JMS, Vol. 46, No. 2, 2010
GEOMECHANICS
NONLINEAR DEFORMATION-WAVE PROCESSES
IN THE VIBRATIONAL OIL GEOTECHNOLOGIES
V. N. Oparin and B. F. Simonov
The paper explains a number of phenomena that are observed in the surface vibrational treatment of oil and gas reservoirs based on the thriving theory of pendulum waves, e.g., a ring-shape response of a productive stratum and a time lag in the response, seismic luminescence and its spectrum, etc. The authors give data on velocity groups of pendulum waves in stressed block hierarchy of rock masses and substantiate the choice of the wave velocity group to be generated by the powerful surface vibro-sources designed at the Institute of Mining. The theoretical and phenomenological formulas given in the paper are of assistance in the development and improvement of the surface vibrational technologies for the enhancement of oil and gas recovery.
Block hierarchy structure of rocks, oil and gas reservoirs, pendulum waves, vibrational geotechnologies, stress state, acoustic-deformation «bow», seismic-electromagnetic luminescence
REFERENCES
1. V. N. Oparin, B. F. Simonov, V. F. Yushkin, et al., Mechanical and Technical Basics of Vibro-Wave Technologies for Enhanced Oil Recovery [in Russian], Nauka, Novosibirsk (2009).
2. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum, et al., Zonal Disintegration of Rocks and the Stability of Underground Openings [in Russian], SO RAN, Novosibirsk (2008).
3. M. V. Kurlenya, V. N. Oparin, A. P. Tapsiev, et al., Geomechanical Interaction of Rock and Backfill Masses in Bedded Orebodies [in Russian], Nauka, Novosibirsk (1997).
4. B. F. Simonov, V. N. Oparin, E. N. Cherednikov, et al., «Surface vibroseis treatment of oil reservoirs,» Nauka Tekhnol. Uglevodorod., No. 6 (2000).
5. S. V. Serdyukov, V. S. Krivoputsky, and S. M. Gamzatov, «Seismic and acoustic field in an oil stratum under low-frequency vibration treatment,» Preprint [in Russian], No. 43, IGD SO RAN (1991).
6. B. F. Simonov, S. V. Serdyukov, and E. N. Cherednikov, «Pilot test results on vibroseismic enhancement of oil recovery,» Neft. Khoz., No. 6 (1996).
7. B. F. Simonov, E. N. Cherednikov, S. V. Serdyukov, et al., «Surface vibroseis treatment technique for increased oil recovery,» Neft. Khoz., No. 4 (1998).
8. A. K. Yagafarov, «Geology and geophysics background for intensification of inflow in oil-and-gas prospect wells,» in: Synopsis of Doctoral Thesis in Geology and Mineralogy [in Russian], Tver (1994).
9. V. N. Oparin, B. D. Annin, Yu. V. Chuguy, et al., Model and In Situ Measurement Methods and
Instruments for Nonlinear Deformation-Wave Processes in Block Rock Masses [in Russian], SO RAN, Novosibirsk (2007).
10. Report under Economic Contract No. 373–20 with the Norilsk Mining and Metallurgical Integrated Works, Experimental Investigation of Deformation-Wave and Seismic Processes Near Failure Source Areas in Rock Masses with the Aim at Development of Reliable Criteria for Rockburst Prediction [in Russian], IGD SO RAN, Novosibirsk (2005).
11. Resume of the Research and Organization Activity for 2008 [in Russian], IGD SO RAN, Novosibirsk (2009).
12. V. A. Saraikin, «Elastic properties of blocks in the low-frequency component of waves in a 2D medium,» Journal of Mining Science, No. 3 (2009).
13. N. I. Aleksandrova, E. I. Sher, and A. G. Chernikov, «Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves,» Journal of Mining Science, No. 3 (2008).
14. V. A. Saraikin, «Calculation of wave propagation in the two-dimensional assembly of rectangular blocks,» Journal of Mining Science, No. 4 (2008).
15. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part I,» Journal of Mining Science, No. 3 (1999).
16. A. P. Bobryakov, «Geophysical modeling of fissuring sets in geomaterials,» Journal of Mining Science, No. 5 (2004).
17. M. V. Kurlenya, V. N. Oparin, V. I. Vostrikov, et al., «Pendulum waves. Part III: Data of on-site observations,» Journal of Mining Science, No. 5 (1996).
18. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part II,» Journal of Mining Science, No. 4 (2000).
19. V. N. Oparin, «Rock failure energy criterion,» in: Miner’s Week-2009 Workshop Proceedings [in Russian], MGGU, Moscow (2009).
20. V. V. Timonin, «Substantiation of parameters for a rock-destruction tool and a hydraulic impact machine for rock drilling,» in: Synopsis of Cand. Tech. Sci. Thesis [in Russian], Novosibirsk (2009).
21. M. A. Sadovsky, O. K. Kedrov, and I. P. Pasechnik, «Seismic energy and volume of sources of the crust quakes and underground blasts,» Dokl. Akad. Nauk, 283, No. 5 (1985).
22. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Geomechanical conditions fro quasi-resonances in geomaterials and block media,» Journal of Mining Science, No. 5 (1998).
23. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. VII: Theory of Elasticity [in Russian], Nauka, Moscow (1987).
24. V. N. Oparin, M. V. Kurlenya, A. A. Akinin, et al., «On some features of evolution of harmonic acoustic signals in loading block media with a cylindrical cavity,» Journal of Mining Science, No. 6 (1999).
25. G. E. Yakovitskaya, Methods and Means for Critical State Diagnostics in Rocks Based on Electromagnetic Emission [in Russian], Parallel, Novosibirsk (2008).
26. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Anomalously low friction in block media,» Journal of Mining Science, No. 1 (1997).
27. V. N. Oparin, V. F. Yushkin, A. A. Akinin, et al., «A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium,» Journal of Mining Science, No. 5 (1998).
28. A. V. Lavrov, V. L. Shkuratnik, and Yu. L. Filimonov, Acoustic Emission Memory in Rocks [in Russian], MGGU, Moscow (2004).
29. V. N. Oparin, A. D. Sashurin, G. I. Kulakov, et al., Modern Geodynamics of the Top Lithosphere: Sources, Parameters, Influence on Underground Entities [in Russian], SO RAN, Novosibirsk (2008).
30. A. P. Bobryakov, «Influence of weak shakes on statically stressed granular medium,» Journal of Mining Science, No. 2 (2008).
31. A. P. Bobryakov and A. V. Lubyagin, «Experimental investigation into unstable slippage,» Journal of Mining Science, No. 4 (2008).
32. S. V. Serdyukov, «Experimental substantiation of the vibroseismic oil technology,» Synopsis of Dr. Eng. Thesis [in Russian], Novosibirsk (2001).
33. N. I. Aleksandrova, «Elastic wave propagation in block medium under impact loading,» Journal of Mining Science, No. 6 (2003).
34. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Journal of Mining Science, No. 6 (2004).
35. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «Experimental investigation into the one-dimensional calculated model of wave propagation in block medium,» Journal of Mining Science, No. 3 (2005).
36. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «On attenuation of pendulum-type waves in a block rock mass,» Journal of Mining Science, No. 5 (2006).
37. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, et al., «Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,» Journal of Mining Science, No. 6 (2007).
38. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Impulsive excitation of elastic wave packages in block media. Pendulum-type waves ,» Dokl. Akad. Nauk, 333, No. 4 (1993).
39. Sh. A. Guberman, «D-waves and earthquakes,» in: Seismology Theory and Analysis. Computational Seismology [in Russian], Issue 12, Nauka, Moscow (1979).
40. V. V. Zhadin, «Time-positional connections of strong quakes,» Fiz. Zemli, No. 1 (1984).
41. K. T. Tazhibaev and D. S. Duisheev, «Experimental research of rock failure under various contact and loading conditions,» in: Analysis, Prediction and Prevention of Rock Bursts. The 19th All-Union Rock Mechanics Conference Proceedings [in Russian], Ilim, Frunze (1991).
42. M. V. Kurlenya, V. N. Oparin, A. F. Revuzhenko, et al., «Features of rock response to nearby blasting,» Dokl. Akad. Nauk, 293, No. 1 (1987).
43. M. V. Kurlenya and V. N. Oparin, «Features of rock response to an explosive action in the near field,» Preprint [in Russian], IGD SO AN SSSR, Novosibirsk (1984).
44. V. V. Adushkin and A. A. Spivak, «Irreversible after-effects of a large-scale production explosion in the heterogeneous underground medium,» Preprint [in Russian], IFZ AN SSSR, Moscow (1989).
45. M. V. Kurlenya, V. V. Adushkin, V. V. Garnov, et al., «Alternating response of rocks to a dynamic impact,» Dokl. Akad. Nauk, 323, No. 2 (1992).
IDENTIFICATION OF WEAKENINGS IN. A. ROCK BLOCK
A. А. Krasnovsky and V. E. Mirenkov
The authors propose a process for identification of a weakening location in a rock block and the algorithm of its numerical realization based on the direct problem solutions and complementary data on boundary displacements. The inverse problems are solved by a set of singular integral equations of the boundary stresses and displacements.
Equation, method, weakening, rock block, boundary, displacement, stress, modeling
REFERENCES
1. M. M. Lavrent’ev, Incorrect Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1981).
2. M. Bonnet and A. Constantinescu. «Inverse problems in elasticity,» Inverse Problems, No. 21 (2005).
3. A. A. Krasnovsky and V. E. Mirenkov, «Determination of boundary conditions in rocks under compression,» Journal of Mining Science, No. 4 (2009).
4. V. E. Mirenkov and V. A. Shutov, Mathematical Modeling of Rock Deformation near Weakenings
[in Russian], Nauka, Novosibirsk (2009).
5. V. E. Mirenkov and V. A. Shutov, Analytical Aspects of Failure Mechanics [in Russian], NARKHI, Novosibirsk (1996).
6. A. M. Denisov, Introduction to Theory of Inverse Problems [in Russian], MGU, Moscow (1994).
7. A. O. Vatulyan, Inverse Problems in Deformable Solid Mechanics [in Russian], Fizmatlit, Moscow (2007).
8. A. V. Kaptsov and E. I. Shifrin, «Identification of a flat crack in an elastic body by invariant integrals,» Mekh. Tverd. Tela, No. 3, (2008).
9. I. Yu. Tsvelodub, «Inverse problems of inelastic deformation of heterogeneous media,» Mekh. Tverd. Tela, No. 2 (2005).
10. A. A. Krasnovsky and V. E. Mirenkov, «Calculation of stress-strain state in a rock mass with an oil formation,» Journal of Mining Science, No. 2 (2008).
EXPERIMENTAL DETERMINATION OF THE FILTRATION
FLOW PROPAGATION VELOCITIES BASED ON THE AIR FLOW IN ROCK CORES
A. P. Kurshin
The experimental procedure and test data on assessment of rates of air filtration flow are reported. Permeability of the test specimens differ by more than four orders in the range of linear filtration. The tests with core specimens under the gas pressures of 0.5, 1, 2, 5, 10 MPa established relationships between the gas propagation rate, gas pressure, structure and hydrodynamic characteristics of the specimens.
Porous medium, filtration flow propagation velocity, experiment, rock cores
REFERENCES
1. S. A. Khristianovich, «Unstabilized flow of liquid and gas in a porous medium under a sharp pressure variation in time or large porosity gradients,» Journal of Mining Science, No. 1 (1985).
2. S. A. Khristianovich, «Fundamentals of the theory of filtration,» Journal of Mining Science, No. 5 (1989).
3. A. P. Kurshin, «Regularities of gas flow through porous structures of stiff structures,» TSAGI Reports, 12, No. 6 (1981).
4. A. P. Kurshin, «Hydraulic resistance of a porous medium under gas filtration,» TSAGI Reports, 16,
No. 4 (1985).
5. A. P. Kurshin, «Procedure for evaluation of hydraulic porous medium resistance under gas filtration,» Teploenergetika, No. 2 (1991).
6. A. P. Kurshin, «Investigation into filtration gas flows through rock core specimens under critical outflow modes,» Mekh. Zhid. Gazov, No. 6 (1990).
GEOMECHANICAL ESTIMATE OF THE ROCK MASS STATE IN THE COURSE
OF DEEP LEVEL MINING IN TERMS OF THE TISHINSK DEPOSIT
Yu. A. Kashnikov, S. G. Ashikhmin, D. V. Shustov,
A. E. Fandeev, and A. I. Ananin
Based on the in situ measurements and analytical studies, the forecast of the stress-strain state is implemented for the Tishinsk orebody in the course of extraction at deep levels, as well as the state of rocks in the area of access shafts driven in walls of the Tishinsk Open Pit is estimated.
Open pit, shaft, displacements, strain, stress state, finite element method
REFERENCES
1. Yu. A. Kashnikov, S. G. Ashikhmin, A. E. Fandeev, et al., «Stress-strain state of the Tishinsk deposit rock mass,» in: The 13th International Congress Proceedings. International Association for Surveying, Budapest (2007).
2. W. Wittke, Rock Mechanics, Theory and Applications with Case Histories, Springer-Verlag,
Berlin (1990).
3. A. D. Sashurin, Rock Movements in the Iron Industry Mines [in Russian], IGD UrO RAN,
Ekaterinburg (1999).
4. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya, et al., «Zonal disintegration of rocks around underground mines. Part III: Theoretical concepts,» Journal of Mining Science, No. 1 (1987).
5. V. A. Kvochin, «Rock movement and rockburst hazard control in the Siberian iron ore mines based on the geodynamics analysis,» Synopsis of the Dr. Eng. Thesis [in Russian], Novokuznetsk (2000).
6. M. A. Kuznetsov, A. G. Akimov, V. I. Kuz’min, et al., Movements in Orebodies [in Russian], Nedra, Moscow (1971).
7. Yu. A. Kashnikov and S. G. Ashikhmin, Rock Mechanics in Hydrocarbon Material Formations
[in Russian], Nedra-Biznestsentr, Moscow (2007).
DYNAMOELECTRIC ENERGY TRANSFERS IN. A. ROCK MASS
UNDER EXPLOSION LOAD IN TERMS OF THE TASHTAGOL MINE
A. A. Bespal’ko, L. V. Yavorovich, E. E. Viitman,
P. I. Fedotov, and V. A. Shtirts
Based on the experimental measurements of the electromagnetic and acoustic emission in the course of stress redistribution in rocks under explosion load in the Tashtagol Mine, the paper illustrates the detection of stage-wise nucleation and development of geodynamic events as well as the evolution of the stress-strain state in rocks.
Dynamoelectric energy transfer, electromagnetic emission, stress-strain state, rock mass, electromagnetic emission data recorder
REFERENCES
1. P. V. Egorov, Yu. A. Shevelev, I. F. Matveev, et al., Rock Mass Control in Gornaya Shoria Mines
[in Russian], Institute of Coal, Siberian Branch, Russian Academy of Sciences, Kemerovo (1999).
2. Safety Instructions for Rockburst-Prone Deposits in Gornaya Shoria [in Russian], VostNIGRI, VNIMI, Novokuznetsk (1991).
3. A. A. Eremenko, A. P. Gaidin, V. A. Vaganova, et al., «Rockburst-hazard criterion of rock mass,» Journal of Mining Science, No. 6 (1999).
4. S. V. Kuznetsov and V. A. Trofimov, «Anomalous stress fields in the vicinity of tectonic disturbances in the rock mass,» Journal of Mining Science, No. 1 (2002).
5. V. N. Oparin, V. F. Yushkin, A. A. Akinin, et al., «A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium,» Journal of Mining Science, No. 5 (1998).
6. A. A. Vorob’ev, «Electric and electromagnetic phenomena observed in rock samples under loading and fracture. Impulsive RF emission in some dielectric materials under friction and scratch,» in: Underground Energy Equilibrium and Conversion [in Russian], TGU, Tomsk (1980).
7. V. V. Lasukov and Sh. R. Matov, «Electromagnetic precursor of rock collapse,» Journal of Mining Science, No. 2 (1993).
8. A. A. Bespal’ko, A. P. Surzhikov, and L. V. Yavorovich, «Dynamoelectric transfers in rocks under dynamic impact,» Gorny Zh., No. 4 (2006).
9. A. A. Bespal’ko, L. V. Yavorovich, and P. I. Fedotov, «Connection of the electromagnetic signal and electric properties of rocks exposed to acoustic and quasi-static effects,» Izv. TPU, 308, No. 7 (2005).
10. A. A. Bespal’ko, R. M. Gol’d, L. V. Yavorovich, et al., «Excitation of electromagnetic radiation in laminated rocks under acoustic influence,» Journal of Mining Science, No. 2 (2003).
11. V. V. Ivanov, P. V. Egorov, and A. G. Pimonov, «Statistic theory of emissive phenomena in structurally heterogeneous rocks under loading and the problem of the dynamic manifestation prediction,» Journal of Mining Science, No. 4 (1990).
12. A. A. Bespal’ko and N. N. Khorzov, «Equipment for stress-strain state assessment in mines,» in: International Conference Proceedings «Geodynamics and Stress State of the Earth’s Interior» [in Russian], IGD SO RAN, Novosibirsk (2004).
13. A. A. Bespal’ko, A. P. Surzhikov, V. K. Klimko, et al., «Interaction of variations in stress-strain state and electromagnetic emission rate in a rock mass,» in: International Conference Proceedings «Mining Sciences: Challenges and Prospects,» Vol. 1: Geomechanics [in Russian], IGD SO RAN, Novosibirsk (2005).
14. A. A. Bespal’ko, L. V. Yavorovich, P. I. Fedotov, et al., «Dynamoelectric energy transfers during deformation of rocks,» in: Head-Notes of the All-Russian Conference Papers "Tectonophysics and Actual Issues of the Earth Sciences. For the 40th Anniversary of the Tectonophysics Laboratory at the Institute of Physics of the Earth, Vol. 2 [in Russian], IFZ RAN, Moscow (2008).
GEOMECHANIACL STATE OF. A. STRENGTH-ANISOTROPIC ROCK MASS
IN THE VICINITY OF MATING TUNNELS
N. V. Cherdantsev, V. T. Presler, and V. Yu. Izakson
By solving a 3D elastic problem, plotting of discontinuity zones and with using specific input parameters of rock mass disturbance, the authors evaluate the mining-induced dislocation of a strength-anisotropic rock mass with mating square-cross-section tunnels.
Volume stress state, strength anisotropy, weakening surfaces, discontinuity zone, induced dislocation
REFERENCES
1. V. Yu. Izakson, «Methods to calculate stability of tunnels driven by mining machines under conditions of the Kuznetsk Coal Basin,» in: Thesis of Dr. Tech. Sci. [in Russian], Novosibirsk (1975).
2. Zh. S. Erzhanov, V. Yu. Izakson, and V. M. Stankus, Tunnels in the Kuznetsk Coal Basing Mines: Experience in Support Systems and Calculation of the Stability [in Russian], Kemerovo Knizh. Izd., Kemerovo (1976).
3. A. I. Lurie, Theory of Elasticity [in Russian], Nauka, Moscow (1970).
4. V. Z. Parton and P. I. Perlin, Methods of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).
5. N. V. Cherdantsev and V. Yu. Izakson, Some Volume and Plane Problems of Geomechanics [in Russian], KuzGTU, Kemerovo (2004).
6. N. V. Cherdantsev, «Development of the procedures for investigation into the geomechanics of strength-anisotropic rock mass with tunnels,» in: Thesis of Dr. Tech. Sci. [in Russian], Kemerovo (2007).
7. A. P. Shirokov and B. G. Pislyakov, Calculation and Selection of Supports for Conjugating Tunnels
[in Russian], Nedra, Moscow (1988).
8. Zh. S. Erzhanov and V. Yu. Izakson, «Discontinuity zones at conjugating tunnels,» in: Proceedings of the All-Union Conference on Rock Mechanics [in Russian], MGI, Moscow (1974).
9. S. Krauch and A. Starfield, Boundary Element Methods in Solid Mechanics; With Applications in Rock Mechanics and Geological Engineering, George Allen & Unwin (1983).
10. N. V. Cherdantsev and V. Yu. Izakson, «Stability of conjugation between two arched tunnels,» Journal of Mining Science, No. 2 (2004).
MINERAL MINING TECHNOLOGY
COAL EXTRACTION FROM THICK FLAT AND STEEP BEDS
V. I. Klishin and S. V. Klishin
The paper offers an underground geotechnology for thick coal beds based on the controllable force-feed extraction of pre-broken coal with using a re-designed powered roof support. Based on the discrete element method, the mathematical model has been developed for the numerical simulation of gravitation movement of granular materials. The two-dimensional problem about sublevel coal caving in thick beds is studied, and the effect exerted by the order of opening the roof support outlets on the coal extraction parameters is illustrated.
Powered roof support, underground coal extraction, gravitation movement, numerical model, discrete element method
REFERENCES
1. A. G. Salamatin, Underground Development of Thick Flat Coal Beds [in Russian], Nedra, Moscow (1997).
2. I. A. Shundulidi, A. S. Markov, S. I. Kalinin, et al., Selecting Parameters of Geotechnology for Cutting Roof and Interlayer Coal in Thick Beds [in Russian], Kemerovo (1999).
3. L. N. Gapanovich, P. F. Savchenko, and V. A. Bernatsky, «Development of powered roof support and coal extraction geotechnology,» Ugol, No. 11 (1986).
4. A. S. Saginov and S. S. Zhetesov, Advanced Mining Technology for Thick and Flat Coal [in Russian], «Kazakhstan», Alma-Ata (1981).
5. A. S. Saginov and S. S. Zhetesov, Two-Face Cutting of Thick and Flat Coal [in Russian], Nauka,
Alma-Ata (1982).
6. V. I. Klishin, Yu. S. Fokin, D. I. Kokoulin, et al., Powered Roof Supports and the Controlled Coal Extraction in Thick Beds [in Russian], Nauka, Novosibirsk (2007).
7. V. I. Klishin, V. N. Vlasov, and B. Kubanychbek, Powered Roof Support for the Force-Feed Extraction of Roof-Adjacent Coal [in Russian], GIAB, Moscow (2003).
8. V. I. Klishin, Yu. S. Fokin, and D. I. Kokoulin, «Joined coal and gas extraction from thick methane-saturated coal beds,» in: International Science & Practice Conference «Kazakhstan Mining Sciences: Outcome and Outlook» [in Russian], Vol. 68, Part 1, Almaty (2004).
9. L. P. Tomashevsky, V. P. Levochko, P. A. Borovikov, et al., «Development and validation of sublevel caving method and parameters for the extractive powered complex «support — drift»,» in: Advanced Geotechnology for Steep Coal Beds of the Kuznetsk Coal Basin. Collection of Scientific Papers [in Russian], No. 25, KuzNIUI, Prokopievsk (1974).
10. L. P. Tomashevsky, Current Technology for Thick, Steep and Faulted Coal Beds in the Kuznetsk Coal Basin and Its Advance Ability. Review [in Russian], TSNIEIugol, Moscow (1978).
11. S. N. Dmitriev, S. I. Zapreev, L. S. Sen’ko, et al., Basics for Coal Extraction with Flexible Supports
[in Russian], Nedra, Moscow (1967).
12. S. Gajos, «Experience and practical aspects of utilizing a shrinkage metod of extraction at «Kazimierz-Juliusz» coal mine in Sosnowiec,» in: International Mining Forum for New Technologies in Underground Mining, Safety in Mines, Cracow-Szczyrk-Wieliczka, Poland (2004).
13. P. A. Cundall and O. D. L. Strack, «A discrete numerical model for granular assemblies,» Geotechnique,
29 (1979).
14. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge (1989).
15. G. Kuwabara and K. Kono, «Restitution coefficient in collision between two spheres,» Japanese Journal of Applied Physics, 26 (1987).
16. H. Kruggel-Emden, «Review and extension of normal force models of the discrete element method,» Powder Technology, 171 (2007).
17. J. Schafer, S. Dippel, and D. E. Wolf, «Force schemes in simulations of granular materials,» Journal de Physique, 6 (1996).
18. E. P. Rusin, S. B. Stazhevsky, and G. N. Khan, «Geomechanical aspects of the genesis of exo- and endokarst,» Journal of Mining Science, No. 2 (2007).
19. S. G. Psakh’e, A. Yu. Smolin, S. Yu. Korostelev, et al., «Method of mobile cellular automations and its application to different scale modeling,» in: Mechanics — from Discrete to Continuous [in Russian], SO RAN, Novosibirsk (2008).
20. G. G. W. Mustoe, M. Miyata, and M. Nakagawa, «Discrete element methods for mechanical analysis of systems of general shaped bodies,» in: Proceedings of the 5th International Conference on Computational Structures Technology, Leuven, Belgium (2000).
21. H. Kruggel-Emden, M. Sturm, S. Wirtz, et al., «Selection of an appropriate time integration scheme for the discrete element method (DEM),» Computers and Chemical Engineering, 32 (2008).
22. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).
23. V. I. Klishin and S. V. Klishin, «DEM analysis of coal drawing from high coals in sublevel caving systems,» in: Extended Abstracts of ECCOMAS Thematic Conference «Multibody Dynamics 2009», Warsaw (2009).
24. S. V. Klishin, «Discrete element analysis of the gravitation flow of a granular material in the narrowing channels,» in: Proceedings of the Conference «Geodynamics and Stress State of the Earth’s Interior»
[in Russian], IGD SO RAN, Novosibirsk (2008).
25. K. Han, Y. T. Feng, and D. R. J. Owen, «Sphere packing with a geometric based compression algorithm,» Powder Technology, 155 (2005).
DEFORMATION AND FILTRATION CHARACTERISTICS
OF SOLID PARTICLES IN. A. SUSPENSION OR GRANULAR MATERIAL
IN ROCK STRENGTHENING WITH CEMENTATION AND
PRE-STRESSED BOLTING
A. E. Maiorov
The laboratory testing of the transfer processes in cementation reinforcement of rocks via holes and filtering-out of cement liquid phase in pre-stressed bolting allows examination of structuring of rocks, solid particles of suspended matter and granular materials, which influences the cementation performance and the roadway stability. The paper discusses the revealed effect of the direct and return density inflows in loading solid particles and the relationship between the shape of the particles and their penetration characteristics.
Rocks, roadway, support, cementation, rock bolt, reinforcement, structuring, particle, filtration
REFERENCES
1. E. I. Shemyakin, «Rock strength,» in: Scientific Reports of the National Scientific Center for Mining Practice — A. A. Skochinsky Institute of Mining [in Russian], Issue 308, Lyubertsy (2004).
2. E. I. Shemyakin, «Synthetical theory of strength,» Fiz. Mezomekh., 2, No. 6 (1999).
3. A. F. Revuzhenko, S. B. Stazhevsky, and E. I. Shemyakin, «Structural-dilatancy strength of rocks,» Dokl. AN SSSR, 305, No. 35 (1989).
4. A. F. Revuzhenko, Mechanics of Granular Media, Springer-Verlag Berlin Heidelberg (2006).
5. A. F. Revuzhenko, S. B. Stazhevsky, and E. I. Shemyakin, «Problems of the mechanics of granular media in mining,» Journal of Mining Science, No. 3 (1982).
6. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Levels of Structural Deformation in Solids
[in Russian], Nauka, Novosibirsk (1985).
7. V. E. Panin, «Physical mesomechanics of materials — a new trend initiation at the border of physics and deformable solid mechanics,» in: Modern Scientific Problems. Proceedings of the Scientific Sittings
[in Russian], SO RAN, Novosibirsk (2004).
8. V. A. Khyamyalyainen, Yu. V. Burkov, and P. S. Syrkin, Cement Screening around Permanent Roadways [in Russian], Nedra, Moscow (1994).
9. M. Shirato, T. Murase, A. Tokunaga, et al., «Calculations of consolidation period in expression operations,» J. Chem. Eng., 7, No. 3 (1974).
10. V. A. Zhuzhikov, Filtration. Theory and Practice of Separation of a Suspended Matter [in Russian], Khimia, Moscow (1980).
11. Yu. Z. Zaslavsky, E. A. Lopukhin, E. B. Druzhko, et al., Injection Reinforcement of Rocks [in Russian], Nedra, Moscow (1984).
12. M. A. Gol’dshtik, Transport Processes in a Granular Layer [in Russian], Inst. Teplofiz. SO AN SSSR, Novosibirsk (1984).
ON THE PREDICTION OF MUCKING RATES IN METAL ORE BLASTING
P. Segarra, J. A. Sanchidrián, L. M. López, and E. Querol
A model for the calculation of the productivity of cyclic excavators is developed. The production rate results as a product of an ideal, maximum, productivity rate (one of the coefficients of the model) times an operating efficiency. The latter is described as a function of three variables (rock strength, nominal bucket capacity and explosive energy concentration) and three more coefficients. The coefficients of the model have been obtained from field measurements in twenty production blasts at two open pit mines, for which mechanical properties of the rock, blasting characteristics and mucking rates were carefully measured. The model is statistically significant and explains up to 90 % of the variance of the production rate measurements.
Mucking rate, energy, powder factor, rock strength, bucket payload, excavator
REFERENCES
1. R. J. Sweigard. Materials handling: loading and haulage, in Hartman H. L. (ed.), SME Mining Engineering Handbook on CD-Rom, Colorado: Society for Mining, Metallurgy and Exploration, Inc., 1998.
2. T. Atkinson. Selection and sizing of excavating equipment, in: Hartman H. L. (ed.), SME Mining Engineering Handbook on CD-Rom, Colorado: Society for Mining, Metallurgy and Exploration, Inc., 1998.
3. V. I. Kuznetsov, A. R. Mattis, A. S. Tashkinov, E. I. Vasil’ev, and G. D. Zaytsev. Efficiency of excavation of overburden rock at quarries with the use of blast-free technology, Journal of Mining Science, 38, No. 5, 1997.
4. C. K. McKenzie, P. Geddes, K. Grohs, and M. Morrish. Blasting trials to control and monitor displacement of narrow vein gold ore, in: Proc. the 24th Annual Conference on Explosives and Blasting Technique, New Orleans, 1998.
5. J. Eloranta. Selection of powder factor in large diameter blastholes, in: Proc. the Explo’95. Exploring the Role of Rock Breakage in Mining and Quarrying, Brisbane, 1995.
6. I. Brunton, D. Thornton, R. Hodson, and D. Sprott. Impact of blast fragmentation on hydraulic excavator dig time, in Proc. the 5th Large Open Pit Conference, Kalgoorlie, 2003.
7. P. Segarra, J. A. Sanchidrián, J. J. Montoro, and L. M. López. Mucking efficiency in open pit blasting, CIM/ICM Bulletin Technical Papers 2007: peer-reviewed technical papers publ. by the Canadian Institute of Mining, Metallurgy and Petroleum, 2008.
8. F. H. Tallarico, B. R. Figueiredo, D. I. Groves, N. Kositcin, N. J. McNaughton, I. R. Fletcher, and J. L. Rego. Geology and SHRIMP U-Pb geochronology of the Igarapé Bahia deposit, Carajás copper-gold belt, Brazil: an archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization, Economic Geology, 100, No. 1, 2005.
9. E. Hamdi, M. Audiguier, J. du Mouza, and K. Fjäder. Blast induced micro cracks assessment in muckpile blocks: P-wave velocity and porosity measurements, in: Holmberg, R. (ed.), Proc. the 2nd World Conference on Explosives and Blasting Technique, Prague, 2003.
10. P. D. Katsabanis, S. Gregersen, C. Pelley, and S. Kelebek. Small scale study of damage due to blasting and implications on crushing and grinding," in: Proc. the 29th Annual Conference on Explosives and Blasting Technique, Nashville, 2003.
11. P. D. Katsabanis, G. Kunzel, C. Pelley, and S. Kelebek. Damage development in small blocks, in: Proc. the 29th Annual Conference on Explosives and Blasting Technique, Nashville, 2003.
12. ISRM, Suggested method for determining point load strength, J. A. Franklin (working group co-coordinator), Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 22, No. 2, 1985.
13. AENOR, Propiedades mecánicas de las rocas. Ensayos para la determinación de la resistencia, Parte 5: Resistencia a carga puntual (Norma UNE 22950–5) [in Spanish], Asociación Española de Normalización y Certificación, Madrid, 1996.
14. J. N. Miller and J. C. Miller. Statistics and chemometrics for analytical chemistry, Prentice Hall, Harlow, 2000.
15. S. Williamson, C. McKenzie, and H. O’Loughlin. Electric shovel performance as a measure of blasting efficiency, in: Proc. the 1st International Symposium on Rock Fragmentation by Blasting, Luleå, 1983.
16. A. Hall. Characterizing the operation of a large hydraulic excavator, Master’s Thesis, The University of Queensland, Brisbane, 2003.
17. E. P. Bohnet. Method advantages and disadvantages, in: Hartman H. L. (ed.), SME Mining Engineering Handbook on CD-Rom, Colorado: Society for Mining, Metallurgy and Exploration, Inc., 1998.
18. K. Awuah-Offei and S. Frimpong. Cable shovel digging optimization for energy efficiency, Mechanism and Machine Theory, 42, No. 8, 2007.
19. S. H. Chung, and P. D. Katsabanis. A discrete element code for diggability analysis, in: Proc. the 34th Annual Conference on Explosives and Blasting Technique, New Orleans, 2008.
20. S. H. Chung and D. S. Preece. Explosive energy and muckpile diggability, in: Proc. the 25th Annual Conference on Explosives and Blasting Technique, Nashville, 1999.
21. C. Hendricks, J. Peck, and M. Scoble. Integrated drill and shovel performance monitoring towards blast optimization, in: Proc. the 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, 1990.
22. C. López Jimeno, E. López Jimeno, and P. Bermúdez. Evaluación de los resultados de la voladura, Manual de perforación y voladura de rocas [in Spanish], Madrid, 2003.
23. M. Osanloo and A. Hekmat. Prediction of shovel productivity in the Gol-e-Gohar iron mine, Journal of Mining Science, 41, No. 2, 2005.
24. S. P. Singh, R. Narendrula, and D. Duffy. Influence of blasted muck on the performance of loading equipment, in: Holmberg et al. (eds.), Proc. the 3rd EFEE Conference on Explosives and Blasting, Brighton, 2005.
25. S. Kahraman. Evaluation of simple methods for assessing the uniaxial compressive strength of rock, Int. J. Rock Mech. Min. Sci., 38, No. 7, 2001.
26. H. Vardhan, G. R. Adhikari, and M. G. Raj. Estimating rock properties using sound levels produced during drilling, Int. J. Rock Mech. Min. Sci., doi:10.1016/j.ijrmms.2008.07.011, 2008.
27. C. V. B. Cunningham. Fragmentation estimations and the Kuz-Ram model — four years, in: Proc. the 2nd International Symposium on Rock Fragmentation by Blasting, Keystone, 1987.
28. S. Sulukcu and R. Ulusay. Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength, Int. J. Rock Mech. Min. Sci., 38, No. 8, 2001.
29. S. H. Chung, and P. D. Katsabanis. Fragmentation prediction using improved engineering formulae, Int. J. for Blasting and Fragmentation, 4, No. 3 — 4, 2000.
30. F. Ouchterlony, B. Niklasson, and S. Abrahamsson. Fragmentation monitoring of production blasts at MRICA, in: Proc. the 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, 1990.
31. R. F. Chiappetta, A. Bauer, P. J. Dailey, and S. L. Burchell. The use of high speed motion picture photography in blast evaluation and design, in: Proc. the 9th Conference on Explosives and Blasting Technique, Dallas, 1983.
32. J. A. Sanchidrián, P. Segarra, and L. M. López. On the relation of rock face response time and initial velocity with blasting parameters, in: Holmberg et al. (Eds.), Proc. the 3rd EFEE Conference on Explosives and Blasting, Brighton, 2005.
33. R. L. Yang, A. Kavetsky, and C. McKenzie. A two dimensional kinematic model for predicting muckpile shape in bench blasting, Int. J. of Mining and Geological Engineering, 7, No. 3, 1989.
34. W. Swanepoel. The influence of bench height and equipment selection on effective mineral resource utilization, Thesis (M. Eng.), Pretoria: University of Pretoria, 2003.
35. C. J. Konya. Blast Design, Montville: Intercontinental Development Corporation, 1995.
36. R. F. Chiappetta and M. E. Mammele. Analytical high-speed photography to evaluate air decks, stemming retention and gas confinement in presplitting, reclamation and gross motion applications, in: Proc. the 2nd International Symposium on Rock Fragmentation by Blasting, Keystone, 1987.
37. C. V. B. Cunningham. The Kuz-Ram model for prediction of fragmentation from blasting, in: Proc. the 1st International Symposium on Rock Fragmentation by Blasting, Luleå, 1983.
38. J. A. Sanchidrián and L. M. López. Calculation of the energy of explosives with a partial reaction model, Propellants Explosives Pyrotechnics, 31, No. 1, 2006.
39. P. A. Persson, R. Holmberg, and J. Lee. Shock Waves and Detonations, Explosive Performance, Rock Blasting and Explosives Engineering, Boca Raton: CRC Press, 1994.
REVIEW OF SURFACE MINE SLOPE MONITORING TECHNIQUES
Kayode S. Osasan and Thomas B. Afeni
Excavation of rock initiates a reaction of movements in the rock mass. if this movement, which is a precursor to mine slope failure is timely and accurately monitored, accidents, destruction of equipment, loss of ore reserves, closure of the mine and sometimes loss of life that are the resultant effects of surface mine slope failure will be averted. Laser scanner, total station, crack meter, visual inspection, sirovision and lately monitoring radar are some of the techniques that have been developed for monitoring the displacement (i.e. movement) of mine slope. This paper reviewed the importance of slope monitoring vis-?-vis these techniques in surface mine excavations such as open pit or open cast mines. The strength and weaknesses of the techniques were also discussed. The paper concluded that a comprehensive slope monitoring program is needed in a big open pit mine with great slope stability challenges. On the other hand, a combination of two or more of the techniques is needed is shallow open cast or open pit mines, where the lifespan of the high-wall is short. In essence, each mine is peculiar and should therefore carefully analyze the nature of its stability problems before deciding on which technique or techniques to adopt.
Mine slope monitoring, displacement, open pit mine, inclinometer, piezometer, radars
REFERENCES
1. G. Kayesa, «Prediction of slope failure at Letlhakane Mine with the Geomos Slope Monitoring System,» in: Proceedings of the International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering Situations, Series S44, South Africa (2006).
2. J. M. Girard, «Assessing and monitoring open pit mine highwalls,» in: Proceedings of the 32nd Annual Institute of Mining Health, Safety and Research, Roanoke (2001).
3. J. Sjoberg, Large Scale Stability in Open Pit Mining — A Review. Technical Report, Division of Rock Mechanics, Lulea University of Technology, Lulea, Sweden (1996).
4. F. T. Cawood and T. R. Stacey, «Survey and geotechnical slope monitoring considerations,» Journal of the South African Institute of Mining and Metallurgy, 106, No. 7 (2006).
5. X. Ding, S. B. Montgomery, and M. Tsakiri, Integrated Monitoring Systems for Open Pit Wall Deformation, Australian Centre for Geomechanics, MERIWA Project Report No. 186, PP4 (1998).
6. M. J. Little, «Slope monitoring strategy at PPRust open pit operations,» in: Proceedings of the International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy, Symposium Series 44 (2006).
7. R. D. Call and J. P. Savely, «Open pit rock mechanics,» in: Surface Mining, 2nd Edition, Society for Mining, Metallurgy and Exploration Inc. (1990).
8. E. Hoek and J. W. Bray, Rock Slope Engineering, Revised Third Edition, Institute of Mining &
Metallurgy (1981).
9. J. M. Girard, R. T. Mayerle, and E. L. McHugh, «Advances in remote sensing techniques for monitoring rock falls and slope failures,» in: Proceedings of the 17th International Conference on Ground Control in Mining, NIOSHTIC-2, NO 20000186 (1998).
10. C. Kliche, Rock Slope Stability, Society for Mining, Metallurgy and Explorations, Inc. (1999).
11. W. F. Kane and T. J. Beck, «Development of a time domain reflectometry system to monitor landslide activity,» in: Proceedings of the 45th Highway Geology Symposium, Portland, Oregon (1994).
12. W. F. Kane and T. J. Beck, «Rapid slope monitoring in civil engineering,» American Society of Civil Engineer, New York, No. 666 (1996).
13. W. F. Kane and T. J. Beck, «An alternative monitoring system for unstable slope,» Geotechnical News,
No. 143 (1996).
14. K. M. O’Connor and C. H. Downing, Geomeasurements by Pulsing Time Domain Reflectometry Cables and Probes, Boca Raton, Florida, CRC Press (1999).
15. W. F. Kane, Time Domain Reflectometry, KANE GeoTech, Inc. (1998). Available at: ourworld.compuserve. com/homepages/wkane/tdr.htm.
16. Campbell Scientific Inc., Time Domain Reflectometry for Measurement of Rock Deformation, Product Brochure (1998).
17. C. H. Downing, M. B. Su, and K. M. O’Connor, «Measurement of rock mass deformation with grouted coaxial antenna cable,» Rock Mechanics and Rock Engineering, 22 (1989).
18. E. L. Mchugh, D. Jami, D. G. Long, and C. Sabine, «Application of ground-based radar to mine slope monitoring,» in: Investigation Report 9666, National Institute for Occupational Safety and Health (2006).
19. S. Rossignol and K. P. Corbley, «Reconnaissance by radar,» Canadian Mining Journal (1996).
20. B. Reeves, D. Noon, G. Stickley, and D. Longstaff, «Monitoring rock slope deformation by radar interferometry,» in: Proceedings of the Workshop on Applications of Radio Science WARS’97, A. Kulessa Edition, Australian Academy of Science (1997).
21. The Use of Slope Stability Radar (SSR) for Managing Slope Instability Hazards, Product Brochure (2003). Available at: www.groundprobe.com.
22. N. Harries, D. Noon, and K. Rowley, «Case studies of slope stability radar in open cut mines,» in: Proceedings of the International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy, Symposium Series 44 (2006).
23. J. Cahill and M. Lee, «Ground control at Leinster Nickel Operations,» in: Proceedings of the International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy, Symposium Series 44 (2006).
24. Reutech, Slope Monitoring, New Radar System Provides Accurate Slope Survey, Reutech Newsletter (2006). Available at: http://www.rrs.co.za./news/MSR200serieslaunched.asp.
25. Reutech, Movement and Surveying Radar Newsletter (2008). Available at http://www.rrs.co.za/news/documents/MSRNewsletter.pdf.
26. L. M. Edward, G. L. David, and S. Charles, «Applications of ground-based radar to mine slope monitoring,» in: Presentation at Annual Conference of American Society for Photogrammetry and Remote Sensing, Denver (2004).
INNOVATIVE CRITERIA FOR ECONOMICAL EXPLOITATION
OF ORNAMENTAL DEPOSITS APPLIED THE CUT-OFF GRADE CONCEPT
V. F. Navarro Torres, C. Dinis da Gama, P. Falcão Neves,
M. Costa e Silva, and Xie Qiang
An innovative methodology and mathematical model is developed to determine the cut-off grade of ornamental stone exploitation called cut-off quality, based on the balance between the present value and production process cost. These methodology and model is validated with excellent results in nepheline syenite quarry located in complex alkaline Monchique, Portugal.
Ornamental stone, cut-off quality, production, cost, planning
REFERENCES
1. C. López Jimeno, Rocas Ornamentales: Prospección, Explotación, Elaboración y Colocación, Entorno Gráfico S.L., Madrid (1995).
2. C. Dinis da Gama, et al., Projecto de Execução para a Exploração Subterrânea de Mármores na região de Pardais, Instituto Geológico e Mineiro (unpublished), Lisbon (2000).
3. R. C. A. Minnitt, «Cut-off grade determination for the maximum value of a small Wits-type gold mining operation,» Journal of the South African Institute of Mining and Metallurgy, Australia (2004).
4. N. Relatório, O Sector das Rochas Ornamentais e de Revestimento, Associação Brasileira da Indústria de Rochas Ornamentais — ABIROCHAS, SP, Brasil (2006).
5. N. M. Shaw Rock, «Alguns aspectos geológicos, petrológicos e geoquímicos do complexo eruptivo de Monchique,» in: Proceeding of Geological Services of Portugal (1983).
6. O. Selonen, et al., «Exploration for dimensional stone implications and examples from the Precambrian of southern Finland,» Eng. Geol., 56, No. 3 (2000).
7. INETI, Estudo mineralógico e petrográfico duma amostra de sienito nefelínico do Algarve, Report
No. 21/ME/2005 (2005).
8. F. Gonçalves, «Subsídios para o conhecimento geológico do maciço eruptivo de Monchique,» in: Proceedings of Geological Services of Portugal (1967).
9. ISRM Commission on Standardization of Laboratory and Field Test, «Suggested methods for the quantitative description of discontinuities in rock masses,» Int. J. Rock Mech. Min. Sci., 15, No. 6 (1978).
10. V. F. Navarro Torres, «Plano operacional da pedreira Lugar da Nave da empresa Carlos Vida Larga Lda. para o período Abril de 2007 a Março de 2008,» Technical Report (2008).
11. V. F. Navarro Torres e VIDA LARGA, R. N. L., «Planning and control in nepheline syenite quarrying,» in: ICDS — International Congress on Dimension Stones, Carrara, Italy (2008).
12. V. F. Navarro Torres, «Plano estratégico de produção 2008 — 2010 da pedreira de sienitos Lugar da Nave, da empresa Carlos Vida Larga Lda.,» Technical Report (2008).
MINERAL DRESSING
NATURAL SORBENT AND CATALYST TO REMOVE ARSENIC
FROM NATURAL AND WASTE WATERS
G. R. Bochkarev, G. I. Pushkareva, and K. A. Kovalenko
The authors analyze potential of brucite and black manganese in arsenic removal from aqueous environment. It is found that thermally modified brucite is highly affine to trivalent and pentavalent arsenic, and catalytic oxidation of arsenites up to arsenates is possible on the contact with black manganese during filtration. The test results can be useful in developing the sorption-catalytic approach to arsenic removal from natural and waste waters with the help of natural mineral materials.
Arsenate, arsenite, brucite, black manganese, sorption, oxidation, removal
REFERENCES
1. Mohan Dinesh, U. Charles, and Jr. Pittman, «Arsenic removal from water/wastewater using adsorbents,
A critical review,» Journal of Hazardous Materials, No. 142 (2007).
2. Robert C. Moore and D. Richard Anderson, «US Patent 6821434. System for removal of arsenic from water,» Sandia Corp. (2004).
3. G. I. Pushkareva, «Sorption extraction of metals from mono- and multi-component solutions using brucite,» Journal of Mining Science, No. 6 (1999).
4. G. I. Pushkareva, «Effect of temperature treatment of brucite on its sorption properties,» Journal of Mining Science, No. 6 (2000).
5. G. I. Pushkareva and G. R. Bochkarev, «Strontium removal from aqueous media by natural and modified sorbents,» Journal of Mining Science, No. 3 (2009).
6. K. Nikamoto, Infrared Spectra of Inorganic and Complex Compounds [Russian translation], Mir,
Moscow (1966).
7. H. W. Nesbitt, G. W. Canning, and G. M. Bancroft, «XPS study of reductive dissolution of 7-? birnessite by H3AsO3, with constraints on reaction mechanism,» Geochim. Cosmochim., Acta 62 (1998).
INNOVATIVE PROCESSING AND HYDROMETALLURGICAL
TREATMENT METHODS FOR COMPLEX ANTIMONY ORES
AND CONCENTRATES. PART I
P. M. Solozhenkin and A. N. Alekseev
The largest Russian antimony ore deposits are reviewed analytically. The present-day physicochemical methods (nuclear quadrupole resonance, X-ray electron spectroscopy, multinuclear (13C, 15N, 31P) NMR) are used to develop innovative technologies. The innovative process for treatment of Au — Sb-ores of the Sarylakhsky and Sentachansky deposits is described. Selective agents for antimonite flotation from complex Au — Sb-ores are considered. Sodium dimethyldithiocarbamate performance in antimony ore treatment is demonstrated.
Antimony ore deposit, nuclear quadrupole resonance, X-ray electron spectroscopy, multi-nuclear (13C, 15N, 31P) NMR spectroscopy, flotation, mineral ores, flotation agents
REFERENCES
1. M. F. Komin, D. S. Klyucharev, and N. M. Volkova, «Antimony mineral resources in Russia: problems and solution,» Razv. Okhr. Nedr, Nos. 9, 10 (2006).
2. V. A. Amuzinsky, G. S. Anisimova, Yu. Ya. Zhdanov, et al., Sarylakhsky and Sentachansky Gold-Antimony Deposits: Geology, Mineralogy, and Geochemistry [in Russian], Maik Nauka/Interperiodika,
Moscow (2001).
3. V. G. Vasil’ev, «Antimony deposits,» in: Transbaikalia Deposits [in Russian], N. P. Laverov (ed.), Vol. 1, Book 2, Chita-Moscow (1995).
4. P. M. Solozhenkin, «Ecological problems: new tendencies of rational utilization of gold-antimony ores and concentrates. Scientific and technical aspects of environment protection,» Obzor. Inform. VINITI,
No. 2 (2006).
5. P. M. Solozhenkin, «Physicochemical study on sorption of metal cations by antimony minerals,» in: The 12th Balkan Mineral Processing Congress Processing, Delphi, Greece (2007).
6. P. M. Solozhenkin, E. V. Bondarenko, and G. M. Panchenko, «Тhe complex antimony ores dressing and
following concentrates processing in Russia,» in: The 24th International Mineral Processing
Congress Proceedings, Wang Dian Zuo, Sun Chuan Yao, Wang Fu Liang, et al. (Eds.), Vol. 1 (2008).
7. M. A. Ivanov, «Crystalline complexes tetraphenilantimony (V) with dialkyldithiocarbamate and dialkyldithiophosphate ligands: synthesis and structure (based on data MAS NMR 13C, 15 N, 31P, and РСА),» Thesis of PhD Chemistry [in Russian], Vladivostok (2009).
8. P. M. Solozhenkin, «Processing of complex antimony ores in China,» in: Reviews on the Non-Ferrous Metal Ore Processing [in Russian], TSNIItsvetmet Ekon. Inf., Issue 1 (1992).
9. P. M. Solozhenkin, «Flotation of antimony ores by sodium dialkyldithiocarbamates and their derivatives,» Tsvet. Metally, No. 2 (2008).
10. P. M. Solozhenkin, N. K. Ivanova, O. I. Ibragimova, et al., «Updating of reagent mode for antimony flotation,» Tsvet. Metally, No. 7 (1993).
11. P. M. Solozhenkin, «Design of double-acting sulfhydrate agents, efficient in flotation of gold-bearing ores,» in: Proceedings of the 6th Mineral Processing Congress of Former USSR Countries [in Russian], 2, Alteks, Moscow (2007).
12. P. M. Solozhenkin, «Designing sulphydrylic reagents of double action effective at flotation of gold-containing ores,» in: Proceedings of the 11th Conference on Environment and Mineral Processing, Part II, VSB-TU OSTRAVA, Czech Republic (2007).
13. P. M. Solozhenkin, «Processes for treatment of gold-antimony ores and concentrates in Russian Federation,» Gorny Zh., No. 2 (2007).
14. P. M. Solozhenkin, Treatment of Gold-Antimony Ores and Concentrates. Advanced Technologies for Complex Mineral Processing [in Russian], V. A. Chanturia (Ed.), Ruda Metally, Moscow (2008).
15. P. M. Solozhenkin, «Advance in processing of gold-antimony ores and concentrates under permafrost conditions in the Republic of Sakha (Yakutia),» in: Collected Works for the 15th Anniversary of Russian Academy of Natural Sciences [in Russian], Moscow (2005).
16. G. I. Baltukhaev and P. M. Solozhenkin, «Processing of large gold-bearing ore batches from the Sentachansky deposit,» Tsvet. Met., No. 2 (2009).
17. G. I. Baltukhaev and P. M. Solozhenkin, «Processing of gold-antimony ores in the Republic of Sakha (Yakutia),» Tsvet. Met., No. 3, (2009).
18. A. I. Matveev and S. I. Solomatova, Flotation of Gold on the Surface of Rotating Fluid [in Russian], YANTS SB RAS, Yakutsk (2008).
19. P. M. Solozhenkin, E. V. Bondarenko and E. V. Chertogova, «Processing of Transbaikalia antimony ores,» Obog. Rud, No. 3 (2008).
DISCHARGE-IMPULSE INTENSIFICATION OF COMPLEX ORE PREPARATION
BEFORE LEACHING OF VALUABLE MATERIALS
T. A. Strekalova and V. V. Korostovenko
The higher release of valuable components is gained by selective dissociation of complex mineral associations in the combined process, involving grinding and discharge-impulse treatment of pulp. The optimal energy range of the discharge-impulse effect is established to provide high unlocking of mineral intergrowths and to improve recovery of valuable components in leaching.
Rare-earth ores, gold ores, grinding, discharge-impulse treatment, opening, recovery, leaching
REFERENCES
1. V. A. Chanturia and A. A. Lavrienko, «Challenges and conception of mineral processing,» Obog. Rud,
No. 2 (2004).
2. V. V. Korostovenko, «Improved grade of rebellious-ore preparation in complex grinding circuits,» in: Combined Low-Waste Processes for Complex Treatment of Rebellious Ores and Heavy Non-Ferrous Metal Products, Head-Notes of Papers of the All-Union Scientific-Technical Meeting [in Russian],
V. A. Shcherbakov (Ed.), Ryazan (1989).
3. V. V. Korostovenko, Electrophysical Processes in Combined Mineral Processing Technologies [in Russian], SFU, Krasnoyarsk (2007).
4. T. A. Strekalova and V. V. Korostovenko, «Electrophysical processes in combined mineral processing technologies,» in: Perspective Materials, Technologies, and Designs. Collection of Scientific Papers
[in Russian], V. V. Statsura (Ed.), Edition 7, Krasnoyarsk (2001).
5. I. F. Poletaev, «Peculiarities of exposure of fluoride-phosphate rare-earth metal concentrates,» Tsvet. Metally, No. 8 (1991).
Версия для печати (откроется в новом окне)
|