Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2009 год » JMS, Vol. 45, No. 1, 2009

JMS, Vol. 45, No. 1, 2009


GEOMECHANICS


GASDYNAMICS IN. A. COAL SEAM. PART I: MATHEMATICAL DESCRIPTION OF THE DESORPTION KINETICS
S. V. Kuznetsov and V. A. Trofimov

The authors consider the gas desorption kinetics in the frame of a diffusion model, present alternative models and estimate their compatibility with the traditional.

Filtration, desorption, methane, kinetics, approximation

REFERENCES
1. D. P. Timofeev, Adsorption Kinetics [in Russia], AN SSSR, Moscow (1962).
2. M. F. Yanovskaya and Yu. S. Premysler, Nomograms of Gas Release on Failure of Coal [in Russian], Skochinsky’s Institute of Mining, Moscow (1967).
3. B. M. Ivanov, G. N. Feit, and M. F. Yanovskaya, Mechanical and Physicochemical Properties of Outburst-Hazardous Coal Seams [in Russian], Nauka, Moscow (1979).
4. S. V. Kuznetsov and V. A. Bobin, «Desorption kinetics during gasdynamical phenomena in collieries,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1980).
5. N. Yu. Zaglushchenko, «Estimate method of outburst hazard in coal seams based on the parameters of the kinetics of methane desorption from coal,» Cand.Tech.Sci. Dissertation [in Russian], Moscow (1989).


MATHEMATICAL MODELING OF METHANE FLOW IN COAL BEDS
A. V. Fedorov and I. A. Fedorchenko

The paper offers to describe the free and occlude gas filtration and diffusion in a coal bed by a numerical model in the form of a system of heterogenous parabolic equations. The gas flow as a shock and depression wave has been considered, and the desorption isotherm conditions for these waves to arise in a coal bed are formulated. By analyzing experimental data on cavities generated by a sudden coal and gas outburst, the authors construct the numerical model describing gas and coal mix outflow in a mine.

Multi-phase media, sudden outburst, filtration, shock wave, coal, methane

REFERENCES
1. E. V. Vorozhtsov, A. V. Fedororv, and V. M. Fomin, «Movement of mix of gas and coal particles in mines, considering desorption,» in: Aeromechanics. Collected Works [in Russian], Nauka, Moscow (1976).
2. A. V. Fedorov, «Compression shock waves under gas filtration in coal beds,» in: Ventilation and Gas-Dynamic Phenomena Control. Collected Works [in Russian], O. I. Chernov (Ed.), IGD AN SSSR, Novosibirsk (1977).
3. S. A. Khristianovich, «Gas pressure distribution near the moving free surface of coal,» Izv. AN SSSR, OTN, No. 12 (1953).
4. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasi-Linear Equations and Their Applications in Gas Dynamics [in Russia], Nauka, Moscow (1968).
5. A. E. Sheidegger, Physics of Fluid Flows in Porous Media [in Russian], Gostoptekhizdat, Moscow (1960). 6. L. G. Loitsyanskii, Fluid and Gas Mechanics [in Russian], State Technical-Theoretical Literature Publishing House, Moscow (1950).
7. A. V. Fedorov, «Analysis of the equations describing a sudden coal and gas outburst,» CHMMSS, 11, No. 4 (1980).
8. G. I. Gritsko, Extraction of Coal Beds Prone to Sudden Coal and Gas Outbursts in the Kuznets Coal Basin [in Russian], Tomsk (1958).
9. V. V. Khodot, Sudden Coal and Gas Outbursts [in Russian], State Sci-Tech Mining Literature Publishing House, Moscow (1961).
10. A. A. Nikol’skii, «Sudden gasified rock outburst waves,» Dokl AN SSSR, Vol. LXXXVIII, No. 4 (1953).
11. A. V. Fedorov, I. A. Fedorchenko, and I. V. Leont’ev. «Mathematical modeling of two problems of wave dynamics in heterogeneous media,» Shock Waves J., 15, No. 8 (2006).


HYDRODYNAMIC CHARACTERIZATION AND DIMENSIONING OF THE DILATANT-PLASTIC ZONE AROUND AN OIL WELL
T. K. Ramazanov and M. G. Khanbabaeva*

Unsteady filtration of fluid around a well is numerically modeled in an elasto-plastic medium under the Mohr-Coulomb yield condition and unassociated flow rule. The paper presents equations to calculate porosity, stratum permeability, porous pressure, returns rate under unsteady fluid filtration and the dilatant-plastic zone dimension.

Mohr-Coulomb yield condition, dilatancy relation, actual stresses, automodel variable

REFERENCES
1. V. N. Nikolaevskii, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).
2. A. M. Grishin and V. M. Fomin, Conjugate and Non-Stationary Problems of Agent Mechanics [in Russian], Nauka, Novosibirsk (1984).
3. V. N. Nikolaevskii, «Theory of plastic flows of sands with fluid pressure effects,» Engineering Mechanics ASCE, 131, No. 9 (2005).
4. T. K. Ramazanov and G. N. Ataev, «Expansion of dilatant-plastic zone around a production well and the problem on sand sloughing,» Phys.-Math. Sciences Series, Vestnik BGU, Nos. 2, 3 (2000).
5. T. K. Ramazanov, «Plastic zones around a production well,» Izv. Vuzov, Nos. 3, 4 (1996).
6. S. V. Grafutko and V. N. Nikolaevskii, «Sand sloughing problem,» Mekh. Zhid. Gaza, No. 5 (1998).
7. A. T. Gorbunov, Development of Abnormal Oil Fields [in Russian], Nedra, Moscow (1981).
8. A. A. Samarskii and A. V. Gulin, Numerical Methods [in Russian], Nauka, Moscow (1989).


MINING MACHINE SCIENCE


INFLUENCE OF THE AIR DISTRIBUTION ELEMENTS IN THE PNEUMATIC HAMMER WITH AN ELASTIC VALVE ON THE ENERGY CARRIER RATE
V. V. Chervov, I. V. Tishchenko, and A. V. Chervov

The authors describe a measurement complex and experimental measurement of air flow rates for some pneumatic hammers. Based on the experimental results, the air flow rate range has been determined.

Compressed air, flowmeter, blow frequency, pressure, jet cross-section, chamber volume

REFERENCES
1. B. N. Smolyanitskii, V. V. Chervov, V. V. Trubitsyn, I. V. Tishchenko, and I. E. Veber, «New pneumatic hammers «Typhoon» for specific construction,» Mekh. Stroit., No. 7 (1997).
2. V. V. Chervov, «Impact energy of pneumatic hammer with elastic valve in back-stroke chamber,» JOMI, No. 1 (2004).
3. V. V. Chervov, V. V. Trubitsyn, B. N. Smolyanitski, and I. E. Veber, «RF Patent No. 2105881. Percussion device,» Byull. Izobret., No. 6 (1998).
4. V. V. Chervov, V. V. Trubitsyn, B. N. Smolyanitski, and I. E. Veber, «RF Patent No. 2085363. Percussion device,» Byull. Izobret., No. 21 (1997).
5. B. N. Smolyanitskii and V. V. Chervov, «Adjusting pneumatic-impact devices to the compressed air sources,» Izv. VUZov, Stroit., No. 8 (1999).
6. B. V. Sudnishnikov, N. N. Esin, and K. K. Tupitsyn, Studying and Design Planning the Pneumatic-Impact Devices [in Russian], Nauka, Novosibirsk (1985).
7. L. L. Boshnyak and L. N. Byzov, Velocity Flowmeters [in Russian], Mashinostroenie, Leningrad (1968).
8. P. P. Kremlevskii, Flowmeters and Substance Meters [in Russian], Politekhnika, Saint Petersburg (2002).
9. B. N. Smolyanitskii, V. V. Chervov, and K. B. Skachkov, «New pneumatic-impact machines developed at the Institute of Mining, Siberian Branch, Russian Academy of Sciences,» Mekh. Stroit., No. 12 (2001).
10. V. S. Smerdin, V. V. Chervov, and V. V. Trubitsyn, "New-generation pneumatic-impact machine «Typhoon-290,» Transport. Stroit., No. 5 (1996).
11. V. V. Chervov, «Control of air feed to back-stroke chamber of the pneumatic impact devices,» JOMI, No. 1 (2003).
12. A. D. Kostylev, V. V. Trybitsyn, Kh. B. Tkach, et al., «USSR Author’s Certificate No. 1461833. Method and stand for measuring blow energy of a percussion device,» Byull. Izobret., No. 8 (1989).


LABORATORY APPROVAL OF. A. NEW METHOD FOR SOIL WEAKENING
V. N. Beloborodov and A. K. Tkachuk

The physicochemical method for weakening soils and other porous media by inflating solutions is proposed and approved under laboratory conditions.

Soil, weakening, borehole, gas emission, experiment

REFERENCES
1. E. M. Sergeev, Soil Science [in Russian], Izd. MGU, Moscow (1973).
2. N. F. Kusov, O. A. Edel’stein, and L. P. Shabolova, «Use of adsorption-active media to lower rock fracture resistance,» in: Physicochemical Mechanics and Lyophilic Behavior of Dispersed Systems [in Russian], Issue No. 18, Naukova Dumka, Kiev (1986).
3. N. F. Kusov, O. A. Edel’stein, and L. P. Shabolova, Physicochemical Effect on Rock Strength: Review [in Russian], TsNIEIugol, Moscow (1980).
4. N. F. Kusov, O. A. Edel’stein, and L. P. Shabolova, New Processes and Means for Failure (Weakening) of Rocks and Coals: Review [in Russian], TsNIEIugol, Moscow (1978).
5. A. V. Astakhov, E. B. Vinokurova, A. I. Ketslakh, and S. A. Yarunin, «USSR Author’s Certificate No. 1456605. Coal seam weakening method,» Byull. Izobret., No. 5 (1989).


MINERAL MINING TECHNOLOGY


METHODICAL PRINCIPLES FOR PLANNING THE MINING AND LOADING EQUIPMENT CAPACITY FOR OPEN CAST MINING WITH THE USE OF DUMPERS. PART II: ENGINEERING CAPACITY CALCULATION
S. G. Molotilov, V. I. Cheskidov, V. K. Norri, and A. A. Botvinnik

The new-developed procedure to calculate engineering capacity of excavation-and-loading machines more tightly relates the machine performance and the rock properties and fullest includes the effect of mine technical factors.

Shovel, loader, face, capacity, method

REFERENCES
1. S. G. Molotilov, V. I. Cheskidov, and V. K. Norri, «Methodical principles for planning the mining and loading equipment capacity for open cast mining with the use of dumpers. Part I,» JOMI, No. 4 (2008).
2. V. M. Vlasov and A. D. Androsov, Diamond Open Mining in Permafrost Zone [in Russian], YANTS SO RAN, Yakutsk (2007).
3. Yu. I. Belyakov, Excavation Work Planning [in Russian], Nedra, Moscow (1983).
4. N. V. Mel’nikov, Theory and Practice in Open Pit Mining [in Russian], Moscow (1973).
5. Open Mining Mechanics Reference Book [in Russian], Nedra, Moscow (1989).
6. Addendum to Uniform Open Mining Production Code for Mining Industry. Excavation and Haulage.
Part III: Rock Excavation and Haulage by Dump Trucks [in Russian], Nedra, Moscow (1982).
7. A. V. Biryukov, V. I. Kuznetsov, and A. S. Tashkinov, Statistical Models in Mining Processes [in Russian], Kuzbassvuzizdat, Kemerovo (1996).
8. Yu. I. Belyakov, Excavation-and-Loading at Open Pit Mines [in Russian], Nedra, Moscow (1987).
9. V. V. Rzhevsky, Open Mining [in Russian], Nedra, Moscow (1985).
10. Yu. I. Belyakov and V. M. Vladimirov, Improvement of Excavation at Open Pit Mines [in Russian], Nedra, Moscow (1974).
11. Standard Process Flowsheets at Open Pit Coal Mines [in Russian], Nedra, Moscow (1974).
12. N. V. Mel’nikov, Open Mining Quick-Reference Book [in Russian], Nedra, Moscow (1982).
13. K. N. Trubetskoy, «Scientific basics for using loaders in open pit mining,» Dissertation Abstract of Dr.Tech.Sci. [in Russian], Moscow (1989).
14. Yu. I. Belaykov, Improvement of Excavation-and-Loading Technology for Open Pit Mines [in Russian], Nedra, Moscow (1977).


PARAMETRIZATION PROCEDURE FOR OPEN-PIT PIPELINE TRANSPORTATION WITH AN ALLOWANCE FOR SLURRY FORMATION
B. A. Blyuss, M. N. Livshits*, and E. V. Semenenko

The article describes a design procedure for open pit pipeline transportation parameters and operating regimes with allowance for characteristics of pipes and pumps of water supply and hydraulic transport, slurry formation, as well as polydispersity and different fraction of a material to be transported.

Hydrotransport, limit velocity, slurry, slurry formation, open pit mine

REFERENCES
1. I. L. Gumenik, A. M. Sokil, E. V. Semenenko, and V. D. Shurygin, Problems of Placer Developments [in Russian], Sich, Dnepropetrovsk (2001).
2. B. A. Blyuss and N. A. Golovach, Improvement of Pre-Concentration Technologies for Titano-Ferritic Ores [in Russian], Poligrafist, Dnepropetrovsk (1999).
3. Yu. D. Baranov, B. A. Blyuss, E. V. Semenenko, and V. D. Shurygin, Validation of the Parameters and Operating Regimes for Hydraulic Mining Systems [in Russian], Novaya Idealogia, Dnepropetrovsk (2006).
4. B. A. Blyuss and E. V. Semenenko, «Sustaining rational operating regime of an open pit mine hydrotransport complex,» in: NGU Collected Papers [in Russian], Issue 1, Vol. 1, NGU, Dnepropetrovsk (2003).
5. A. E. Smoldyrev, Hydraulic and Pneumatic Transport in Metallurgy [in Russian], Metallurgia, Moscow (1985).
6. G. A. Nurok, Open Mining Hydromechanization [in Russian], Nedra, Moscow (1985).
7. P. D. Khorudzhii and O. A. Tkachuk, Vodoprovidni Sistemi i Sporudi [in Ukrainian], Vishcha Shkola, Kiev (1993).
8. S. G. Kobernik and V. I. Voitenko, Pressurized Hydrotransport of Mining-and-Processing Tailings [in Russian], Naukova Dumka, Kiev (1967).
9. S. I. Kril’, Pressure Slurry-Carrying Flows [in Russian], Naukova Dumka, Kiev (1993).
10. IS 21–26.3–567–81. Pressurized Hydrotransport of Grey Iron Foundry Wastes, USSR Ministry of Building Materials, Kiev (1982).
11. RSN 275–75. Time Guidelines for Hydraulic Fill Dumping of Mining-and-Processing Tailings, USSR Gosstroi, Kiev (1975).
12. S. I. Kril’ and E. V. Semenenko, «Calculation of sand hydrotransport parameters for placers and technogenic formations,» Metallurg. Gornorud. Prom., No. 5 (2006).


MINE AEROGASDYNAMICS


AIR FLOW CONTROL IN. A. SHALLOW SUBWAY VENTILATION NETWORK
D. V. Zedgenizov

The air flow control in a segment of an underground ventilation network is proposed. It consists of the control channels for stationary fan and air flow in a tunnel adjacent to a subway station platform. Mathematical models of the system components and the optimal airing control criteria are developed. The numerical test data on adequacy of the proposed mathematical description are presented.

Control system, air governor, stationary fan, air flow

REFERENCES
1. V. Ya. Tsodikov, Metro Ventilation and Heat Supply [in Russian], Nedra, Moscow (1975).
2. D. V. Zedgenizov, «A new approach to ventilation control at shallow undergrounds,» Gorn. Inform.-Analit. Byull., Topical Enclosing: Safety, MGGU, Moscow (2005).
3. V. G. Rossovskii, Electromechanical Mechanisms for Undergrounds [in Russian], Transport, Moscow (1989).
4. D. V. Zedgenizov and I. V. Lugin, «Mathematical description of an air governor in a subway tunnel,» in: Proceedings of International Conference «Fundamental Problems of Technogenic Geomedium Formation,» [in Russian], 2, IGD SO RAN, Novosibirsk (2007).
5. A. S. Vostrikov and G. A. Frantsuzova, Theory of Automated Control [in Russian], Vysshaya Shkola, Moscow (2004).


MINERAL DRESSING


INFLUENCE OF SULFHYDRYL COLLECTORS ON FORMATION OF COPPER-ION-BEARING PRECIPITATES IN AQUEOUS SOLUTIONS
V. A. Ignatkina, V. D. Samygin, and V. A. Bocharov

The test data obtained at the automated test facility designed to study kinetic parameters of copper ion precipitation by sulfhydryl collectors are discussed. The row of copper ion bonding by diethyldithioccarbamate, butyl xanthate and isobutyl dithiophosphate was established experimentally by the jumps in potentials for a copper electrode, the compliance with the published data on the product of solubility of copper compounds with dithiocarbamates, xanthates, dithiophosphates is obvious. The aggregate structure is characteristic of precipitates produced by depositing copper cations by a collector with less number of hydrocarbon radical in each test group of sulfhydryl collectors. The most finely dispersed precipitates are formed using isobutyl dithiophosphate and butyl xanthate.

Sulfhydryl collectors, redox potential, electrode potential, precipitates, kinetics of precipitation

REFERENCES
1. V. A. Chanturia and R. Sh. Shafeev, Chemistry of Surface Phenomena [in Russian], Nedra, Moscow (1977).
2. V. A. Bocharov and V. A. Ignatkina, «On regularities observed in formation of liquid phase composition in flotation sulfide pulp,» JOMI, No. 1 (2007).
3. N. V. Kirbitova, N. I. Eliseev, V. P. Yuferov, and N. M. Isakova, «Interaction between sulfide precipitates and minerals in beneficiation of copper-zinc ores,» JOMI, No. 6 (1981).
4. V. D. Samygin, P. V. Grigor’ev, L. O. Filippov, V. A. Ignatkina, and F. Shar’e, «Reactor with automated control of precipitation kinetics,» Izv. VUZov, Tsvet. Metally, No. 2 (2002).
5. V. A. Ignatkina, V. D. Samygin, and V. A. Bocharov, «Investigations into kinetic regularities of interaction of copper ions with sulfhydryl collectors,» GIAB, No. 6 (2007).
6. I. A. Kakovskii, «Physicochemical properties of basic flotation reagents and mechanism for action of sulfhydryl collectors,» in: Theoretical Fundamentals and Control of Flotation Processes [in Russian], Nauka, Moscow (1980).
7. A. A. Abramov, S. B. Leonov, and M. M. Sorokin, Chemistry of Flotation Systems [in Russian], Nedra, Moscow (1982).
8. V. N. Kumok, O. M. Kuleshov, and L. A. Karabin, Product of Solubility [in Russian], Nauka, Novosibirsk (1983).


EXTRACTION OF HYDROGEN CYANIDE FROM WASTE SOLUTIONS OF CYANIDING CIRCUIT FOR SULFIDE FLOTATION CONCENTRATES
E. D. Prosyanikov, B. A. Tsybikova*, A. A. Batoeva*, and A. A. Ryazantsev

The process for extraction of hydrogen cyanide to decontaminate solutions produced at cyaniding of sulfide flotation concentrates is developed. The centrifugal-bubbling apparatus is employed as a reactor. The regularities of HCN formation in an acid medium are established in investigation into kinetics of SCN- thiocyanate oxidation by hydrogen peroxide Н2О2 in presence of Fe2+, Fe3+ and pH≤3.5. In the process proposed the evolved HCN is adsorbed by NаOH solution and returned to the circuit of leaching of gold and silver as NaCN, and the waste cyaniding solution is discharged into a waste dump, where it is mixed with industrial water to be utilized to transport flotation tailings.

Centrifugal-bubbling apparatus, hydrogen cyanide, thiocyanate, oxidation, Fenton reagent

REFERENCES
1. Terry I. Mudder, «Cyanide recycling process,» U. S. Pat. No. 5 254 153, Oct. 19 (1993).
2. P. A. Riveros and D. Coren, «Cyanide recovery from a gold mill barren solution containing high levels of copper,» CIM Bull., 91/1025 (1998).
3. A. A. Kochanov, A. A. Ryazantsev, A. A. Batoeva, et al., «Extraction of cyanides from waste solutions from cyaniding of flotation concentrates of Kholbinsk gold deposit,» Khim. Int. Ust. Razv., No. 12 (2004).
4. I. R. Wilson and M. Harris, «The oxidation of thiocyanate by hydrogen peroxide. Part II. The acid catalyzed reaction,» J. Am. Chem. Soc., 83 (1960).
5. J. N. Figlar and D. M. Stanbury, «Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution,» Inorg. Chem., 39 (2000).
6. J. J. Barnett, M. L. McKee, and D. M. Stanbury, «Acidic aqueous decomposition of thiocyanogen,» Inorg. Chem., 43 (2004).
7. M. Lahti, L. Viipo, and Jari Hovinen, «Spectrophotometric determination of thiocyanate in human salvia,» J. Chem. Ed., 76, No. 9 (1999).
8. Yu. Yu. Lurier and A. I. Rybnikova, Chemical Analysis of Industrial Waste Waters [in Russian], Khimiya, Moscow (1974).
9. C. Walling, «Fenton’s reagent revisited,» Acc. Chem. Res., No. 8 (1975).
10. A. Ya. Sychev and V. G. Isak, «Compounds of iron and mechanisms for homogenous catalysis of activation of О2, Н2О2 and oxidation of organic substrates,» Usp. Khim., No. 64 (1995).
11. S. H. Bossmann, E. Oliveros, S. Golb, et al., «New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions,» J. Phys. Chem., A 102 (1998).
12. A. A. Kachanov, A. A. Ryazantsev, and A. A. Batoeva, «Intensification of mass-exchange processes in neutralization of technological solutions of cyanidization,» JOMI, No. 4 (2002).
13. A. A. Ryazantsev, A. A. Asalkhanova, A. A. Batoeva, et al., «RF Patent No. 2310614. Process for decontamination of cyanide- and rhodanite-bearing waste waters,» Byull. Izobret., No. 32 (2007).


INVESTIGATION INTO MAGNETIC CHARACTERISTICS OF NEODYMIUM — IRON — BARIUM SYSTEM IN DRY MAGNETIC SEPARATORS
V. I. Kilin, E. K. Yakubailik, M. V. Verkhoturov**, and S. V. Kilin**

The intensity of magnetic fields and specific magnetic forces of the systems made of rare-earth constant magnets of opposite polarity and different configurations were measured. The results were used to reconstruct magnetic systems of dry magnetic separators, namely, substitution of neodymium — iron — barium for barium ferrite. The new systems installed in 55 separators at «Evrazruda» processing plants improve parameters of magnetite ore processing.

Magnetic field, specific force, barium ferrite, neodymium — iron — barium alloy

REFERENCES
1. V. I. Kilin and E. K. Yakubailik, «Investigation into magnetic properties and processes of separation of Abakan magnetites,» JOMI, No. 5 (2002).
2. A. E. Pelevin, E. F. Cypin, A. V. Koltunov, and S. G. Komlev, «High intensive magnetic separators with constant magnets,» Izv. VUZov, Gorny Zh., Nos. 4 — 5 (2001).
3. V. G. Derkach and I. S. Datsyuk, Electromagnetic Mineral Processing [in Russian], Metallugizdat, Moscow (1947).
4. I. S. Datsyuk, «Magnetic force affecting different-size grains and an optimal pole step,» Nauch.-Inf. Byull. Inst. «Mechanobr», Nos. 10 — 11 (1939).


NANOTECHNOLOGICAL MINERALOGY
O. B. Kotova and A. V. Ponaryadov

The paper presents an outlook for the development of mineralogy nanotechnologies, including for mineral processing. It is shown that a mineral with the modified non-structure acquires new properties (for instance, sorption), which may greatly expand the processing technology potential.

Mineral, nanostructural modification, property change

REFERENCES
1. M. Lines and J. Drennan, «Nanominerals — the next generation. Industrial minerals,» Metal Bulletin, UK (2005).
2. O. B. Kotova, «Industrial nanominerals and contemporary problems of the integrated natural and technogenic mineral processing,» in: International Conference Proceedings on Modern Problems of Integrated Processing of Natural and Technogenic Minerals Materials (Plaksin’s Discourse-2005) [in Russian], Roza mira, Saint Petersburg (2005).
3. V. M. Izoitko, Engineering Mineralogy and Ore Assessment [in Russian], Nauka, Saint Petersburg (1997).
4. O. B. Kotova, Surface Processes in Fine-Disperse Mineral Systems [in Russian], UrO RAN, Syktyvkar (2004).
5. V. A. Chanturia, «Status and basic development trend in flotation today,» in: International Conference Proceedings on Modern Problems of Integrated Processing of Natural and Technogenic Minerals Materials (Plaksin’s Discourse-2005) [in Russian], Roza mira, Saint Petersburg (2005).
6. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of Titania Oxide Nanotube, Langmuir 14 (1998).
7. O. B. Kotova and A. V. Ponaryadov, «Surface processes in biomineral nanosystems,» in: Proceedings of the 4th International Conference on Mineralogy and Life: Origination of Biosphere and Coevolution of Mineral and Biological Worlds. Biomineralogy [in Russian], Syktyvkar (2007).
8. J. Fang, Q. Zhong, M. Rohwerder, L. Shi, and J. Zhang, «A novel high-frequency resistance coating by utilizing nano titania particle,» Appl. Surf. Sci., 252 (2006).
9. S. Brunauer, P. Emmett, and E. Teller, «Adsorption of gases in multimolecular layers,» J. Am. Chem. Soc., 60 (1938).



Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 205–30–30
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2024. Информация о сайте