning and Optimization for Surface Mines [in Russian], TSNIEIugol, Moscow (1980).
3. V. P. Kapustin, V. N. Sin’chkovsky, M. E. Red’kin, et al., «Computer-aided short-time planning of mining based on blending,» in: Open-Cut Mining Mechanization [in Russian], Issue 2, Nedra, Moscow (1983).
4. P. P. Bastan, E. I. Azbel’, and E. I. Klyuchkin, Ore Blending: Theory and Practice [in Russian], Nedra, Moscow (1979).
5. E. V. Freidina, A. A. Botvinnik, and A. N. Dvornikova, «Geoinformation technologies for coal quality control,» in: Industrial, Scientific and Educational Resumes and Development Problems in the Area of Surface Mineral Mining. Proceedings of the International Science-and-Technology Conference Dedicated to the 75th Anniversary of Prof V. S. Khokhryakov [in Russian], UGGA, Ekaterinburg (2002).
6. A. A. Botvinnik and A. N. Dvornikova, «Geoinformation technology based control of the quality of coal stream from a number of faces,» Gorny Inform.-Analit. Byull., No. 4 (2007).
7. V. R. Karmanov, Mathematical Programming [in Russian], Nauka, Moscow (1980).


A REVIEW ON EXISTING OPENCAST COAL MINING METHODS WITHIN AUSTRALIA
B. Scott, P. G. Ranjith, S. K. Choi, and Manoj Khandelwal

Currently almost 65 % of the coal in Australia is being produced by opencast mining methods. Mining equipments such as draglines, dredgers or bucket wheel excavators, trucks and shovels, and dozers are the main equipments employed for overburden removal and coal extraction. The choice of equipment for a particular mine depends on geological, geotechnical and economic factors and other site issues. This paper provides a general review of the main equipments used in Australia, including examples of some existing mines and the reasons for their choice of equipment. In addition, the paper discusses major geo-mechanical issues encountered and how these may influence the selection of appropriate equipments used in open cut mining operations.

Coal mining, surface mine, opencast mining machines

REFERENCES
1. M. T. Brett and N. R. Brown, «Economic exploitation of deep coal seams by opencast mining,» in: Proceedings of the 2nd Group Mining Symposium, Johannesburg, Anglo American Corporation (1985).
2. J. H. Taylor, Opencast Mining, Quarrying and Alluvial Mining, The Institution of Mining and Metallurgy, London (1964).
3. S. K. Beattie, «Forward preparation in opencast coal mining — an analytical approach,» Quarry Management Production, 9, No. 5 (1982).
4. Government of Australia, Energy for Minerals Development in the South West Coast Region of WA (2006). [Online] Available: http://www.mpr.wa.gov.au/documents/ investment/FinalStudyReportJan.pdf.
5. Coal Services Pty. Ltd. (2006). [Online] Available: www.coalservices.com.au.
6. Government of New South Wales, Department of Primary Industries, New South Wales (2006). [Online] Available: http://www.dpi.nsw.gov.au.
7. Government of South Australia, Primary Industries and Resources, South Australia (2006). [Online] Available: http://www.pir.sa.gov.au.
8. Government of Western Australia, Department of Industry and Resources, Western Australia (2006). [Online] Available: http://www.doir.wa.gov.au.
9. Government of Tasmania, Infrastructure and Resource Information Service, Tasmania (2006). [Online] Available: http://www.iris.tas.gov.au.
10. Government of Victoria, Department of Primary Industries, Victoria (2006). [Online] Available: http://www.dpi.vic.gov.au.
11. Government of Queensland, Department of Natural Resources and Minerals, Queensland (2006). [Online] Available: http://www.nrm.qld.gov.au.
12. Department of the Prime Minister and Cabinet (2006). [Online] Available: http://www.dpmc.gov.au.
13. P. Westcott, Dragline or Truck/Shovel? Some Technical and Business Considerations, University of New South Wales, Mitsubishi Development Pty Ltd (2004).
14. S. Britton, SME Mining Engineering Handbook, Society for Mining, Metallurgy, and Exploration, Littleton, Colo Publishers (1992).
15. D. B. Hughes and W. J. P. Leigh, «Stability of excavations and spoil mounds in relation to opencast coal mining,» Quarry Management (1985).
16. S. R. Newcomb and J. L. Tilley, «Mine planning and geotechnical considerations in the development of the western batters of Yallourn open cut mine,» in: Proceedings of the 2nd Conference for Large Open Pit Mining, Latrobe Valley, Aus IMM, Melbourne (1989).
17. J. Simmons, «Geotechnical risk management in open pit coal mines,» in: Newsletter, Australian Centre for Geomechanics, (2004).
18. C. S. Gloe, J. P. James, and R. J. Mckenzie, «Earth movements resulting from brown coal open cut mining — Latrobe Valley, Victoria,» Proceedings of the 11th Symposium on Subsidence in Mines, Wollongong (1973).
19. M. D. O’Brien and D. G. Swift, «Study of deep open cut mining systems at the Leigh Creek coalfield, South Australia,» in: Proceedings of the International Symposium on Mine Planning and Equipment Selection, Calgary, Rotterdam: A. A. Balkema (1988).
20. R. J. Parkin, «Planning, operational and environmental aspects of open cut mining at Boundary Hill Mine, Central Queensland,» Min. Eng., 148, No. 327 (1988).
21. CSIRO, Automated Volume Measurement of Haul-Truck Loads (2006). [Online] Available: http://www.cat.csiro.au/cmst/automation/projects/truck.php.
22. Immersive Technologies, Dragline Simulator Launches onto World Stage with Strong Support (2006). [Online] Available: http://www.immersivetechnologies.com/news/news/ 2005/news_2005_13.htm.
23. D. J. Davison, «Opencast coal mining: the future and the environment,» Colliery Guard, 233, No. 5 (1975).
24. C. Burt, L. Caccetta, S. Hill, and P. Welgama, Models for Mining Equipment Selection, Curtin University of Technology, Perth, Australia (2002).
25. Anon. Benchmarking the Productivity of Australia’s Black Coal Industry, Tasman Asia Pacific Pty Ltd (1998).
26. M. Pinnock, «Productivity in Australian coal mines,» The Australian Coal Review (1997).
27. CSIRO, Dragline Simulator Launches onto World Stage with Strong Support (2006). [Online] Available: http://www.cat.csiro.au/cmst/automation/projects/dragline.php.


DETERMINING OF SAFETY PILLARS IN THE VICINITY OF WATER RESERVOIRS IN MINE WORKINGS WITHIN ABANDONED MINES IN THE UPPER SILESIAN COAL BASIN (USCB)
Przemysław Bukowski

Against a background of hydrodynamic conditions connected with abandoning of significant number of mines and vast water reservoirs forming within them, basic methods of the assessment of strength of safety pillars used in coal mines in the USCB are presented. In the light of geomechanical research and conditions in mines in the USCB, the paper indicates a possibility of verification of safety pillar dimensions. On the example of one of mines in the USCB conditions for safety pillars stability in complicated mining conditions are assessed. The author also proposes a methodology of attempt and safety zones indication for existing safety pillars which would simultaneously be safety zones for designed exploitation.

Mining, active mine, abandoned mine, water hazard, safety pillar

REFERENCES
1. P. Bukowski, J. Wagner, and A. Witkowski, « Use of void spaces in abandoned mines in the Upper Silesian Coal Basin (Poland),» in: Proceedings of the IMWA Symposium: Water in Mining Environments, Macoedizioni (Ed.), Cagliari, Italy (2007).
2. P. Bukowski, «Water storage capacity of rock mass in forecasting the flooding process of mine workings,» in: Proceedings of the 7th International Mine Water Association Congress: Mine Water and the Environment, Ustroń, Poland (2000).
3. P. Bukowski, «The water storage capacity of a carboniferous rock mass and its impact on the flooding process of mine workings in the Upper Silesian Coal Basin,» in: Archives of Mining Sciences, 47, No. 3, Warszawa — Kraków, Wyd. PWN (2002).
4. S. G. Aviershin, «Barrier pillars,» in: Mining — Encyclopedic Reference Book [in Russian], 2, Ugletekhizdat (1974).
5. E. Konstantynowicz, T. Bromek, T. Piłat, et al, «Wyznaczanie filarów bezpieczeństwa dla ograniczenia zagrożenia wodnego w kopalniach węgla kamiennego (Determination of safety pillars for limiting of water hazard in hard coal mines» [in Polish, abstract in English], Prace GIG, Komunikat, No. 615, (1974).
6. E. Konstantynowicz, «Metodyka badań, profilaktyka i zabezpieczenia wyrobisk górniczych w kopalniach węgla przed wdarciem się wody lub kurzawki (The methodology of research, preventive measures and protections of mine workings in coal mines against water inrush or quicksand [in Polish, abstract in English],» Przegląd Górniczy, No. 3 (1971).
7. B. Schmieder, «Développement et résultants de la protection contre l’eau karstique et les nappes captives,» Publications de lInstitut de Recherches Miniéres de Hongrie, No. 12 (1969).
8. B. Schmieder, «Same remarks to provide a more exact definition for the term exploiting layer,» in: Proceedings of the Conference on Safety in the Mining, Budapest (1970).
9. R. Krajewski, "Długość przedwiertów ustalających zagrożenie wodne wyrobisk górniczych (Length of borehole determining water hazard in mine workings) [in Polish], Przegląd Górniczy, No. 1 (1957).
10. H. Labasse, «Le calcul de la largeul à donner aux massifs de protection à laisser le long des exploitations inondées,» Annales des Mines le Belgique, No. 4 (1966).
11. V. M. Maksimov, Hydrogeologist’s Reference [in Russian], Nedra, Moscow (1967).
12. J. A. Hudson, E. T. Brown, and C. Fairhurst, «Shape of the complete stress-strain curve for rock,» in: Proceedings of the 13th Symposium on Rock Mechanics, Illinois, USA (1971).
13. Z. Li, Y. Sheng, and D. J. Reddish, «Rock strength reduction and its potential environmental consequences as a result of groundwater rebound,» in: Proceedings of the 9th International Mine Water Association Congress: Mine Water 2005 — Mine Closure, Oviedo, Spain (2005).
14. P. Bukowski and M. Bukowska, «Zmiany niektórych własności środowiska geologicznego w strefie wahań zwierciadła wód w zbiornikach tworzonych w kopalniach węgla kamiennego w GZW (Changes of some properties of geological environment within the zone of water table fluctuations in reservoirs formed in hard coal mines in the USCB’ [in Polish, abstract in English], in: Współczesne Problemy Hydrogeologii,. Wyd. Uniwersytetu Mikołaja Kopernika, A. Sadurski, A. Krawiec (Eds.), 12, Toruń (2005).
15. P. Bukowski and M. Bukowska, «Changes in geomechanical properties of carboniferous rocks under the influence of water and their possible consequences in the areas of abandoned mines of the Upper Silesian Coal Basin (Poland),» in: Proceedings of the 10th International Mine Water Association Congress: Mine Water and the Environments, Karlovy Vary (2008).
16. M. Bukowska (Ed.), Complex Method of the Assessment of Rock Mass Susceptibility to Bums in the Upper Silesian Coal Basin [in Polish], Wydawnictwo GIG, Katowice (2009).
17. M. Bukowska, «Mechanical properties of Carboniferous rocks in the Upper Silesian Coal Basin under uniaxial and triaxial compression tests,» Journal of Mining Science, 41, No. 2, (2005).
18. M. Bukowska, «The probability of rockburst occurrence in the Upper Silesian Coal Basin area dependent on natural mining conditions,» Journal of Mining Science, 42, No. 6 (2006).
19. M. Bukowska «The exploitation depth and bump hazard in the mines of the Upper Silesian Coal Basin,» in: Deep Mining Challenges. International Mining Forum 2009, E. J. Sobczyk, J. Kicki, and P. Saługa (Eds.), CRC Press Taylor and Francis Group/Balkema (2009).
20. F. Vigh, «Dimensionierung der Wasserschutzpieiler,» Mitteilungen des Ungarischen Forshungsinstitutes fur Bergbau, No. 7. (1963–1964).
21. P. Bukowski, «Determining of water hazard zones for mining exploitation planned in the vicinity of reservoirs in abandoned mines,» Mineral Resources Management, 25, Zeszyt 3, Wydawnictwo Sigmie PAN Kraków, (2009).
22. P. Bukowski, «Relationship between renewable energy from low enthalpy mine waters stored in Polish hard coal mines and water hazard connected with plans of coal mining,» in: Proceedings of the International Mine Water Association Conference, Pretoria, South Africa (2009).
23. A. Kowalski, «Zmienność parametru zasięgu wpływów głównych w górotworze (Changeability of the parameter of main influence reach in rock mass» [in Polish], Ochrona Terenów Górniczych, No. 72/2 (1985).


MINERAL DRESSING


ELECTRIC FLOTATION EXTRACTION OF MANGANESE FROM HYDROMINERAL WASTES AT YELLOW COPPER DEPOSITS IN THE SOUTH URAL
V. A. Chanturia, I. V. Shadrunova, N. L. Medyanik, and O. A. Mishurina

The paper highlights a live issue of the resource-saving manganese-bearing hydromineral waste processing and discusses research data of Mn (II) extraction from acid under-dumping place waters at yellow copper deposits by means of coupling electric coagulation and electric flotation methods.

Resource regeneration technology, manganese, electric coagulation deposition, active chlorine forms, electric flotation extraction, processing, parameters

REFERENCES
1. K. N. Trubetskoy, V. A. Chanturia, and D. R. Kaplunov (Eds.), Comprehensive Development of the Earth Interior: Outlook for the Mineral Source Enlargement in Russia [in Russian], IPKON, Moscow (2008).
2. I. V. Shadrunova and E. V. Zelinskaya, «Ecology-friendly and economy-saving development of the production-made hydromineral depositions in the integrated mining and processing cycle for solid minerals,» in: International Conference Transactions «Innovative Technologies in the Comprehensive Ecology-Safe Processing of Alternative Mineral Raw Materials. Plaksin’s Readings» [in Russian], IPKON, Moscow (2009).
3. R. F. Abdrakhmanov and R. M. Akhmetov, «Technogenesis impact on surface and underground waters and their preservation in Bashkiria. Information material,» Geolog. Sbornik, No. 6 (2006).
4. A. G. Mustafin, S. V. Kovtunenko, S. V. Pestrikov, and Z. Sh. Sabitova, «Ecological research of the Tanalyk River, Bashkortostan Republic,» Vestn. Bashkir. Univer., 12, No. 4 (2007).
5. V. A. Chanturia and G. I. Nazarova, Electrochemical Technology in Hydrometallurgical Processing [in Russian], Nauka, Moscow (1977).
6. O. A. Mishurina, «Electric flotation removal of manganese from waste waters at mining practices,» Nosov’s MGTU Vestn., No. 3 (2009).
7. N. Medyanic and O. Mishurina, «Technology of Mn (II) extraction from acid mine waters of ore mining enterprises,» in: Internationaler Kongress Fachmesse Ökologische und Technologische Aspekte dеr Lebensversorgung, Europäische Wissenschaftliche Gesellschaft, Euro-Eko-2009, Hannover, Deutsch (2009).


LOWER TEMPERATURE FLOTATION OF CARBONATE-FLUORITE ORES
L. A. Kienko, L. A. Samatova, O. V. Voronova, and S. A. Kondrat’ev

The authors provide insight into the problem of selective flotation of fluorite from carbonate-fluorite ores. It is found that oxyhydrate collectors used in combination with sodium fluoride provide rather high level of selectivity in fluoride flotation from poor high-carbonate ores and make it possible to eliminate high-temperature pulp treatment with acceptable reduction in the flotation temperature to 15°С and below.

Carbonate-fluorite ores, selective flotation, adsorption, low-temperature mode, modifying agent, degree of dispersion

REFERENCES
1. L. A. Barsky, O. V. Kononov, and L. I. Ratmirova, Selective Flotation of Calcium-Bearing Minerals [in Russian], Nedra, Moscow (1979).
2. G. M. Adosik, et al., «Russian Federation Patent No. 2192314. Process for flotation of calcite-fluorite ores,» Byul. Izobret., No. 31 (2002).
3. A. Day and H. Hartjens, US Patent No. 3830366. Mineral Flotation with Sulfosuccinamate and Depressant, American Cyanamid Company (1974).
4. L. A. Samatova, L. A. Kienko, O. V. Voronova, and L. N. Plyusnina, «Theoretical foundation for selective flotation of calcium-bearing mineral constituents of the Primorski Krai ores,» in: International Science and Practice Conference proceedings «Integrated Mineral Development Issues» [in Russian], GIAB (2005).
5. L. A. Kienko, L. A. Samatova, G. Yu. Zuev, et al., «Fluorite flotation from carbonate ores,» Obog. Rud, No. 4 (2007).
6. L. A. Kienko, L. A. Samatova, G. Yu. Zuev, et al., «Russian Federation Patent No. 2286850. Process for fluorite ore processing,» Byul. Izobret., No. 31 (2006).
7. O. S. Bogdanov, Theory and Process for Ore Flotation [in Russian], Nedra, Moscow (1990).
8. M. A. Eigeles, Fundamentals of Nonsulfide Mineral Flotation [in Russian], Metallurgizdat, Moscow (1964).


ANALYSIS OF SELECTIVITY OF THIONOCARBAMATE COMBINATIONS WITH BUTYL XANTHATE AND DITHIOPHOSPHATE
V. A. Ignatkina, V. A. Bocharov, B. T. Puntsukova, and D. A. Alekseychuk

The paper discusses the analysis of the effect exerted by combinations of butyl xanthate and isobutyl dithiophosphate with isopropyl-O-N-methyl-thionocarbamate on monomineral pyrite and copper pyrite fractions. The list of the research methods includes nonfrothing flotation, adsorption, IR spectroscopy and ATR method, measurements of contact angles and induction times for air bubbles and thin section surfaces. The isobutyl dithiophosphate and thionocarbamate combination results in lower pyrite yield into concentrate of nonfrothing flotation, as well as in lower adsorption parameters and hydrophobic properties as compared with the butyl xanthate and thionocarbamate combination. Combining sulfhydryl ionized (strong) collectors with non-ionized (weak) collectors alters compositions of surface compounds of the collectors on sulfide minerals, which changes hydrophobic properties of the mineral surface and, as a consequence, raises flotation selectivity.

Flotation, combination of collectors, selectivity, pyrite, copper pyrite, adsorption, wettability, surface compounds

REFERENCES
1. I. N. Plaksin, V. A. Glembotsky, and A. M. Okolovich, «Feasible intensification of flotation by combining reagents-collectors,» in: Transactions of the Institute of Mining, USSR Academy of Sciences [in Russian], 1, Lyubertsy (1954).
2. S. P. Zaitseva and I. N. Plaksin, «Influence exerted by a combination of reagents-collectors on their adsorption with copper, silver and gold alloy,» Izv. Akad. Nauk SSSR, Otdel Tekh. Nauk, No. 7 (1956).
3. V. A. Konev, Flotation of Sulfides [in Russian], Nedra, Moscow (1985).
4. V. I. Revnivtsev, V. A. Konev, and V. I. Ryaboy, «Basic lines in the fields of synthesizing, seeking and applying efficient reagents,» in: Flotation Agents [in Russian], Nauka, Moscow (1986).
5. O. S. Bogdanov, I. S. Maksimov, A. K. Podnek, et al., Theory and Technology of Ore Flotation [in Russian], Nedra, Moscow (1990).
6. G. Lui, Zhong, and T. Dai, «Investigation of the selectivity of ethoxy-carbonyl thionocarbamates during the flotation of copper sulfides,» Mineral and Metallurgical Procc., 25, No. 1 (2008).
7. A. A. Abramov, «Role of the collecting agent sorption forms in the elementary act of flotation,» Journal of Mining Science, No. 1 (2005).
8. V. A. Ignatkina, V. A. Bocharov, V. V. Stepanova, and T. I. Kustova, «Examination of modified dithiophosphate to float copper, iron, zinc and gold sulfides,» Obog. Rud, No. 6 (2005).
9. V. A. Ignatkina, «Choosing selective collectors to float sulfide minerals,» Tsvet. Metally, No. 6 (2009).
10. V. I. Ryaboy, K. M. Asonchik, V. I. Pol’kin, et al., «Copper-zinc ore flotation with the selective collectors,» Obog. Rud, No. 3 (2008).
11. K. M. Asonchik, V. I. Ryaboy, V. N. Pol’kin, et al., Development of processing technology for copper-zinc ore and higher quality copper concentrate,» Obog. Rud, No. 1 (2009).
12. M. I. Khersonsky, A. M. Desyatov, Zh. Baaturkhuu, and S. N. Karnaukhov, «Study aimed at finding efficient collectors for flotation of copper-molybdenum ore at Erdenetiyn Ovoo deposit, Mongolia,» in: Plaksin’s Readings [in Russian], Krasnoyarsk (2006).
13. P. M. Solozhenkin, N. I. Kopitsia, Yu. Komarov, et al., «On interaction of combined flotation agents in flotation of sulfide minerals,» in: The Current State and Development Prospects for the Flotation Theory [in Russian], Nauka, Moscow (1979).
14. I. A. Kakovsky, V. K. Babak, and E. I. Silina, «Effect of excess anion collector on flotation results,» in: Uralmekhanobr Transactions [in Russian] (1956).
15. Yu. G. Frolov, Colloid Chemistry Course. Surface Phenomena and Dispersed Systems [in Russian], Khimia, Moscow (1982).
16. V. I. Melik-Gaikazyan, A. A. Abramov, Yu. B. Rubinshtein, et al., Flotation Research Methods [in Russian], Nedra, Moscow (1990).
17. L. S. Solntseva, E. V. Likhonina, and B. P. Solntseva, The IR Spectroscopy Approach to Mineral Flotation. Crystal Chemistry Package of Solution Techniques in Mineral Technology [in Russian], Moscow (1990).


BUBBLES COALESCENCE: HYDROFOBIC PARTICLES EFFECT
P. M. Gallegos-Acevedo, J. Espinoza-Cuadra, R. Pérez-Garibay, and E. T. Pecina-Treviño

This paper presents an experimental methodology to capture and record an image sequence to observe and quantitatively characterize bubble coalescence phenomenon. The effect of the solids attached onto the bubble surface and its interaction with other bubbles both empty and loaded are examined. In addition, a coalescence mechanism in the froth zone of flotation columns and some experimental results obtained at the laboratory scale are discussed.

Froth flotation; column flotation; hydrophobic particles

REFERENCES
1. J. A. Finch and G. S. Dobby, Column Flotation, Pergamon Press Editorial (1990).
2. J. B. Rubinstein, «Column flotation. Processes, designs and practices,» in: Process Engineering for the Chemical, Metals and Minerals Industries, T. J. Veasy (Ed.). Gordon and Breach Science Publishers, Swiss, (1995).
3. M. Nieeiadomski, J. Hupka, J. Nalaskowski, and J. D. Miller, «Dispersed oil impact on froth stability in flotation,» Physicochemical Problems of Mineral Processing, 35 (2001).
4. S. Ata, N. Ahmed, and G. J. Jameson, «A study of bubble coalescence in flotation froths,» International Journal of Mineral Processing, 72 (2003).
5. A. Dippenaar, «The destabilization of froth by solids. Part I: The mechanism of film rupture,» International Journal of Mineral Processing, 9, No. 1 (1982).
6. V. I. Klassen and V. A. Mokrousov, An Introduction of the Theory of Flotation, Chapter 5, Butterworths, London (1963).
7. M. Szatkowski and W. L. Freyberger, «Kinetics of flotation with fine bubbles,» in: Trans. Instn. Min. Metall. (Section C), 94 (1985).
8. P. M. Gallegos-Acevedo, R. Pérez-Garibay, A. Uribe-Salas, and F. Nava-Alonso, «Bubble load estimation in the froth zone to predict the concentrate mass flow rate of solids in column flotation,» Minerals Engineering, 20 2007).
9. M. Barigou and M. Greaves, «Bubble size distributions in a mechanically agitated gas-liquid contactor,» Chemical Engineering Science, 47, No. 8, (1992).


NEW METHODS AND INSTRUMENTS IN MINING


AUTOMATED INSTRUMENTATION TO MEASURE ROCK MASS STRESSES IN PARALLEL-DRILLED HOLES
V. D. Baryshnikov and V. G. Kachal’sky

The prototype of a new-developed program-instrumentation system provides automated measurement and processing of data on stresses in a rock mass by employing the parallel-hole method. The respective instrumentation and the procedure for execution of tests on stress evaluation within a rock mass are also briefed on. Recorder software provides the prompt control of the entire process with visualized parameters, thus contributing to the proper decision-making with account for experimental conditions and expediency to go on with downhole tests.

Rock, stress, strain, elastic properties, strain gage, hydraulic sensor, recorder

REFERENCES
1. V. S. Akimov, M. V. Kurlenya, A. V. Leont’ev, et al., «Process for evaluation of composite stresses in a rock mass by disturbing stress fields in the vicinity of a borehole equipped with a strain gage,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1974).
2. M. V. Kurlenya, V. D. Baryshnikov, G. F. Bobrov, et al., «Process for the stress-strain state evaluation within a rock mass,» Otkr. Izobret., No. 40 (1981).
3. V. D. Baryshnikov, M. V. Kurlenya, S. N. Popov, et al., «Method of in situ determination of the elastic properties of rocks in the method of parallel holes,» Journal of Mining Science, No. 1 (1982).
4. M. V. Kurlenya and S. N. Popov, Theoretical Fundamentals of Rock Stress Evaluation [in Russian], Nauka, Moscow (1993).
5. A. P. Kolesnikov, M. V. Kurlenya, and S. N. Popov, «Theory and results of stress evaluation within a rock mass by parallel-hole method,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1973).
6. V. D. Baryshnikov, M. V. Kurlenya, A. V. Leont’ev, et al., «Stress-strain state of the Nikolaev Deposit,» Journal of Mining Science, No. 2 (1982).
7. V. D. Kolmakov, Procedure for Experimental Measurement of Stress within Rocks by the Parallel Hole Method [in Russian], IGD SO RAN SSSR, Novosibirsk (1985).
8. V. D. Baryshnikov, M. V. Kurlenya, and L. N. Gakhova, «Experience in application of the parallel hole method to evaluate stresses within a concrete mass,» Gidrotekh. Stroit., No. 9 (1998).
9. A. V. Leont’ev and V. E. Petrov, «Block-module principle of construction of geomechanical measuring-computing system,» Journal of Mining Science, No. 1 (1997).


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2024. Информация о сайте