Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2010 год » JMS, Vol. 46, No. 1, 2010

JMS, Vol. 46, No. 1, 2010


GEOMECHANICS


ANTI-PLANE STRAIN UNDER POST-CRITICAL DEFORMATION IN THE PROBLEM ON EQUILIBRIUM SEMI-INFINITE CRACK. PART II
A. I. Chanyshev

The paper analyzes some of the known solutions of the problem about loading a massive body with a semi-infinite crack with regard for anti-plane strain under post-critical deformation, and describes new particular solutions. Four boundary conditions are formulated for the interface of the elastic and post-critical deformation regions, which express continuity of two stresses and two strains. When these and other conditions are fulfilled, the solution of the problem with an infinite drop modulus behaves unusual: maximum shear stress in the vicinity of the crack tip grows infinitely rather than drops. The paper presents an interpretation of the phenomenon.

Crack, anti-plane strain, post-critical deformation, elastic-plastic problem, consistency conditions, interpretation

REFERENCES
1. A. I. Chanyshev, «Anti-plain strain under post-critical deformation in the problem on equilibrium semi-infinite crack. Part I,» Journal of Mining Science, No. 4 (2009).
2. J. R. Rice, «Mathematical analysis in the mechanics of fracture,» in: Fracture, Liebowitz (Ed.), 2, Academic Press (1968).
3. V. S. Nikiforovsky and E. I. Shemyakin, Dynamic Failure of Solids [in Russian], Nauka, Novosibirsk (1979).
4. E. I. Shemyakin, "Problem abound «brittle hinge joint,» Mekh. Tverd. Tela, No. 2 (1996).
5. Yu. N. Rabotnov, Deformable Solid Mechanics [in Russian], Nauka, Moscow (1972).
6. G. P. Cherepanov, Brittle Fracture Mechanics [in Russian], Nauka, Moscow (1974).


ON JOINT GEOMECHANICAL AND GEOPHYSICAL MONITORING IN MINES
A. A. Dobroskok, A. M. Linkov, and V. V. Zoubkov

TThe case study, conducted for the seam No 4 of the Vorkuta coal district, illustrates the enhancement of the interpretation of the microseismic data through their using in combination with calculation of stresses and numerical simulation of seismic events.

Microseismic events, seismic monitoring, stressed state, numerical modeling

REFERENCES
1. M. D. G. Salamon, «Keynote address: some applications of geomechanical modeling in rockburst and related research,» in: Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines, R. P. Young (Ed.), Rotterdam, Balkema (1993).
2. A. M. Linkov, «Key-note address: New geomechanical approaches to develop quantitative seismicity,» in: Proceedings of the 4th International Symposium on Rockbursts and Seismicity in Mines, S. I. Gibiwicz, S. Lasocki (Eds.), Rotterdam, Balkema (1997).
3. T. Wiles, R. Lachenicht, and G. van Aswegen, «Integration of deterministic modelling with seismic monitoring for assessment of the rockmass response to mining,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds.), South African Institute of Mining and Metallurgy (2001).
4. E. J. Sellers and J. A. L. Napier, «A point kernel representation of large-scale seismic activity in mining,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds.), South African Institute of Mining and Metallurgy (2001).
5. S. Spottiswoode, «Keynote address: Synthetic seismicity mimics observed seismicity in deep tabular mines,» in: Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines, G. van Aswegen, R. Durrheim, D. Ortlepp (Eds.), South African Institute of Mining and Metallurgy (2001).
6. A. M. Linkov, «Integration of numerical modeling and seismic monitoring: general theory and first steps,» in: Proceedings of the International Conference on New Developments in Rock Mechanics, Yunmei Lin (Ed.), New York, Rinton Press (2002).
7. A. M. Linkov, «Numerical modeling of seismic and aseismic events in geomechanics,» Journal of Mining Science, 41, No. 1 (2005).
8. A. M. Linkov, «Numerical modeling of seismic and aseismic events in three-dimensional problems of rock mechanics,» Journal of Mining Science, 42, No. 1 (2006).
9. A. M. Linkov, V. V. Zoubkov, and M. Heib, «A method of solving three-dimensional problems of seam working and geological faults,» Journal of Mining Science, No. 4 (1997).
10. A. A. Dobroskok and A. M. Linkov, «Joint numerical simulation of stress changes, acoustic emission and/or microseismicity,» in: Theses of the 23rd International Conference on Mathematical Modeling in Solid Mechanics. Boundary & Finite Elements Methods, Saint Petersburg (2009).
11. I. M. Petukhov et al., Theory of the Protective Seams [in Russian], Nedra, Moscow (1976).
12. A. A. Dobroskok and A. M. Linkov, «Simulation of seismicity accompanying hydraulic fracture propagation,» in: Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco (2008).


NONLINEAR HEREDITARY MODEL OF THE PRESTRESSED SALT ROCKS
V. M. Pestrenin and I. V. Pestrenina

The paper presents physical hereditary-type equations describing nonlinear behavior of a prestressed medium (salt rock mass) exposed to loading (tunnel construction). It is proposed to solve the related boundary value problem by using Newton’s quadrature method. The offered approach is illustrated with analyzing stress-strain state parameters in a salt rock mass, in the vicinity of a circular section tunnel.

Salt rocks, mine tunnel, physical equations, initial stress state, creep

REFERENCES
1. Zh. S. Erzhanov, Rock Creep Theory and Applications [in Russian], Nauka, Alma-Ata (1964).
2. N. A. Samodelkina, «On method to take into account the rheological properties of rocks in finite-element analysis of geomechanical processes,» Journal of Mining Science, No. 6 (2003).
3. S. A. Konstantinova and S. A. Chernopazov, «Development of hereditary model for deformation and failure of salt rocks,» Journal of Mining Science, No. 1 (2004).
4. S. A. Konstantinova, V. M. Pestrenin, and I. V. Pestrenina, «Kinds of approximating creep curves obtained on rock samples,» Izv. Vuzov, Gorny Zh., Issue 4 (2007).
5. A. A. Il’yushina and B. E. Pobedrya, Basics of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).
6. Yu. N. Rabotnov, The Deformable Solid Mechanics [in Russian], Nauka, Moscow (1979).


PREDICTION OF THERMAL REGIME WITHIN. A. TAILING DAMP UNDER PERMAFROST CONDITIONS
A. A. Buiskikh and M. N. Zamoshch

The authors present results of 1d and 2D mathematical modeling of the temperature-field dynamics within the tailing damp formations and surrounding rock mass under the Magadan Region conditions. Parameters of insulating soil layers which provide the permafrost state of tailingsstorage, are established. The evidence is given to the significance of such factors, as air convention within the dam body, regime of tailing supply to the damp, heat fields of the surrounding rock mass, prone to season variations.

Tailing damp, thermal regime, numerical modeling, frost state, thawing

REFERENCES
1. USSR Climate, Scientific-Applied Handbook, Series 3. Part 1 — 6. Issue 33. Chukotsky Autonomous Okrug, the Magadan Region [in Russian], Gidrometeoizdat, Leningrad (1990).
2. Glaciological Dictionary [in Russian], Gidrometeoizdat, Moscow (1984).
3. O. V. Motorov, «Composition, structure and temperature regime of hard frozen rock dumps and their possible evolution into rock glaiciers,»(Omolonsky massif, the Magadan Region), Thesis of Cand. Min.-Tech.Sci., Yakutsk (2008).
4. I. A. Komarov, Thermodynamics and Heat-Mass Exchange in Dispersed Frozen Rocks [in Russian], Nauchny Mir, Moscow (2003).
5. A. I. Kalabin, «Permafrost and hydrogeology of North-West territory of the USSR,» Tr. VNII-1, 18, Magadan (1960).
6. A. V. Sosnovsky, «Mathematical modeling of the snow-cover effect on permafrost degradation under the climate warming conditions,» Cryosphere of the Earth, 10, No. 3 (2006).
7. Ya. B. Gorelik and V. S. Kolunin, Physics and Modeling of Cryogenic Processes in Lithosphere [in Russian], Izd. SO RAN «GEO», Novosibirsk (2002).
8. A. A. Samarsky, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).
9. R. I. Gavriliev, Thermophysical Properties of Natural Components in Permafrost Zone [in Russian], Handbook, Izd. SO RAN, Novosibirsk (2004).
10. T. V. Bantsekina and V. M. Mikhailov, «Some peculiarities of heat-mass-transfer in macro-grained rock slope formations,» Cryosphere of the Earth, 8, No. 4 (2004).


ROCK CREEP DEGREE ASSESSMENT
G. N. Falaleev

The paper offers the rock creep degree assessment with a rheological characteristic independent of mathematical interpretations of creep curves. Based on the analysis of experimental rheolology research of rocks from different regions of the former USSR countries, rocks have been ranged into creep classes on the basis of the rock rheology classification.

Creep, rheological properties, rocks, creep degree, creep class

REFERENCES
1. A. A. Baryakh and N. A. Samodelkina, «Rheological analysis of geomechanical processes,» Journal of Mining Science, No. 6 (2005).
2. G. N. Faleev, «Rheological properties of rocks and their correlation with basic physico-mechanical characteristic,» Synopsis of Ph.D.Eng. Thesis [in Russian], Frunze (1990).
3. B. M. Usachenko, «Rheological properties and interaction of rocks with underground supports in terms of the West Donetsk Basin,» Synopsis of Ph.D.Eng. Thesis [in Russian], Dnepropetrovsk (1971).
4. D. A. Belaenko, L. Ya. Parchevsky, and S. A. Bordyug, «Creep in terms of Krivoi Rog rocks,» Gorny Zh., No. 5 (1960).
5. V. T. Glushko, «Rock creep testing,» Izv. Vuzov, Gorny Zh., No. 3 (1961).
6. V. T. Glushko and G. T. Kirnichansky, Engineering-Geological Forecasting of the Stability of Deep Coal Excavations [in Russian], Nedra, Moscow (1974).
7. A. Ya. Grafova and S. N. Vybornova, «Displacement determination of permanent roadway contour with allowance for rheological properties of rocks,» Skochinsky Institute of Mining Research Reports [in Russian], No. 140 (1976).
8. G. N. Gumenyuk, «Creep research of the Karaganda Basin rocks,» in: Issues of the Rock Rheology [in Russian], Naukova Dumka, Kiev (1970).
9. R. E. Dashko and Yu. D. Kuznetsov, «Estimating mechanical properties of complex structure roofs in mines of the Leningrad oil shale deposit,» LGI Transactions [in Russian], No. 57, LGI, Leningrad (1969).
10. I. D. Dzhandzhgava and R. S. Kukushadze, «Rheological model of some varieties of the Chiaturi manganese rocks,» in: Analytical Methods and Computing Technique in Rock Mechanics [in Russian], Novosibirsk (1975).
11. I. D. Dzhandzhgava et al., New Kinds of Supports in the Chiaturi Manganese Mines [in Russian], Metsniereba, Tbilisi (1978).
12. Yu. F. Kuznetsov, «Creep research of some rock types,» LGI Transactions [in Russian], No. 57, LGI, Leningrad (1969).
13. I. P. Kushnerov, «Experimental creep tests of weak rocks,» Razrab. Rud. Mest., No. 30 (1980).
14. M. D. Kuntysh, S. F. Alekseenko, and E. B. Tacheva, «Examination of rheological properties of rocks of the Black Sea coast at Balchik, People’s Republic of Bulgaria,» Skochinsky Institute of Mining Research Reports [in Russian], No. 69 (1969).
15. G. N. Kravchenko, S. A. Konstantinova, and V. I. Asanov, «Shortcrete creep research,» Tekhnol. Bezopas. Gorn. Rabot, No. 115 (1972).
16. V. S. Livensky et al., «Results of testing rheological properties of salt rocks under uniaxial compression and bending,» Izv. Vuzov, Gorny Zh., No. 9 (1973).
17. Lyong Lang, «Sediment long-term strength research,» Synopsis of Ph.D.Eng. Thesis [in Russian], Moscow (1968).
18. V. P. Matveeva, «Some of the creep phenomena in coal,» Issues of Rock Mechanics [in Russian], Nauka, Alma-Ata (1968).
19. A. N. Stavrogin et al., Mechanical Properties of Rocks under Long-Term Uniaxial Compression. Catalog [in Russian], VNIMI, Leningrad (1973).
20. V. P. Shirokov, «Creep test results for the Kuznetsk Coalfield rocks,» Shakht. Stroit., No. 10 (1972).
21. K. P. Shkurina et al., Engineering-Geological Forecasting of Rock Stability [in Russian], Ilim, Bishkek (1991).


MINERAL MINING TECHNOLOGY


METHODICAL PRINCIPLES FOR PLANNING THE MINING AND LOADING EQUIPMENT CAPACITY FOR OPEN CAST MINING WITH THE USE OF DUMPERS. PART III: SERVICE CAPACITY DETERMINATION
S. G. Molotilov, V. I. Cheskidov, V. K. Norri, A. A. Botvinnik, and D. Kh. Il’bul’din

The paper describes a technique for excavation and loading machinery service capacity, considering in more details the influence of mine technical factors.

Shovel, loader, face, capacity, technique

REFERENCES
1. V. V. Rzhevsky, Open Mining [in Russian], Nedra, Moscow (1985).
2. S. G. Molotilov, V. I. Cheskidov, V. K. Norri, et al., «Methodical principles for planning the mining and loading equipment capacity for open cast mining with the use of dumpers. Part II: Engineering capacity calculation,» Journal of Mining Science, No. 1 (2009).
3. Yu. I. Belyakov, Planning of Excavation [in Russian], Nedra, Moscow (1983).
4. V. V. Rzhevsky, Open Mining Processes [in Russian], Nedra, Moscow (1978).
5. Yu. I. Belyakov, Improvement in Excavation and Loading at Quarries [in Russian], Nedra, Moscow (1977).
6. K. N. Trobetskoy, «Science of loading machine application to open mining,» Synopsis of Dr.Eng. Thesis [in Russian], Moscow (1989).
7. A. V. Biryukov, V. I. Kuznetsov, and A. S. Tashkinov, Statistical Models in Mining Processes [in Russian], Kuzbassvuzizdat, Kemerovo (1996).
8. A. S. Tashkinov, A. V. Biryukov, and V. M. Mazaev, «USSR Author’s Certificate No. 1244310. Blasted rock fragment dimensioning method,» Buyll. Izobret., No. 44 (1990).
9. V. M. Vlasov and A. D. Androsov, Kimberlite Open-Cut Mining in Permafrost Zone [in Russian], YANTS SO RAN, Yakutsk (2007).
10. Open-Cut Mining Standard Production Quota. Part IV: Excavation and Haulage with Dumpers [in Russian], NII Truda, Moscow (1989).
11. N. V. Mel’nikov, Open Mining: Theory and Practice [in Russian], Nedra, Moscow (1973).
12. Yu. I. Belyakov, Excavation and Loading at Open Pits [in Russian], Nedra, Moscow (1973).
13. M. I. Shchadov, K. E. Vinnitsky, M. G. Potapov, et al., Technological Development in Open Coal Mining [in Russian], Nedra, Moscow (1969).
14. B. P. Yumatov and B. N. Baikov, Drilling-and-Blasting Engineering at Non-Ferrous Open Pits [in Russian], Nedra, Moscow (1969).
15. Open Mining Reference Manual [in Russian], Gornoe Byuro, Moscow (1994).
16. Yu. I. Belyakov and V. M. Vladimirov, Excavation Improvement at Open Pits [in Russian], Nedra, Moscow (1974).
17. V. S. Kvaginidze, Loading and Haulage Machine Operation in Open Mining in the North [in Russian], MGGU, Moscow (2002).
18. Research-and-Development Report: To Develop and Validate Standards for the Mining Machinery Effectiveness Enhancement [in Russian], Yakutniproalmaz, Mirny (2005).
19. Normal Process Flow Sheets for Open Coal Mining [in Russian], Nedra, Moscow (1982).
20. P. I. Tomakov, Structure of Comprehensive Mechanization at Open Pits with Cycling Technology [in Russian], Nedra, Moscow (1976).
21. Open Mining Maintenance Mechanic Handbook [in Russian], Nedra, Moscow (1989).
22. Economic Agreement No. 340–24 Report: Analysis and Assessment of Mining Machinery Effectiveness at the ALROSA LCC Open Pits in Comparison with the Other Mining Companies [in Russian], IGD SO RAN, Novosibirsk (2003).
23. S. G. Molotilov, V. I. Cheskidov, and V. K. Norri, «Methodical principles for planning the mining and loading equipment capacity for open cast mining with the use of dumpers. Part I,» Journal of Mining Science, No. 4 (2008).


METHANE DESORPTION AND MIGRATION IN THE THERMODYNAMIC INEQUILIBRIUM COAL BEDS
M. V. Kurlenya and S. V. Serdyukov

The paper discusses some issues of methane desorption and migration from the standpoint of physics of a coal bed, destruction of a rock mass and the experience gained in the field of coal mine degasification, with an emphasis laid upon man-induced impact on a thermodynamic inequilibrium rock mass and enhancement of methane desorption.

Geomedium, destruction of rocks, porosity of coal, methane, desorption, filtration, coal bed degasification

REFERENCES
1. M. V. Kurlenya, «The theory and practice of stress assessment in sedimentary rocks,» in: Stress Assessment in Rock Masses [in Russian], IGD SO AN SSSR, Novosibirsk (1972).
2. Glossary on Geology [in Russian], 2, Nedra, Moscow (1978).
3. L. A. Puchkov, S. V. Slastunov, and K. S. Kolikov, Methane Extraction from Coal Strata [in Russian], MGGU, Moscow (2002).
4. L. A. Puchkov, S. V. Slastunov, and K. S. Kolikov, «Methane safety implementation in coal mines in Russia,» Ugol, No. 1 (2009).
5. A. T. Airuni, Predicting and Preventing Gasdynamic Phenomena in Coal Mines [in Russia], Nauka, Moscow (1987).
6. K. N. Trubetskoi and V. V. Gur’yanov, «The Uglemetan Project results and the research trends in Russia towards methane resource development in unloaded coal beds,» Gorn. Inform.-Analit. Byull., No. 6 (2002).
7. A. N. Zorin, Yu. M. Khalimendik, and V. G. Kolesnikov, Rock Mass Fracture Mechanics and Its Energy Application to Mineral Mining [in Russian], Nedra, Moscow (2001).
8. Physico-Chemistry of Underground Gasdynamic Phenomena [in Russian], Nauka, Moscow (1973).
9. S. V. Kuznetsov and V. A. Trofimov, «Gasdynamics in a coal seam. Part I: Mathematical description of the desorption kinetics,» Journal of Mining Science, No. 1 (2009).
10. V. N. Vylegzhanin, P. V. Egorov, and V. I. Murashev, Structural Models of a Rock Mass in Geomechanical Processes [in Russian], Nauka, Novosibirsk (1990).
11. M. V. Kurlenya, V. E. Mirenkov, and S. V. Serdyukov, «View of the nature of stress-strain state of the Earths interior and the man-induced dynamic phenomena,» Gorn. Inform.-Analit. Byull., No. 8 (2008).
12. S. V. Slastunov, Advanced Degasification and Methane Extraction from Coalfields [in Russian], MGGU, Moscow (1996).
13. L. A. Puchkov, S. V. Slastunov, and G. M. Prezent, «Prospects of the commercial coal methane extraction,» Gorn. Inform.-Analit. Byull., No. 6 (2002).
14. T. Dugan and E. Arnold, Coalbed Methane Development in the San Juan Basin. A Brief History, CBM Partners Corporation (2008).
15. M. V. Pavlenko, «Arrangement of conditions for methane extraction from low permeable gas-bearing coal beds,» Gorn. Inform.-Analit. Byull., No. 10 (2008).
16. N. V. Chersky, V. P. Tsarev, T. I. Soroko, et al., Influence of Tectono-Seismic Processes on the Hydrocarbon Generation and Aggregation [in Russian], Nauka, Novosibirsk (1987).
17. A. S. Alekseev, B. M. Glinsky, A. F. Emanov, et al., New Geotechnologies and Complex Geophysical Methods of the Research into Internal Structure and Dynamics of Geospheres [in Russian], N. P. Laverov (Ed.), Moscow (2002).
18. S. V. Serdyukov and M. V. Kurlenya, «Mechanism of seismic treatment of oil reservoirs,» Geol. Geofiz., No. 11 (2007).
19. S. V. Serdykov and M. V. Kurlenya, «Mechanism of the oil recovery stimulation by low intensive seismic fields,» Akust. Zh., 53, No. 5 (2007).


APPLICATION OF LINEAR PROGRAMMING IN PRODUCTION PLANNING AT MARBLE PROCESSING PLANTS
O. Ozsan, F. Simsir, C. Pamukcu

Most companies in the marble sector are planning and programming their production using portfolio of orders, their experiences, and practical forecasts. Renta Marble plant is chosen to carry out this study, where all production steps have been observed and recorded for a year. The authors used production capacity and loss reports, as well as software Lingo 8.0 in their researches. The scope of application for the linear programming method is defined. Software Lingo 8.0 is run for the best, worst, and average production conditions with respective assumptions made. The efficiency of products produced at the plant to obtain the highest revenue with a reasonable rate of loss is evaluated. The marketing policies for companies are developed.

Marble, production, planning, linear programming

REFERENCES
1. D. Aslan, Production Planning (4th Edition), Dokuz Eylul Univ., Faculty of Engineering Publication Unit, Izmir (2002).
2. H. Bakoglu, Linear Programming, Dokuz Eylul Univ., Faculty of Engineering Publication Unit, Izmir (1982).
3. C. Ogut and I. Orientation, Lecture Notes, Dokuz Eylul Univ., Faculty of Engineering Publication Unit, Izmir (1980).
4. A. Sari, Use of Linear Programming Technique in Production Planning. Dokuz Eylul Univ., Fac. of Eng., Industrial Eng. Dept., Diploma Thesis (2001).
5. A. Sultan, Linear Programming, CA-San Diego: Academic Press (1993).
6. H. A. Taha, Orientation Research (6th edition), Literatur Publishing, Istanbul (2000).
7. S. Yikilmaz, Production Planning by Means of Linear Programming, Dokuz Eylul Univ., Fac. of Eng., Industrial Eng. Dept., Diploma Thesis (2002).


MINERAL DRESSING


NEW AGENTS TO RECOVER NOBLE METALS FROM REBELLIOUS ORES AND OTHER MATERIALS
V. A. Chanturia, T. V. Nedosekina, V. V. Getman, A. O. Gapchich

Perspectives to apply the new-class agents: thermomorphic polymers in benefication of finely-ground materials bearing noble metals are considered.

Thermomorphic polymers, synthesis, modification, platinum-group metals, flotation, rich copper-nickel ore, flocculation agent

REFERENCES
1. V. A. Chanturia, T. V. Nedosekina, and V. V. Stepanova, «Experimental-analytical methods of investigating the effect of complex reagents on platinum flotation,» Journal of Mining Science, No. 3 (2008).
2. David E. Bergbreiter, Brenda L. Case, Yun-Shan Liu, and John W. Caraway, «Poly (N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis,» Macromolecules, 31 (1998).
3. David E. Bergbreiter and Yun-Shan Liu, «Water-soluble polymer-bound, recoverable palladium(0)-phosphine catalysts. Poly (N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis,» Tetrahedron Letters, 38, No. 45 (1997).


ANALYSIS OF FLOTATION KINETICS OF PARTICLES WITH THE CONTROLLABLE HYDROPHOBIC BEHAVIOR
B. E. Goryachev, A. A. Nikolaev, and E. Yu. Il’ina

By analyzing the flotation kinetics of particles with the controllable hydrophobic behavior, the influence of wetting the surfaces of such particles on their flotation rate constant is studied. On particles of chosen small range of size, it is shown that the flotation kinetics agrees with the flotation kinetics equation proposed by Beloglazov, and the flotation rate constant depends on the effective fraction of hydrophobic component on the particle surface and on the induction time.

Flotation kinetics, flotation rate constant, hydrophobic behavior, controllable hydrophobic behavior of surface, limiting wetting angle, induction time

REFERENCES
1. K. F. Beloglazov, Flotation Behavior [in Russian], Metallurgizdat, Moscow (1947).
2. I. N. Plaksin, V. I. Klassen, and G. S. Berger, "Kinetic equations of flotation process, " Tsvet. Metally, No. 4 (1956).
3. O. S. Bogdanov, I. I. Maksimov, A. K. Podnek, et al., Theory and Technology of Ore Flotation [in Russian], Nedra, Moscow (1990).
4. A. D. Pogorely, «Application limits for Beloglazov’s flotation kinetics equation,» Izv, Vuzov, Tsvet. Metall., No. 1 (1962).
5. Yu. B. Rubinshtein and Yu. A. Filippov, Flotation Kinetics [in Russian], Nedra, Moscow (1980).
6. V. I. Klassen and V. A. Mokrousov, An Introduction to the Theory of Flotation [in Russian], Gosgortekhizdat, Moscow (1959).
7. B. E. Goryachev and A. A. Nikolaev, «Interconnection between physical-chemical characteristics of two-component solid surface wetting and floatability of the same surface particles,» Journal of Mining Science, No. 3 (2006).
8. S. A. Kondrat’ev and G. R. Bochkarev, «Stabilization of bubble size in a flotation cell,» Journal of Mining Science, No. 3 (1998).
9. S. A. Kondrat’ev, «Mineralization of bubbles during flotation,» Journal of Mining Science, No. 1 (2004).
10. B. E. Goryachev, «Influence of flotation forces on particles with chemically inhomogeneous surface,» Tsvet. Metally, No. 1 (2002).
11. B. E. Goryachev, «Surface tension at dixanthate — air and dixanthate — water interfaces,» Tsvet. Metally, No. 3 (2006).
12. B. E. Goryachev, E. S. Andrianova, and A. S. Shal’nov, «Wetting of surfaces of individual chemical compounds,» Tsvet. Metally, Nos. 11 and 12 (1997).
13. B. E. Goryachev, E. S. Andrianova, and A. S. Shal’nov, «Wetting of surfaces of mixed sulphide and oxide compounds,» Tsvet. Metally, No. 1 (1998).
14. Arthur Adamson, Physical Chemistry of Surfaces, 3rd Edition, John Wiley & Sons, New York (1976).
15. V. I. Melik-Gaikazyanm A. A. Abramov, Yu. B. Rubinshtein, et al., Flotation Research Methods [in Russian], Nedra, Moscow (1990).


MASS-TRANSPORTATION OF DISPERSED PARTICLES IN THE PROCESS FOR WATER FILTRATION THROUGH MACROGRAINED MEDIA
Yu. V. Lesin, S. Yu. Luk’yanova, and M. A. Tyulenev

Mass transportation of dispersed particles in water filtration within technogenic rock masses is considered. The established dependences between filtration parameters and structural characteristics of suspensions and filtration media are used to predict a degree of water purification and to identify parameters of filters, manufactured from mining wastes.

Dispersed particles, technogenic rock masses, mass-transportation, filters, water treatment

REFERENCES
1. Yu. V. Lesin and L. S. Skrynnik, Protection and Rational Utilization of Water Resources in Kuzbass Coal Industry [in Russian], Kuzbassbuzizdat, Kememrovo (2008).
2. D. M. Mints, Theoretical Fundamentals of Water Treatment [in Russian], Stroiizdat, Moscow (1964).
3. Yu. M. Shekhtman, Filters of Low-Concentrated Suspensions [in Russian], Izd. AN SSSR, Moscow (1961).
4. V. S. Istomina and V. V. Burenkova, «On calculation size of pores in filters,» Tr. VNII, Water Supply, Canalization, Hydrotechnical Structures and Engineering Hydrogeology [in Russian], Gosstroiizdat, Moscow (1969).
5. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics [in Russian], Nauka, Moscow (1973).


COMBINATIONS OF DIFFERENT-CLASS COLLECTORS IN SELECTIVE SULPHIDE-ORE FLOTATION
V. A. Ignatkina, V. A. Bocharov, and B. T. Tubdenova

Authors report laboratory test data on well-known sulphydryl collectors and new modified dithiophosphates Beraflot used to float monomineral fractions of pyrite, chalcopyrite, galena, and sphalerite. Frothless flotation is employed in flotation tests, IR-spectroscopy is used to identify surface compounds, and technological investigations are based on froth flotation. It is shown that demethyl dithiocarbamate , isobutyldithiophosphate and modified collector Beraflot-3035 give the poorest results of pyrite flotation, while Beraflot-3035 provides the highest galena and chalcopyrite recovery. It is found that Beraflot-3035 is capable to form different surface compounds on pyrite, chalcopyrite, galena, and sphalerite. Unclosed ore tests verify selectivity of Beraflot-3035.

Flotation, flotation agents, selectivity of recovery, minerals, sulfides, combination of reagents

REFERENCES
1. V. A. Bocharov, V. A. Ignatkina, G. A. Lapshina, M. G. Viduetsky, and L. M. Poltavskaya, «Investigation into collectors for flotation of gold-bearing mineral ores,» Tsv. Met., No. 1 (2005).
2. I. A. Kakovsky, «Sulphydryl agents» in Physical-Chemical Fundamentals of the Flotation Theory [in Russian], Nauka, Moscow (1983).
3. A. A. Abramov, Processing of Oxidized and Complex Non-ferrous Ores [in Russian], Nedra, Moscow (1986).
4. V. A. Konev, Sulfide Flotation [in Russian], Nedra, Moscow (1985).
5. T. N. Matveyeva, T. A. Ivanova, N. K. Gromova, and L. B. Lantsova, «Perspectives of Modified Xanthate Application,» in Plaksinskie Chtenia — 2006 [in Russian], Krasnoyarsk (2006).
6. T. V. Yushkina, A. A. Abramov, and V. E. Vigdergauz, «Modernization of selective flotation of complex ores by using nitrogen-bearing organic depressant,» in Plaksinskie Chtenia — 2006 [in Russian], Krasnoyarsk (2006).
7. V. A. Bocharov, G. S. Agafonova, M. Ya. Ryskin, et al., «Modification of flotation reagents,» Tsv. Met., No. 9 (1986).
8. V. A. Bocharov, V. A. Ignatkina, E. L. Chanturia, G. A. Lapshina, and S. I. Mel’nikova, «Complex processing of rebellious sulfide gold-bearing ores,» Izv. VUZov, Tsv. Metallurgy, No. 5 (2004).
9. V. I. Melik-Gaikazyan, A. A. Abramov, Yu. B. Rubinshtein, et al., Processes to Study Flotation [in Russian], Nedra, Moscow (1990).
10. V. A. Glinkin, Investigation and Development of Flotation of Complex Silver-Bearing Ores Using Sodium Dimetyldithiocarbamate [in Russian], Thesis of Cand. Tech. Sci., Moscow (2003).


NEW METHODS AND INSTRUMENTS IN MINING


MEASURING-COMPUTING COMPLEX «GIDRORAZRYV»
A. V. Leont’ev, E. V. Rubtsova, Yu. M. Lekontsev, and V. G. Kachal’sky

The article describes a number of novelties developed for the measuring-computing complex «Gidrorazryv»: improved design of the two-packer probe, data translation and transmission device on the basis of unified modules, new programs for the experimental procedure supervision and data processing.

Hydrofracturing and stress measurement, control, «Gidrorazryv» complex

REFERENCES
1. M. V. Kurlenya, A. V. Leont’ev, and S. N. Popov, «Development of hydrofracturing for studying the stressed state of a rock mass,» Journal of Mining Science, No. 1 (1994).
2. M. D. Novopashin (Ed.), Contemporary Geodynamics of the Top Crust Rock Masses: Sources, Parameters, Influence on the Subsoil Objects [in Russian], SO RAN, Novosibirsk (2008).
3. A. V. Leont’ev and S. N. Popov, «Experience of stress measurement with hydrofracturing,» Gorny Zh., No. 3 (2003).
4. A. V. Leont’ev, Yu. M. Lekontsev, and E. V. Rubtsova, «Russian Federation Patent No. 2320870. Downhole hydrofracturing device,» Byull. Izobret., No. 9 (2008).


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2024. Информация о сайте