JMS, Vol. 44, No. 3, 2008
GEOMECHANICS
EFFECT OF VISCOSITY OF PARTINGS IN BLOCK-HIERARCHICAL MEDIA
ON PROPAGATION OF LOW-FREQUENCY PENDULUM WAVES
N. I. Aleksandrova, E. N. Sher, and A. G. Chernikpov
The study focuses on the pendulum-type wave propagation in an assembly of steel rods parted alternatively by rubber and foam plastic and applied with impulse loading. The proposed mathematical model describes this system as a chain of masses linked by elastic springs and viscous damping elements. At large times from the loading onset, the asymptotical estimates of velocities and accelerations of the masses are obtained. The numerical calculations, analytical solutions and experimental data are compared, and the domain of applicability of the analytical evaluations is delimited. The authors show that this model adequately describes the behavior of excitations in the system of rods with alternating visco-elastic partings.
Impact, block hierarchical medium, seismic waves, pendulum-type waves, partings, elasticity, viscosity
REFERENCES
1. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl. AN SSSR, 247, No. 4 (1979).
2. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimensions of rock to crack opening in the structural hierarchy of masses,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1993).
3. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Formation of elastic wave packages in block media under impulse excitation. Pendulum-type waves ,» Dokl. AN SSSR, 333, No. 4 (1993).
4. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum-type waves. Part I: Study of the problem and measuring instrument and computer complexes,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1996).
5. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, "Pendulum-type waves. Part II: Experimental methods and main results of physical modeling, " Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1996).
6. M. V. Kurlenya, V. N. Oparin, V. I. Vostrikov, V. V. Arshavskii, and N. Mamadaliev, «Pendulu-type waves. PartIII: data of on-site observations,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1996).
7. N. I. Aleksandrova, «Elastic wave propagation in block medium underl impusle loading,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2003).
8. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2004).
9. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «Experimental investigation into the one-dimensional calculated model of wave propagation in block medium,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (2005).
10. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, «Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).
11. L. I. Slepyan, Non-Stationary Elastic Waves [in Russian], Sudostroenie, Moscow (1972).
12. E. Yanke, F. Emde, and F. Lesh, Special Functions [in Russian], Nauka, Moscow (1968).
FRACTAL ANALYSIS OF HIERARCHIC STRUCTURE
OF FOSSIL COAL SURFACE
A. D. Alekseyev, T. A. Vasilenko, and A. K. Kirillov
The fractal analysis of the surface image is implemented to study the structural organization of surface heterogeneity on three natural sorbent specimens of fossil coal. The deformation effect, expressed as reduction in dimensions of heterogeneity boundaries, is considered. It is shown that the theory of non-equilibrium dynamic system permits to assess an organizational level of heterogeneities, involved into a sorbent composition, by means of Hurst factor.
Atomic powered microscope, fractal dimension, natural sorbents
REFERENCES
1. A. B. Mosolov and O. Yu. Dinarev, «Fractal, scales, and geometry of porous materials,» ZhTF, 58, No. 2 (1987).
2. A. F. Bulat and V. I. Dyrda, Fractals in Geomechanics, Nauk Dumka, Kiev (2005).
3. A. P. Rodlinsky, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal, Int. J. Coal Geology, 59, Nos. 3, 4 (2004).
4. .A. V. Neimark, «Evaluation of fractal surface dimension from the adsorption test data,» ZhFCh, 64, ed. 10 (1990).
5. H. Gan, Nandi, and P. L. Walker. «Nature of the porosity in American coal,» Fuel, 1972, Vol. 51, No. 4.
6. O. Zmeškal, M. Veselý, M. Nezádal, and M. Buchnícek. Fractal Analysis of Image Structures, HarFA,
Harmonic and Fractal Image Analysis (2001).
7. E. Feder, Fractals, Mir, Moscow (1991).
8. A. M. Zeleny and A. V. Milovanov, «Fractal topology and strange kinetics: from percolation theory to challenges of space electrodynamics,» UFN, 174, No. 8 (2004).
9. A. Yu. Loskutov. Reproducibility of the structure and properties of parts and their description within the framework of nonlinear dynamics, Glass and Ceramics, 57, Nos. 7, 8 (2000).
10. J. Theiler. «Some comments on the correlation dimension of 1/f noise,» Physics letters A, 155, Nоs. 8, 9 (1991).
11. V. V. Mandelbrot. Fractals: Form, Chance and Dimension, Sun Francisco: Freeman Comp. (1977).
12. V. M. Kasatochkin and N. K. Larina, Structure and Properties of Natural Coals, Nauka, Moscow (1975).
13. A. Le Mêhutê. Fractal Geometries, Theory and Applications, Boca Ration: CRS Press Comp., 1991.
14. Ya. E. Belgeizimer, A. V. Zavdoveyev, V. N. Varyukhin, and B. M. Efros, « Effect of deformation on fractal dimension of metal structures,» Proc. Int. Conf. «Mesascopic Phenomena in Solid Bodies,» Donetsk (2007).
15. V. L. Popov, J. Starcevic, and A. E. Filippov. Reconstruction of potential from dynamic experiments, Physical Review, E, 75 (2007).
16. V. L. Popov and Ya. Starchevich, «Triboscopic studies of steel-steel pair,» Pisma v ZhTF, 31, ed. 7 (2005).
17. T. A. Vasilenko, P. I. Polyakov, and V. V. Slyusarev, «Investigation into physical-mechanical properties of coals under hydrostatic compression and quasihydrostatic failure,» Fizika i Tekhnika vysokyh davlenii, 10, No. 3 (2000).
ROCK MOVEMENT AT THE TASHTAGOL IRON-ORE DEPOSIT
IN THE COURSE OF LARGE-SCALE UNDERGROUND BLASTING
T. V. Lobanova and E. V. Novikova
The paper describes the results of studies into processes of deformation of rock masse near protected objects and in mine workings of the Tashtagol iron-ore deposit, carried out with the conventional geodetic methods and the GPS-techniques. It is shown that major rock mass movements in the periods of large-scale blasting take place along flat-dipping tectonic faults and in the line of action of maximal stresses in the intact rock mass.
Geotectonic stress field, block structure, protected structures, rock bursts, displacement monitoring, stress redistribution, short-period movements
REFERENCES
1. T. V. Lobanova, «Geomechanical state of the rock mass at the Tashtagol deposit in the course of nucleation and manifestation of rock bursts,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2008).
2. USSR Ministry of Nonferrous Metals, Mining Management, Guidelines for Monitoring of Movements of Rocks and Ground Surface at Ore Deposits During Underground Mining [in Russian], VNIMI, VNIPIgortsvetmet (Development), Nedra, Moscow (1988).
3. Federal Agency of Geodesy and Cartography of Russia, Guidelines for Preparation of Survey’s Pickup and Survey of Setting and Relief by Global Positioning Satellite Systems GLONAS and GPS [in Russian], L. V. Neverov (Ed.), TSNIIGAIK, Moscow (2002).
4. Operating Manual 4600 LS Surveyor, Part Number: 27564–00, Edition A (1995).
5. V. A. Kvochin, V. V. Bilibin, T. P. Vasil’chenkov, T. V. Lobanova, et al., «Geodynamic safety of iron-ore mining in Siberia,» Gorny Zh., No. 11 (2005).
ROCK FAILURE
EFFECT OF VISCOSITY OF PARTINGS IN BLOCK-HIERARCHICAL MEDIA
ON PROPAGATION OF LOW-FREQUENCY PENDULUM WAVES
Yu. M. Lekontsev and P. V. Sazhin
The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005 — 2006.
Directional hydraulic fracturing, drill hole, difficult-collapsible roof
REFERENCES
1. O. I. Chernov and G. N. Kyu, «Fluid fracturing of rock masses,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1988).
2. O. I. Chernov, B. A. Frolov, S. Ya. Krasnikov, and L. N. Shepelev, «Experiments on hydrodynamic stratification of monolithic bed for rock loosening,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1985).
3. O. I. Chernov, «Hydrodynamic stratification of petrologically uniform strong rocks as means of controlling intransigent roofs,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1982).
4. V. I. Klishin, Powered Support Adaptation to Dynamic Loading [in Russian], Nauka, Novosibirsk (2002).
5. O. I. Chernov and G. N. Kyu, «Oriented rupture of solids by highly viscous fluid,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1996).
6. V. I. Klishin, Yu. M. Lekontsev, and P. V. Sazhin, «Pilot testing of equipment on stone blocks» in: The 2nd International Conference Proceedings «Dynamic and Strength of Mining Machines» [in Russian], 1, IGD SO RAN, Novosibirsk (2003).
7. V. I. Klishin, Yu. M. Lekontsev, and P. V. Sazhin, «Expereimnetal research of bearing pressure re-distribution in a mining face during forced roof caving,» Gorn. Inform-Analit. Byull., No. 3 (2006).
8. S. I. Kalinin, A. F. Lyutenko, P. V. Egorov, and S. G. D’yakonov, Ground Control in Mining Flat-Lying Seams with Difficult-to-Collapse Roofs at the Kuzbass Mines [in Russian], Kemerovo (1991).
MINING MACHINE SCIENCE
INVESTIGATION INTO EFFICIENCY OF IMPACT ENERGY TRANSFER
WITH ACCOUNT OF THE FORE SECTION GEOMETRY OF AIR PUNCHER
A. A. Kirillov
Mathematical models of percussive interaction of basic puncher elements were developed with account for their contact interaction. The basic calculation test data are presented, selection of a numerical value for a bounce factor is substantiated for an air puncher at the forward stroke mode.
Air puncher, impactor, energy transfer, design scheme
REFERENCES
1. E. V. Aleksandrov and V. B. Sokolinsky, Applied Theory and Design of Percussive Systems [in Russian], Nauka, Moscow (1969).
2. O. D. Alimov, V. K. Manzhosov, and V. E. Erem’yants, Blow. Propagation of Deformation Waves in Percussive Systems [in Russian], Nauka, Moscow (1985).
3. A. A. Kirillov, B. N. Smolyanitsky, and L. I. Sukhareva, Modeling of Impact Energy Transfer Through a Side Surface of a Bar Element, in Mining Construction and Vibration Machines and Processes [in Russian], IM SB RAS, Novosibirsk (1988).
4. A. A. Kirillov, A. V. Prasolov, B. N. Smolyanitsky, and L. I. Sukhareva, «Investigation into percussive system with non-face collision of components,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No.2 (1988).
5. I. Ya. Shtaerman, Contact Problem in Elasticity Theory [in Russian], Gostekhizdat, Moscow (1949).
6. S. P. Timoshenko, Static and Dynamic Problems of Elasticity Theory [in Russian], Nauk.Dumka, Kiev (1975).
7. K. S. Gurkov, V. V, Klimashko, A. D. Kostylev, V. D. Plavskikh, E. P. Rusin, B. N. Smolyanitsky, K. K. Tupitsyn, and N. P. Chepurnoy, Air Punchers [in Russian], IM SB RAS, Novosibirsk (1990).
MINERAL MINING TECHNOLOGY
EFFECT OF VISCOSITY OF PARTINGS IN BLOCK-HIERARCHICAL MEDIA
ON PROPAGATION OF LOW-FREQUENCY PENDULUM WAVES
A. A. Eremenko, V. I. Klishin, V. A. Eremenko, and A. P. Filatov
The authors offer the optional versions of mining methods and technological schemes for mining at Udachnaya pipe reserves under the opencast bottom. The rational chamber-and-pillar method has been substantiated, considering the complicated mining-geological and geomechanical condition at the deposit. The economical feasibility of the proposed underground mining variants has been evaluated.
Geotechnology, mining method, fill mass, stress, stoping, level
REFERENCES
1. D. R. Kaplunov, M. V. Ryl’nikova, V. V. Kalmykov, Yu. A. Petrov, and V. A. Suslov, «Combined geotehcnology for mining at Udachnaya diamond-bearing pipe,» Gorn. Prom., No. 4 (2005).
2. A. A. Eremenko, V. M. Seryakov, and A. P. Filatova, «Estimate of the rock mass stress state in the course of mining the reserves subjacent the open pit bottom at the Udachnaya pipe,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2007).
3. Guidelines for Estimating Efficiency of Investments [in Russian], Ekonomika, Moscow (2000).
MINERAL DRESSING
EXPERIMENTAL-ANALYTICAL METHODS OF INVESTIGATION
INTO THE EFFECT OF COMPLEXING REAGENTS ON PLATINUM FLOTATION
V. A. Chanturia, T. V. Nedosekina, and V. V. Stepanova
The paper considers the studies in the hydrophobic properties of platinum and platinum arsenide, sperrylite, in the solution with added complexing reagents by using the method of measuring the force of air bubble abstraction from the mineral surface. The effect of these complexing reagents on the chemical properties of sperrylite and pyrrhotine is analyzed. A new-developed procedure of treatment of pyrrhotine by chloroplatinic acid is presented, and the comparative flotation of natural pyrrhotine and platinum-pretreated pyrrhotine with the complexing reagents is described. The collecting properties of diisobutyl dithiophosphinate for platinum are determined, and the use of this reagent as an additional collector for platinum-group metals is confirmed in the course of the experimental flotation of platinum-bearing copper-nickel ore samples.
Platinum-group metals, complexing reagents, abstraction force, electrode potential, platinum adsorption on pyrrhotine, monomineral flotation
REFERENCES
1. I. N. Khramtsova, P. M. Baskaev, N. G. Kaitmazov, et al., «The main trends of improvement in the sulfide copper-nickel ore beneficiation technology at ZF GMK «Norilsk Nickel,» Tsvet. Metally, No. 10 (2005).
2. V. A. Chanturia, T. V. Nedosekina, and A. A. Fedorov, «Some features of interaction between sulfhydryl xanthogenate and dithiocarbamate collectors, pyrite and arsenopyrite,» Tsvet. Metally, No. 5 (2000).
3. S. I. Mitrofanbov and M. Ya. Ryskin, «Electrochemical properties of minerals and adsorption of reagents-collectors,» in: Proceedings of the 8th International Congress on Mineral Beneficiation [in Russian], 2, Leningrad (1969).
4. S. B. Leonov and A. N. Baranov, «Actual electrode potentials of minerals and their interaction with adsorption of reagents and with flotation properties,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1974).
5. A. I. Levin, E. A. Ukshe, and V. S. Kolevatova, «Effect of the surface-active substances on electrode potential,» DOKL. AN SSSR, 87, No. 1 (1952).
6. T. V. Nedosekina and V. V. Stepanova, «Use of reagents with functional groups of complexing agents selective for platinoids in copper-nickel ore dressing,» Gorn. Inform.-Analit. Byull., No. 12 (2007).
7. S. I. Ginzburg, N. A. Ezerskaya, I. V. Prokof’eva, et al., Analytical Chemistry of Platinum Metals
[in Russian], Nauka, Moscow (1972).
8. V. L. Tauson, O. I. Ovchinnikov, O. I. Bessarabova, et al., «Distribution of gold on magnetite, sphalerite and galenite crystals after recovery adsorption from HAuCl4 solution,» Geolog. Geofiz., 41, No. 10 (2000).
ON DESIGN OF FLOTATION MACHINES AND EFFICIENCY OF THEIR USE
S. A. Kondratiev and A. A. Lavrinenko
Designs of best known flotation machines are analyzed comparatively with account for design peculiarities, influencing technological and economic parameters of flotation machines.
Flotation machine, flotation cell, stator, rotor, aeration, pulp turbulization, energy, reagent mode
REFERENCES
1. V. I. Klassen and S. A. Tikhonov, «Effect of sodium oleate on flotation properties of air bubbles,» Tsv. Met., No. 10 (1960).
2. Yu. B. Rubinshtein, V. I. Melik-Gaikazyan, N. V. Matveyenko, and S. B. Leonov, Froth Separation and Column Flotation [in Russian], Nedra, Moscow (1989).
3. F. Strenk, Mixing and Apparatus with Mixers, Khimiya, Leningrad (1975).
4. S. A. Kondratiev and A. S. Izotov, «Effect of apolar reagents and surfactants on stability of a flotation complex,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2000).
5. S. A. Kondratiev, «Reasonable reduction in hydrophoby of mineral surface on flotation by carboxylic acids,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No.5 (2006).
6. A. A. Lavrinenko, G. D. Krasnov, D. V. Krapivny, et al., Basic peculiarities of pneumatic-pulsating flotation,» Izv. Vuzov, Tsv. Metallurgia, No. 2 (2002).
INFLUENCE OF DEFORMATION OF. A. MEDIUM
ON FLOCCULATION OF COAL DISPERSIONS
G. L. Evmenova
The paper present the experimental data of the research into disrupting of aggregates during flocculation of coal suspensions. It is found that floccule formation should be carried out under minimal shear deformation so that to exclude floccule disrupting while being transported and to provide efficient treatment of slime waters.
Flocculation, disrupting, coal suspension
REFERENCES
1. G. L. Evmenova and A. A. Baichenko, «Raising effectiveness of polymeric flocculants for coal slime aggregation,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2000).
2. S. P. Papkov, Physic-Chemical Foundation for Processing of Polymers [in Russian], Khimia,
Moscow (1971).
3. G. R. Bochkarev and Yu. P. Kovrizhnykh, «Flocculation of a suspension by polyacrylamide,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. ? (1987).
4. G. L. Evmenova, «Comprehensive utilization of flocculants in coal washing water treatment,» Vestnik KuzGTU, No. 5 (2006).
5. A. A. Baichenko, V. S. Kaminskii, and M. S. Sokolova, «Dissolution of high-molecular polyoxyethylene prior to coal suspension flocculation,» in: Mineral Beneficiation. Collected Works [in Russian], IGD SO AN SSSR, Novosibirsk (1975).
6. V. V. Bogdanov, R. V. Torner, V. N. Krasovskii, and E. O. Reger, Mixing of Polymers [in Russian], Khimia, Leningrad (1979).
7. G. R. Bochkarev and A. P. Bimberekov, «Elementary act in flocculation of mineral particles by flocculants,» in: Mineral Beneficiation. Collected Works [in Russian], IGD SO AN SSSR, Novosibirsk (1975).
8. N. L. Glinka, General Chemistry [in Russian], Khimia, Leningrad (1983).
MINING INFORMATION TECHNIQUE
GIS-TECHNOLOGIES FOR INTEGRATED ASSESSMENT
OF PRODUCTIVE MINING AREAS
R. Yu. Zamaraev, V. N. Oparin, S. E. Popov,
V. P. Potapov, and O. L. Pyastunovich
Fundamentals of the new approach to employment of GIS-technologies for complex evaluation and comparison of productive mining areas with account for a wide range of mining-technological factors, specifying mineral properties, mineral deposit occurrence and geographical advantages of a mineral deposit location. The model capabilities are illustrated by comparison of technological coal characteristics, transportation and power-supply infrastructure of productive mining areas at the Kuznetsk Coal Basin as an example.
Mineral reserves, complex evaluation, geoinformation systems (GIS), data analysis
REFERENCES
1. V. N. Oparin, E. P. Rusin, A. P. Tapsiev, A. M. Freidin, and B. P. Badtiev, Global Experience in Automization of Underground Mining [in Russian], Izd. SO RAN, Novosibirsk (2007).
2. V. N. Oparin, V. P. Potapov, V. F. Yushkin, N. A. Kiril’tseva, and A. S. Izotov, «An approach to forming an information geomechanical structural model of the Kuznetsk Coal Basin,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (2006).
3. V. N. Oparin, V. P. Potapov, and A. S. Tanaino, «On information-provided monitoring of geodynamic processes under conditions of highly intensive sub-soil usage in the Kuznetsk Coal Basin,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2006).
4. V. P. Potapov, Mathematical and Informational Modeling of Geosystems at Coal Mines [in Russian], Izd. SO RAN, Novosibirsk (1999).
5. V. P. Potapov and S. E. Popov, «Integration of spatial geodata and distributed computing modules to solve mining-technological challenges,» Geoinformatica, No.3 (2007).
6. R. Yu. Zamaraev, S. E. Popov, and O. L. Pyastunovich, «Entropy analysis of spatial sytem distribution on GDB of the Kuznetsk Coal Basin as an example,» Vychislitelnye tekhnologii, 12, issue 3 (2007).
7. A. B. Logov, R. Yu. Zamaraev, and A. A. Logov, The state analysis for unique object systems, Vychislitelnye tekhnologii, 10, No. 5 (2005).
8. Логов А. Б., R. Yu. Zamaraev, and A. A. Logov, «Algorithms for enthropy analysis process to present the object properties in phase space,» Vychislitelnye tekhnologii, 10, No. 6 (2005).
9. J. Aitchison and J. J. Egozcue. «Compositional data analysis: where are we and where should we be heading,» Mathematical geology, 37, No. 7 (2005).
A CONCEPT OF THE ESTABLISHING THE COMPUTER SUPPORTED
INFORMATION-MANAGEMENT SYSTEM AT THE «DRMNO»
OPEN PIT MINE, COAL BASIN KOSTOLAC
Slobodan Vujic, Igor Miljanovic, Aleksandar Petrovski
With the aim of the modernization of the coal exploitation, a Research study on establishing the computer supported information-management system at the open pit mine «Drmno», within the Coal Basin Kostolac was completed. The Study gives a review of the concept, logical and physical topology, communicational ambience, architecture, course of further activities, development dynamics, and framework of expenses and benefits of computer supported information-management system construction. The paper presents a short review of the real system, goals, basic demands, concept and topology of the information-management system establishment. A development strategy and effects expected upon the establishment of the information-management system are presented at the end of paper.
Process automation, surveillance, information-management system, computer integrated systems, coal, opencast mining, drmno, kostolac, electric power industry of serbia
REFERENCES
1. Vujic S., et al., (2007), STUDY ON ESTABLISHING THE COMPUTER SUPPORTED INFORMATION-MANAGEMENT SYSTEM OF EA TPPM KOSTOLAC, Faculty of Mining and Geology, University of Belgrade, 2007.
2. Vujic S., Zunic M. and Maksimovic S., (2000), BASIC DESIGN ELEMENTS OF. A. MONITORING-MANAGEMENT SYSTEM FOR THE «TAMNAVA ZAPADNO POLJE» COAL OPEN PIT MINE, LIFE 2000 — Lignite Innovations for Future in Europe, Freiberg, Germany.
3. Vujic, S. (2001), A COMPUTER MONITORING-MANAGEMENT SYSTEM FOR. A. CONTINUOUS TECHNOLOGICAL COMPLEX OF THE «MAJDAN III» OPEN PIT MINE: ARCHITECTURE OF THE SYSTEM AND THE RESULTS ACHIEVED, Continuous surface mining — Stand und perspektiven der kontinuierlichen tagebautechnik, VI International Symposium ISCSM 2001, Freiberg, Germany.
4. Vujic S., Kasas K., (2001), A COMPUTER INTEGRATED SYSTEM FOR REMOTE MONITORING, MANAGEMENT AND SPATIAL NAVIGATION OF MACHINES AT THE «MAJDAN III» OPEN PIT MINE, 29th International Symposium on Application of Computers and Operations Research in the Mineral Industry, APCOM 2001, Section 5: Mine transport and Equipment, China University of Mining and Technology (CUMT), Bejing, China, 2001.
5. Vujic S., et al. (2005) AN INTELLIGENT SYSTEM FOR VISUAL MONITORING OF THE ECS COMPLEX OF THE «MAJDAN III» OPEN PIT MINE, POTISJE KANJIZA, YUGOSLAVIA, Application of computers and operations research in the minerals industries, The South African Institute of Mining and Metallurgy, (Series S31), Cape Town, 2003.
NEW METHODS AND INSTRUMENTS IN MINING
IMPULSE ELECTRODYNAMIC SEPARATION OF SMALL
CONDUCTING PARTICLES
V. I. Dyadin, V. Yu. Kozhevnikov, A. V. Kozyrev,
V. G. Podkovyrov, and N. S. Sochugov
The paper presents theoretical justification and experimental validation for separation of small conducting nonmagnetic particles in the pulsed travelling magnetic field. The method proposed can serve as the basis for the technology of small and fine gold separation at placers and technogenic deposits.
Beneficiation, pulsed magnetic fields, Foucault currents, placers
REFERENCES
1. V. N. Braiko and V. N. Ivanov, «Problems of gold mining in Russia,» Gorn. Zh., No. 10 (2006).
2. A. B. Makarov, «Technogenic mineral deposits,» Soros Obraz. Zh., 6, No. 8 (2000).
3. V. V. Karamzin and V. I. Karamzin, Electromagnetic and Specific Methods of Mineral Dressing [in Russian], MGTU, Moscow (2005).
4. G. P. Bochkarev, V. I. Rostovtsev, P. D. Vovly, et al., «High-gradient magnetic separator for dressing of weak-magnetic ores,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2004).
5. E. P. Velikhov (Ed.), Pulse Systems. Collected Works [in Russian], Energoatomizdat, Moscow (1987).
6. I. E. Tamm, Foundations of the Theory of Electricity [in Russian], Gos. Izd. Tekh.-Teor. Lit., Moscow-Leningrad (1946).
Версия для печати (откроется в новом окне)
|